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Abstract: A novel taxonomy of built-in self-test (BIST) methods is presented for the testing of micro-
electro-mechanical systems (MEMS). With MEMS testing representing 50% of the total costs of the
end product, BIST solutions that are cost-effective, non-intrusive and able to operate non-intrusively
during system operation are being actively sought after. After an extensive review of the various
testing methods, a classification table is provided that benchmarks such methods according to four
performance metrics: ease of implementation, usefulness, test duration and power consumption. The
performance table provides also the domain of application of the method that includes field test,
power-on test or assembly phase test. Although BIST methods are application dependent, the use of
the inherent multi-modal sensing capability of most sensors offers interesting prospects for effective
BIST, as well as built-in self-repair (BISR).

Keywords: micro-electro-mechanical systems (MEMS) test; built-in-self-test (BIST); failure modes;
multi-functional sensors

1. Introduction

The earliest micro-electro-mechanical-systems (MEMS) emerged in the 1970s [1] and
interest in creating them has grown ever since. Unlike in integrated circuits (ICs), MEMS
utilise information and material from multiple domains of energy (electrical, mechanical,
thermal, optical, biological, etc.), making testing in general, and built-in self-test (BIST) for
MEMS, much more complicated than for ICs. Moreover, the causes and modes of failures
are much more numerous and varied, rendering online and offline testing complicated [2,3].
In comparison to IC testing, MEMS testing is therefore more expensive generally, represent-
ing, in some cases, up to 50% of the price of the end product [4–6]; built-in self-test (BIST)
methods can help offset these cost-provided solutions are offered to test across multiple
domains of energy and interfaces. However, due to the increased complexity as compared
to ICs, BIST for MEMS only emerged in 1989 [7].

BIST enables an electronic system to be aware of its own condition [8]. This technique
found ubiquitously in embedded systems allows the extraction of parameters ranging from
a single system pass/fail information to a comprehensive set of parametric information
regarding the health of each of the system components. Using the terminology employed
by Benso et al. [9], BIST is a “detection only” fault handling strategy, whereby the system
signals only the detection of a fault, but does not act on it and lets the external environment
handle it.

First developed for integrated circuits (ICs) in 1977 [10], and considered a well-
established design-for-testability (DfT) method in the 1980s [11], BIST has evolved into
various implementation specific techniques, which include histogram-based analog BIST
(HABIST) [12], logic BIST (LBIST) [13], memory BIST (MBIST) [14], and its programmable
alternative, programmable BIST (PBIST) [15]. BIST is also used alongside various tools
for testing, such as JTAG [16], automatic test pattern generation (ATPG) [17], for example,
or sometimes incorporating tools such as cyclic redundancy check (CRC) [18] or pseudo-
random pattern generator (PRPG) [19]. MBIST is also usually used in conjunction with
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redundancy-based built-in self-repair (BISR) or memory built-in self-repair (MBISR), tech-
niques which implement the complete removal of the fault [20,21] and generally rely on
the redundancy of electronic components [22].

This article presents a systematic review and classification of BIST strategies for MEMS.
A moderate amount of literature is available on BIST techniques for MEMS, with all articles
presenting solutions specific to the MEMS studied, and most of them focusing on inertial
MEMS [23,24]. As the last review on BIST for MEMS was written in 2006 [25], this review
article provides a timely up-to-date overview based on around 100 publications of academic
and industrial research worldwide.

A taxonomy of the various BIST strategies for MEMS discussed in this review is
presented in Figure 1. Section 2 introduces electrically induced stimuli test methods. These
methods are the most popular and have their origin in the testing of inertial MEMS. In
Section 3, the authors present a set of test methods which they define as delay-based
test methods; these form the second most popular test methods. Section 4 discusses the
impulse response test methods and Section 5 describes the bias superposition/modulation
methods, which are becoming very popular. Section 6 highlights the unique use of sensors
with different sensing modalities at a potential BIST method. At the end of each section,
a discussion paragraph summarises the advantages and drawbacks of each methods
alongside their key characteristics. Section 7 benchmarks all these methods in terms of ease
of implementation, “usefulness” defined as the number of functionalities a given method
possesses, and test time duration with indication as whether the test is occurring during
manufacturing/assembly, at activation or during operation of the device. A summary table
highlighting the key performance metrics for each BIST method is also provided. Finally,
Section 8 provides general conclusions regarding this review article.
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Figure 1. Taxonomy of the built-in self-test (BIST) methods for micro-electro-mechanical systems
(MEMS).

2. Electrically Induced Stimuli Test

In this test method, an electrical signal generates a physical signal, like an electrostatic
force for example, inside the MEMS. This physical signal is expected to generate a response
from key functional sub-structures of the MEMS. If the response can be converted back into
an electrical signal, a viable BIST method would use this physical signal either to mimic the
physical forces acting on the device under test (DUT) under normal operating conditions,
or to extract information about the health of the DUT [23,24]. Four test strategies that
highlight this method are presented in this subsection: single-ended test, symmetrical test,
direct and indirect parameter extraction.
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2.1. Single-Ended Test

Many MEMS have moving or free-standing structures that either (1) have been de-
signed purposely to be actuated, (2) are susceptible to be deformed, albeit unintentionally,
or (3) can be used by some other means to stimulate other parts. Examples include the
use of electrostatic forces for accelerometer testing [26], the heating of a resistor to cause
thermal expansion of a suspended structure [27,28], or the emission of infrared signals im-
pinging on a thermopile structure [29]. An electrical test signal generator would electrically
stimulate the device in a way that results in a physical movement, a deformation, or the
creation of a signal belonging to the right domain of energy for the device to be tested. The
output response is then measured and compared to the normal operational behaviour of
the system [30]. This subsection presents in detail these three possibilities.

2.1.1. Electrostatic Actuation

Developed as early as 1989 for crash sensors in car airbags, the method relies on the
generation of an electrostatic force to actuate the freestanding seismic mass of a capacitive
accelerometer. An example of this self-test system can be found in the former ADXL50
acceleration measurement system commercialised by Analog Devices [26]. It not only
supports self-test but also self-calibration using the Earth’s gravity.

Zimmerman et al. present also an accelerometer structure with self-test capability of
duration of less than 2 ms, utilizing electrostatic force to deflect the moving mass as shown
in Figure 2 [31]. The generated pulse signal makes the accelerometer behave identically
to an external acceleration signal. The amplitude of the deflection is controllable. The
self-test is claimed to be useful also for the periodic calibration and accelerated ageing test.
Analysis of the test response allows access to the functional parameters of the device, such
as the resonance frequency, which is affected by most common accelerometer faults [32,33].
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Figure 2. Schematic of a capacitive accelerometer, adapted from [23].

2.1.2. Thermal Actuation

Thermal actuation is utilized for BIST in various ways [34,35]. In one instance, a cur-
rent is used to thermally expand a bimetallic membrane to simulate membrane deflection
in a pressure sensor [27,28]. Charlot et al. use thermal actuation in three applications:
(1) a cantilever structure used as a tactile sensor, (2) a cantilever with a suspended mass
simulating an accelerometer and a (3) membrane for pressure sensors [24]. In all three cases,
a heater electrode is used to provoke the thermally induced deformation of a suspended
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structure. The magnitude of the deformation is detected by piezoresistors, as shown in
Figure 3.
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2.1.3. Other Thermally Induced Effects

Heat can also be used indirectly to actuate free-standing structures. One example,
shown in Figure 4, includes the heating of air present in a cavity, which generates a pressure
gradient that causes the deflection of a membrane in a MEMS pressure sensor [36]. Heater
electrodes are also used to provide a built-in heat source for a MEMS infrared imager [23].
In all cases, the thermal element is a simple heating electrode with a meander structure
implemented on a chip.
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In summary, a singe-ended test has been demonstrated for a variety of MEMS, includ-
ing accelerometers, tactile and pressure sensors, and infrared imagers. Each application
has different time constraints ranging from less than 2 ms in airbag application using ca-
pacitive accelerometers [31] to around 3 ms for the thermal excitation of the cantilever-type
accelerometer structure. The main benefit of this test method is the lack of need for a
physical force to run the measurement. The method is also relatively fast, but application-
dependent. Additional integrated circuitry or external readout equipment is however
required to analyse the sensor output.

2.2. Symmetrical Test Method

Similar to the single-ended test method in terms of the generation of the physical
stimuli, symmetrical testing focuses on enhancing the observability of deviations of device
response from normal behaviour. This BIST method relies on detecting any differences
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in the results obtained at symmetrically placed measurement points and resulting from
the presence of local defects. This test, which results in pass/fail information about the
health of the device, is not effective for defects such as stiction, that affects the device in a
symmetric manner, but detects finger height mismatch and etch variation very well in the
case of a comb-like accelerometer.

Most of the research related to this method has been carried out at Carnegie Mellon
University by Deb et al. [37–40], and by Xiong at al. at the University of Cincinnati, as
shown in Figure 5 [41,42]. While Deb et al. focused on the symmetrical test method
only on surface-micromachined capacitive MEMS accelerometers, Xiong et al. showed
applied both single-ended and symmetrical test for three different devices and claimed
that their technique can be easily extended to other capacitive MEMS devices. With a
1 MHz modulation voltage, the sensing time is under 1 ms. This test method also requires
additional circuitry for control and measurement at symmetrically placed areas.
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2.3. Direct Parameter Extraction Test

Electrical parameters obtained from measurements of the output response of MEMS
very often show a strong correlation with their mechanical parameters (mass, damping
coefficient, spring constant). It would be therefore possible to directly infer from these
measurements, whether the mechanical structure of MEMS is affected by defects. In that
regard, Natarajan et al. came up with a method to test certain mechanical parameters of
a capacitive accelerometer by purely electrical means [43]. A large frequency AC signal
was used to create an oscillating motion on the plates of the capacitors. The capacitance
deviation caused by the oscillating motion was monitored using a high frequency AC signal
and an op-amp based capacitance sensing circuitry. The signal is optimized in a way that
the capacitance vs. time waveforms are sensitive to changes in the mechanical properties
of the accelerometer. From the capacitance measurements, the mechanical parameters
of interest are predicted with less than 5% error using multivariate adaptive regression
splines [44]. The method presented in their work and shown in Figure 6 is referred to as
alternate testing [45].
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While it is not a fully integrated BIST solution and requires external components,
signal processing and evaluation off-chip, it is amenable to be one, as BIST solutions with
the same test method were previously presented for RF ICs [46]. The test method, when
fully on-chip, would alleviate the need for expensive measurement setup thus saving
money on testing. Assuming that the mapping algorithm needs at least 1 full period to
match the output to the physical properties of the device, the prediction of the device
parameters should take around 22–25 ms. Although the technique was designed originally
for accelerometers, it should be applicable to any capacitive MEMS.

2.4. Indirect Parameter Extraction Test
2.4.1. Oscillation-Based Test

It is computationally easier and faster to use an oscillating signal to measure these
electrical parameters that are highly correlated to the MEMS dynamics [30]. These in-
clude resonant frequency, pull-in voltage or amplitude response. This method, called the
oscillation-based test method (OTM), was studied by Beroulle et al. at LIRMM [47,48] and
Al-Gayem et al. at Lancaster University [49–54].

In the former case, OTM for analogue circuits was adapted to simulate, with polysili-
con strain gauges, the deflection of a U-shaped cantilever vibrating due to Lorentz forces in
the presence of a magnetic field, as shown in Figure 7. The magnetometer was reconfigured
into an oscillating device using a first-order derivation feedback circuit to induce motion
of the DUT and calculate the resulting frequency and the amplitude of the oscillations.
Frequency and amplitude are referred to as indirect parameters, while the thicknesses of
various layers of the cantilever structure are referred to as low-level parameters. Both
the direct parameters such as sensitivity and settling time and the indirect parameters
are dependent on the low-level physical parameters. OTM did not prove to be useful in
reliable detection of small deviation of the low-level parameters, or small parametric faults,
however it performed well for detecting catastrophic fault or large parametric faults. With
a natural frequency of 11 kHz, the authors concluded that the duration of the test would be
around 12 ms.
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In the latter case [49], OTM was also used to simulate the degradation of the electrode
surface in a microfluidic system by modelling the electrical double layer as a capacitance
inserted into the feedback of a standard oscillating structure. The increase of frequency of
the oscillator indicated the corrosion-induced reduction of the surface area, and therefore
of the capacitance of the electrode. The experiments showed that 50% capacitance change
resulted in a three-time increase of the oscillation frequency. The oscillation frequency for a
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fault-free electrode was above 20 kHz, thus assuming that at least one full cycle is needed
for a measurement; the test time is under 50 µs.

Whereas both works were simulations, Al-Gayem et al. carried out physical experi-
ments, albeit without an integrated solution. Neither OTM has been implemented for BIST
yet, but has the potential to be a fully integrated BIST method [49].

2.4.2. Impedance Analysis

Liu et al. [55] and later Al-Gayem et al. [49] presented another electrode degradation
detection method based, this time, on the impedance analysis of a capacitive biosensor
device. As the electrode degrades, the impedance increases and signal-to-noise ratio
(SNR) drops. Their DUT had multiple sensing electrodes assumed to be fault-free. The
impedances are measured and compared using a half-bridge structure [49]. The pass/fail
decision is based on the ratio of the measured impedances and the reference. The ratiomet-
ric measurement demonstrates that the comparison method reveals damaged electrodes
even if the reference electrodes are faulty, as illustrated in Figures 8 and 9.

Figure 8. Interferometry images of fault-free (left) and degraded (right) electrodes [50].
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Figure 9. Deviations of impedance ratios. The damaged electrodes are no. 31 and no. 57. Adapted
from [52].

The impedance measurement was chosen to run at 1 kHz, but the theoretical assump-
tions for the impedances will hold true till the MHz range. Although the speed of the
measurement system is currently in the ms range, tests durations of a few µs could be
achievable.

2.5. Discussion

Test methods based on electrically induced stimuli alleviate the need for external
physical stimuli. In order to implement the technique in a truly BIST manner, the test signal
generation and response analysis must be implemented on chip [25]. With such methods,
BIST could implement functional tests, focusing on measuring device specifications, and
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structural tests that focus on identifying defects. An example of the former is the periodic
self-calibration of the Analog Devices accelerometer using electrostatic actuation and
Earth’s gravity [26], as recommended by Zimmerman et al. [31]. A symmetrical test is a
structural test method whose duration is device dependent, and which requires a modular
MEMS structure that is specific to certain transducer types such as accelerometers or
RF MEMS switches [56]. The redundancy offered by device symmetry may be utilized
for BISR [57] applications if a suitable BIST method is present. The technique offers a
better fault coverage when used in combination with electrically-induced stimuli test [42].
Direct parameter extraction method is a functional test allowing the direct extraction of the
mechanical properties of the DUT using mapping techniques. Not yet implemented as a
BIST method, the test duration depends on the selected frequencies, themselves dependent
on the geometry and material properties of the device. In contrast, the indirect parameter
extraction method is a structural test method which requires integrated evaluation circuitry
to make is a truly BIST technique. In all of these methods, the dedicated BIST circuitry
could be part of an ASIC heterogeneously integrated with the MEMS sensor in a package
if necessary.

No “best BIST” solution exists for this category of tests, and the most suitable method
needs to be selected on the user needs and limitations of the device. For example, a sym-
metrical test method is not suitable for non-modular devices. Direct parameter extraction
might be able to extract vital information about the mechanical properties of the system at
the expense of significantly more additional circuitry for signal processing and decision
compared to other methods.

3. Delay-Based Test Methods

Delay-based test methods have been used extensively in microelectronics [58–60].
To the best of the authors’ knowledge, their application in capacitive MEMS BIST was
originally carried out by Rashidzadeh et al., who utilised delay lines to measure time
intervals which are a function of the capacitance of the DUT [61–66]. The test methods,
described in this subsection, include the charge control method, phase-locked loop (PLL)
method, phase locking method and the use of a Pierce oscillator.

3.1. Charge Control Technique

As shown in Figure 10, this BIST scheme utilizes a charge pump with two current
sources that gradually charge (current source I1) and discharge (current source I2) the capac-
itance of a MEMS while measuring the charge and discharge times with delay lines [65]. A
comb drive structure was used for testing, thus charging the device altered the electrostatic
force between the plates. The movement of the plates results in a capacitance variation
that is detected and converted to time intervals using delay lines. The time intervals are
digitized by a time-to-digital converter (TDC) [67]. Some structural defects may alter the
measured capacitance of the comb drive by changing its geometry and spring constant.
These defects can include missing fingers, finger dimension dissimilarity and etch variation.
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This method provides a safe BIST solution, without the risk of collapsing the sus-
pended structure with electrostatic forces while being insensitive to noise and power supply
variations. The demonstration chip, fabricated with the TSMC CMOS 65 nm process, occu-
pied 0.7 mm2 silicon area and consumed less than 2.8 µW power for a maximum self-test
speed of 18 kHz. The device was prototyped without a capacitive sensor but contained
a CMOS varactor mimicking the behaviour or a MEMS capacitor. The chip is capable of
measurements with ns resolution and can detect capacitance changes in the fF regime.

3.2. PLL Based Built-in Self-Test (BIST)

In this method, a phase-locked loop (PLL) transfers the capacitance variations of a
capacitive MEMS in the time domain [64]. Inserting the MEMS between a phase-frequency
detector (PFD) and a voltage-controlled oscillator (VCO) creates a phase difference between
the input and output of the VCO, as shown in Figure 11. A change in the MEMS capacitance
from its nominal value introduces a phase difference in the PFD inputs. This results in
the PLL losing the lock, which it reacquires by VCO adjustment. In this state, the inputs
of the PFD are in phase again, however the phase difference between the input voltage
and the output of the VCO is different from its original value. This difference is linearly
proportional to the deviation of the MEMS capacitance. The proposed method is insensitive
to process, supply voltage and temperature (PVT) variations. Only simulations were carried
out to validate the concept as a BIST method. This technique has measurement resolution
in the ns regime and is capable of detecting changes in capacitance down to tens of aF.

Micromachines 2021, 12, x 9 of 27 
 

 

 

Figure 10. Simplified block diagram of the BIST architecture [65]. 

This method provides a safe BIST solution, without the risk of collapsing the sus-

pended structure with electrostatic forces while being insensitive to noise and power sup-

ply variations. The demonstration chip, fabricated with the TSMC CMOS 65 nm process, 

occupied 0.7 mm2 silicon area and consumed less than 2.8 µW power for a maximum self-

test speed of 18 kHz. The device was prototyped without a capacitive sensor but contained 

a CMOS varactor mimicking the behaviour or a MEMS capacitor. The chip is capable of 

measurements with ns resolution and can detect capacitance changes in the fF regime. 

3.2. PLL Based Built-in Self-Test (BIST) 

In this method, a phase-locked loop (PLL) transfers the capacitance variations of a 

capacitive MEMS in the time domain [64]. Inserting the MEMS between a phase-frequency 

detector (PFD) and a voltage-controlled oscillator (VCO) creates a phase difference be-

tween the input and output of the VCO, as shown in Figure 11. A change in the MEMS 

capacitance from its nominal value introduces a phase difference in the PFD inputs. This 

results in the PLL losing the lock, which it reacquires by VCO adjustment. In this state, 

the inputs of the PFD are in phase again, however the phase difference between the input 

voltage and the output of the VCO is different from its original value. This difference is 

linearly proportional to the deviation of the MEMS capacitance. The proposed method is 

insensitive to process, supply voltage and temperature (PVT) variations. Only simulations 

were carried out to validate the concept as a BIST method. This technique has measure-

ment resolution in the ns regime and is capable of detecting changes in capacitance down 

to tens of aF. 

 

Figure 11. Block diagram of the PLL-based readout circuit [64]. 

3.3. Phase Locking Test Method 

In this method, a phase-locking circuit is utilized to detect physical defects in a ca-

pacitive MEMS [63]. Small defects that change the capacitance by fFs are hard to detect, 

especially in the presence of PVT variations. To measure such small defects, a modified 

Figure 11. Block diagram of the PLL-based readout circuit [64].

3.3. Phase Locking Test Method

In this method, a phase-locking circuit is utilized to detect physical defects in a
capacitive MEMS [63]. Small defects that change the capacitance by fFs are hard to detect,
especially in the presence of PVT variations. To measure such small defects, a modified
delay locked loop (DLL), chosen for its better jitter performance compared to a PLL, is used
to amplify the capacitance variations in the time domain.

The parasitic capacitances of a typical MEMS actuator are in the fF range. This value
is comparable to that of the delay cell capacitances that essentially define the resolution of
a delay locked loop. As the DLL resolution is in the parasitic capacitance range, smaller
deviations to the MEMS capacitance caused by minor defects may go undetected. To
increase its resolution, the DLL was reconfigured into a delay detection module (DDM) so
that the resolution of the circuit now depends on the delay difference between two delay
cells and not on the delay of each cell. This allows one to amplify the delay introduced by
the MEMS capacitor, as shown in Figure 12.
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A prototype circuit of an estimated area of 7600 µm2 was realised in 0.18 µm CMOS
technology for performance verification. This technique operates in the ns time regime and
is capable of detecting up to 2 fF capacitance variations.

3.4. Pierce Oscillator

Unlike other delay-based test methods, this BIST method, used for capacitive MEMS,
operates in the frequency domain instead of the time domain [61]. In [58], structural defects
causing very small capacitance deviations are claimed to be easier to detect in the frequency
domain than in the time domain, especially for resonant structures monitored closed to
their resonant frequency. In that regard, a Pierce oscillator structure is utilized to assess
capacitance deviations in the frequency domain.

In the study of Rashidzadeh et al., the resonance frequency of the DUT depends on
the MEMS capacitance. As shown in Figure 13, a 10 fF change in a capacitance of a comb
drive structure with a nominal value of 1 pF creates a 10 MHz deviation of a resonant
frequency of 1 GHz, which is much easier to detect than the corresponding deviation in
the time domain. This BIST duration is in the order of ns and the method is able to detect
structural failures with high accuracy, such as missing fingers in a comb-drive.
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3.5. Discussion

All delay-based tests methods highlighted above were applied for comb drive struc-
tures but could equally be used for other capacitive MEMS. The methods utilise delay lines
to measure time delays associated with MEMS capacitances and operate within the ns
duration. They convert capacitance variations into time differences. The Pierce oscillator
translates these capacitance variations into the frequency domain, while the phase locking
test method amplifies the time difference using a “time amplifier”, which is a combination
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of a delay detection module and delay lines. It could be argued that the PLL-based BIST is
not strictly a delay-based method but this test shows great similarity to the phase locking
test solution. The phase locking method has however better jitter performance. Apart from
the Pierce oscillator method, all are insensitive to PVT variations. As the experimental vali-
dation of methods were carried out using different CMOS processes, power consumption
and die overhead are not directly comparable. The PLL-based BIST method is superior in
detecting small capacitance deviations as it proposes aF level resolution, while the rest of
the methods only offer fF resolution. Apart from the PLL-based BIST solution, all delay-
based test methods were fabricated and experimentally validated. Although few BIST
solutions exist for RF MEMS [68–70], it was suggested by Syed et al. [71] that non-contact
capacitance deviation detection methods can be utilized to detect certain failures such as
stiction, thus delay-based test methods may be suitable candidates for RF MEMS BIST.

4. Impulse Response Test Method

One of the simplest ways to assess the health of a linear time invariant (LTI) system
is to calculate its impulse response (IR). The IR of a system can be acquired by applying
a Dirac (delta) δ-function as the system input and measuring the output response. By
knowing the IR of the system, the output for any arbitrary input can be calculated, thus
failure-related deviations can be identified. Various strategies were implemented based on
this concept; these include the pulse excitation test and the pseudorandom test methods.

4.1. Pulse Excitation Test Method

An approximation of the δ-function is a pulse signal. This method enables fast system
characterization, but has a very low signal-to-noise ratio due to its short time duration [72].
Rarely used since more accurate, albeit slower, methods exist to calculate the IR of a system,
pulse excitation is however a feasible solution for time-critical applications.

A patent from InvenSense Inc. describes an on-chip pulse excitation (PE) solution for
testing a capacitive microphone as shown in Figure 14 [73]. The electrical pulse is generated
by an electrostatic force generator. The circuit includes a voltage buffer to drive the test
signal onto the output of a high voltage charge pump (HVCP). The output of the voltage
buffer is coupled through a capacitor so that it does not disturb the DC voltage at the output
of the HVCP. A resistor is used to control the time constant of the applied waveform.
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4.2. Pseudorandom Test Method

A more accurate, higher SNR but slower test method uses a pseudo-randomly coded
test sequence to calculate the impulse response of a system. The impulse response is ob-
tained from the measurements of the input-output cross-correlation function [25,72,74–80].

One of the earliest pseudo-random testing techniques for BIST presented by Pan
et al. [81] in Figure 15 uses a linear-feedback shift register to generate a maximum length
sequence (MLS), which is the test sequence. MLSs are binary sequences with a length
N = 2 m-1, where m is the order of the sequence. This sequence is highly suitable for
IR measurements, since it is periodic and deterministic. Only one period of the MLS
signal is enough to calculate the impulse response in case of a linear time-invariant system.
Averaging can be applied to increase SNR. Due to the deterministic property of the MLS,
it is precisely repeatable. The SNR can thus be further increased with the synchronous
averaging of the test output.
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4.3. Discussion

It is hard to compare the methods due to the low number of available papers on pulse
excitation. In general, PE is faster than pseudorandom testing and the injection of the
test signal requires less additional circuitry. PE has, however, a lower SNR and there is
a chance of damaging the MEMS device. Pseudorandom testing is more accurate at the
expense of more additional circuitry and processing time. Mir et al. were able to calculate
the impulse response of a bulk micromachined CMOS cantilever beam with this method
under 1 ms [25].

5. Bias Superposition/Modulation Method

The electrically induced stimuli test methods presented in Section 2.2 are off-line
methods since they perturb MEMS outputs during normal operating conditions [82]. A
solution is required to test MEMS during their operation, whilst making sure that test
results can be solely related to the input stimulus response. As shown in Figure 16, in
the bias superposition method, also called bias modulation method, a test stimulus is
either added (superposition) or multiplied (modulation) to the normal electrical biasing of
the structure of the MEMS to be tested. The characteristic of the stimulus allows the test
response to be extracted from the normal functional response of the MEMS, ideally without
compromising either signal. The injected test signal has typically a frequency outside the
operating bandwidth of the functional signal, but still within the physical bandwidth of
the MEMS to allow online operation. Following [82], this subsection describes in detail
the four different types of stimuli used for these tests: differential bias, alternative bias,
actuating bias and redundancy bias.
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5.1. Differential Bias

The differential bias method relies on device symmetry to identify structural defects.
In the case of a pressure sensor, a Wheatstone bridge structure, Figure 17, is used with piezo
resistive strain gauges experiencing increase and decrease of resistance depending on the
applied strain [82]. The voltage supply of the structure is split into two differential inputs
containing the bias voltage and an ac signal of different polarity but same magnitude. The
AC output is independent of the strain applied to the structure as the values of the resistors
stay relative to each other along with the rate of change. If the change only affects a single
resistor, the AC output will change, and the fault is detected.
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5.2. Alternative Bias

The alternative bias method utilizes a signal superimposed or modulated to the
bias signal that excites the sensor element in a way distinct from its normal mode of
operation. This method exposes defects without any measurement. In the case of a
MEMS magnetometer based on a U-shaped free-standing mechanical frame connected to a
Wheatstone bridge as in Figure 18 [85,86], a low-frequency signal is injected for thermal
excitation purposes. Lorentz forces actuate the structure at its mechanical resonance
frequency of around 22.5 kHz. A low frequency signal of 4.5 Hz injected to the bias current
(or voltage) induces thermal variations to the mechanical resonance. Both components can
be read at the output of the sensor. In case of a catastrophic failure, the thermal dissipation
of the bridge structure is likely to change; so does the low frequency output. This method
could also be included in Section 2.1.2.

Both bias superposition and modulation strategies have been investigated. For bias
superposition, the amplitude increase of the output is caused by asymmetrical bias. For
bias modulation, the output of the sensor is proportional to the peak-to-peak amplitude of
the bias signal. Assuming that at least 1 full cycle is needed for measurement evaluation,
the duration of this test method is around 250 ms.
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5.3. Actuating Bias

The actuating bias method utilizes a signal generated by the bias to physically excite
the sensor in the same manner as the bias itself. Either the bias signal generates a similar
response to the measurand (same type of output/effect) or mimics the response of the
measurand (same type and magnitude). Simulation work was carried out in the case a
capacitive MEMS accelerometer with the test stimulus lying in the mechanical bandwidth
of the DUT, as shown in Figure 19 [82]. The superimposed signal must not, however,
influence the measurement output, and must be separable by filters. Experiments were
later carried out by Dumas et al. with the frequency of the injected stimulus sitting in the
mechanical bandwidth of the device, but outside the bandwidth of interest [88]. Since the
measurand-induced signal and the test signal have different frequencies, they are simply
separated by filters at the output of the DUT. This case study also highlights the narrow
bandwidth of the test stimulus and the requirements for high roll off test filters.
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Instead of employing a sinusoidal signal for the injected stimulus, improvement
on the readability of the output was demonstrated by using a pseudo-randomly coded
sinusoidal wave generated by a linear feedback shift register (LFSR) [81]. Two scalar values,
covariance (Cov) and correlation (Cor), were produced at the test output and are generated
by covariance and correlation algorithms, respectively. Cov is proportional to the sensor
sensitivity, while Cor is used to validate the value of Cov and serves as an indicator for
output signal corruption. The health of the system is determined by the value of Cov, which
indicates whether system sensitivity falls below a threshold value. The pseudorandom
coding ensures that Cov is readable on the output. This requires a trade-off between
readability and test speed as increasing the number of bits used for the pseudorandom
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code improves the readability of the signal. Dumas et al. found the number of minimum
acceptable bits for their case study to be 255, resulting in a test duration of 2.55 s.

5.4. Redundancy Bias

In the redundancy bias method, the bias signal is manipulated to support two distinct
measurements of the physical input. The two measurements are correlated to obtain data
that constitute a function of the structural MEMS parameters.

Application of this method was carried out on a thick film conductivity sensor used in
electrolyte conductivity measurements [89]. The sensor uses two gold electrodes around a
micro-channel, with the channel sidewalls exposed to the electrodes as shown in Figure 20.
To measure the resistance of the solution in the channel, high measurement frequency
(10 kHz) is desirable to avoid electrolysis and the unwelcome impedances of the contacts
at the electrode-solution interface and at the grain boundaries due to the unideal flatness
of the electrode surface. In order to measure the time constant of the system, a 10 Hz
step signal is required that activates the transient response. Jeffrey et al. demonstrated a
relationship between the measured time constant and the concentration of the solution.
By measuring the time constant, information about the concentration can be acquired,
that is used to calculate a second value for the solution resistance. The high frequency
(10 kHz) and low frequency (10 Hz) signals are mixed together and used as sensor bias, as
illustrated in Figure 21. Measurement of the solution resistance (R’x) is achieved using the
high frequency signal and the time constant is measured using the low frequency signal,
from which a second value for the solution resistance is calculated (R”x). A mismatch
between R’x and R”x or a time constant outside the specifications stored during sensor
calibration indicates DUT failure. This provides pass/fail information about the health of
the sensor.
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5.5. Discussion

In summary, bias methods have the advantage of not requiring modification of the
MEMS sensor to test. These online test methods also allow failure detection during online
MEMS operation. In this respect, test durations ranging from 2.5 s (actuating tested using
pseudorandom code sinusoidal signal) down to sub-ms (differential bias) become less
critical, as the tests do not disturb the normal use of the MEMS. Extraction of the output
signal resulting from the input test signal is feasible with electrical filters as the former
injected signal has a frequency outside the operational frequency of the MEMS. This
output signal provides information on the health of the MEMS and potential online signal
compensation in case of calibration error.

As only pass/fail information can be extracted, these test methods are not suitable for
MEMS characterisation or parametric measurements, although they provide a cost-efficient
low-overhead solution for catastrophic fault detection. Regarding the use cases, differential
bias can only be implemented when a symmetric/modular structure is present, and for
failures that do not affect MEMS in a symmetrical manner such as stiction. As in the
symmetrical test method (Section 2.2), it is best used with another test method. Alternative
bias and redundancy bias are both easy to implement, however the readout circuitry of
redundancy bias might be a bit more complex. Actuating bias is the slowest option and
a working solution requires not only a test signal evaluator, but an additional test signal
generator circuitry on board as well.

6. BIST Method Building on Multi-Functional Sensors

Redundancy of components in an electronic device leads to fault tolerance. If, after
the implementation of a BIST method, a defective component is detected, one strategy is
to isolate this faulty component from the rest of the device and carry on device operation
using the remaining functional components [90].

In the case of MEMS, the manufacture of multiple identical sensors on the same die
might be space or cost prohibitive. However, if the DUT has already multiple sensors
for the purpose of sensing more than one physical parameters, one strategy is to use the
inherent redundancy of sensing modalities possessed by these sensors that are sensitive
to physical quantities purposely measured by other sensors. The effect when sensing
elements are sensitive to more than one physical quantity is called cross-sensitivity, while
the sensors themselves are called multi-modal sensing elements [91]. Cross-sensitivity
is usually considered a problem in multi-sensor structures and approaches are made to
overcome its effects [92]. For BIST, cross-sensitivity can be exploited as a substitute for
redundancy. Extensive research has been carried out in the field of multi-functional sensors
(MFS) at Lancaster University by Richardson et al., an example of which is provided in
Figure 22 [93–95].
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at the level of each MFS using some of the techniques described in previous sections [93].
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In this figure, each sensor has not only a primary sensing function but can also measure
secondary parameters through either additional modes or cross-sensitivities. For example,
the sensor on the left would sense primarily pressure, but also temperature. The sensor in
the middle would sense temperature but also humidity, and the sensor on the right-hand
side would sense humidity but also pressure. The use of multiple MFS is to increase fault
tolerance, such that, if one sensor fails, the system tries to recreate the correct measurement
of humidity, pressure and temperature by using the outputs of the remaining sensors.
In order to achieve this, the measurement data from each sensor are first pre-processed
and then passed through a data fusion algorithm to compare the measurements from
each sensing element and produce an output. Pre-defined coefficients are used for sensor
calibration at default. The data fusion algorithm detects whether a sensor is defective or
not based on comparison.

This BIST technique can also be enlarged for built-in self-repair (BISR) in the following
manner. When a faulty sensor is detected, sensitivity coefficients are calibrated for that
sensor. If the modified coefficients lead to a sensor output that is in the acceptable range, the
sensor output is used for further measurements (recovered from failure state); otherwise,
the sensor needs to be replaced in the next maintenance. The data from the sensor coefficient
recalibration algorithm can not only be utilized for monitoring the health state of each
sensor, but also for prognosis, thereby enabling the calculation of the residual useful life
(RUL) and end of life (EOL) of the MEMS [96–98].

In summary, this BIST method relies on the plurality of sensing modalities inherent in
some sensors. The test method has the advantage of being extendable to MEMS BISR and
prognosis. This method can, however, only be applied to MEMS capable of accommodating
sensors with cross-sensitivity with different sensing elements.

7. Classification and Benchmarking of the BIST Methods

Several performance metrics can be used to benchmark the various BIST methods pre-
sented in the previous sections. Some metrics such as test duration or power consumption
of the test methods, are measurable quantities, although their values can be dependent
on the technology used and SNR requested. Other metrics, like “ease of implementation”
or “usefulness”, are more subjective. Such metrics can nevertheless be provided with an
ordinal value set up by consulting engineering teams. In the case of “ease of implemen-
tation”, the range was from 3 (easy) to 1 (difficult). A 5-point cumulative score was used
for the “usefulness” metric, depending on the type of faults covered by the BIST method
and the additional functionalities that the method can provide potentially. A high score for
each of these metrics indicate therefore that the method is highly desirable. These last two
metrics are first described and presented in Tables 1 and 2, followed by the measurable
performance metrics.

Following this benchmarking exercise, the various applications of the BIST methods
are presented and classified according as to whether they are run during system operation,
at the device assembly phase or during power-on. Finally, a classification table summarising
the findings of this review article is provided in Table 3 at the end of this section.
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Table 1. Quantitative scoring method for implementation difficulty of built-in self-test (BIST) methods.

Difficulty Description Scoring

Easy

No MEMS alteration is
necessary; no sensing

elements are needed to be
manufactured and only

additional electronic circuitry
is needed if necessary.

3

Medium

Alteration of the MEMS
structure is minimal.

Additional circuitry may be
required.

2

Difficult

Additional sensing elements
are needed and/or major

modifications of the MEMS
structure are required.

1

Table 2. Quantitative scoring method of BIST usefulness.

DUT Support Type DUT Support Function Scoring

Base fault detection
Catastrophic fault detection +1

Parametric fault detection +1

Additional support tools
Health and usage monitoring +1

Built-in self-repair capability +1

Multi-modality sensing +1
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Table 3. Classification table BIST methods.

Test Method Description Ease of
Implementation Usefulness Measurement

Time [ms]
Application of

Test References

Electric actuation

Single-ended test

Thermal
actuation

Heater electrode is used to provoke
thermally induced deformation. 2 2 20,000 B [23,24,27,

28]

Other

Heater electrode is utilized to
generate pressure gradient via

heating air that causes membrane
deflection or to provide signal to

infrared imager.

2 2 70, 7000 A, B [23,24,29,
36]

Electrostatic
actuation

Electric stimulus is used to mimic
physical force, in most cases

acceleration.
2 2 10 A [23,24,26,

30,31]

Symmetrical test

Combination of single-ended and
symmetrical testing for greater fault

coverage.
2 2 <1 A [41,42]

Device is structured into symmetrical
portions. Response is captured and

compared for identical stimuli.
2 2 2 A [37–40]

Indirect
parameter

measurement

Oscillation based
test

Device is reconfigured into an
oscillating device, changes in

resonating frequency and amplitude
are captured.

2 2 15 A [47,48,86]

Electrode surface area change due to
degradation results in capacitance
drop that modifies the oscillation

frequency of the system.

3 2 1.5 A

[49–55]

Impedance
analysis

Electrode surface area change due to
degradation results in impedance

deviation.
3 3 0.1 A

Direct parameter extraction
Electrode impedances compared to
the reference electrodes to monitor

degradation.
3 2 0.1–10 A [43]
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Table 3. Cont.

Test Method Description Ease of
Implementation Usefulness Measurement

Time [ms]
Application of

Test References

Delay based

Charge control test
Charging and discharging the MEMS

capacitor, test is based on charge
times.

3 2 1–10 A [65]

PLL based test
Change in MEMS capacitance

detected by a PLL and converted to
time domain.

3 2 1 A [64]

Phase locking test
Amplification of capacitance

differences in time domain using a
modified DLL.

3s 2 0.007 A [63]

Pierce oscillator
Analysing capacitance deviation in

the frequency domain utilizing a
modified Pierce oscillator structure.

3 2 0.01 A [61]

Impulse
Response

Impulse Excitation

MEMS is excited with a single
impulse. Impulse response (IR) gives

information for functional
evaluation.

3 2 2.5 A [72,73]

Pseudorandom
MEMS is excited with a test sequence

to acquire IR of the system with
better SNR than with IE.

3 2 2000 B [72]
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Table 3. Cont.

Test Method Description Ease of
Implementation Usefulness Measurement

Time [ms]
Application of

Test References

Superposition
method

Differential bias

Relies on device symmetry. Separating
bias signal to two different inputs. The
output should be the same unless there

is a change in resistance.

3 3 20–50 A [82]

Alternative bias

A signal superposed to the bias signal
that excites the sensor element in a

distinct way than the normal mode of
operation.

3 3 20-50 A [82]

Actuating bias

A signal generated by the bias that
excites the sensor element in the normal

mode of operation.
3 3 20–50 A [82]

The bias is modulated with a
pseudorandom code-modulated

sin-wave in the working range of the
device.

3 3 2550 B [88]

Redundancy bias

The bias signal is manipulated to
support two distinct measurements of

the physical input. The information
acquired from the output is redundant
and is correlated to gain data about the

structural sensor parameters.

3 3 30 A [82,89]

Multimodal
integration MFS

Multiple sensors on one chip with cross
sensitivity result in fault tolerance. Data
fusion algorithm detects and attempts to
correct misbehaving sensors. Integrated

remaining useful lifetime prediction.
Proposal for integration of sensitivity

test method and pseudorandom coding.

1 N/A N/A N/A [93–95]
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7.1. Benchmarking Methodology of the BIST Methods

This subsection introduces three benchmarking criteria for BIST methods. The criteria
were designed to provide a quantitative evaluation between the different methods that are
otherwise hard to compare.

7.1.1. Ease of Implementation

The ease of implementation of a test method for MEMS is an important consideration
for selection of the BIST techniques. Some methods require either slight modification or
radical redesign of the MEMS when additional sensors are required, resulting in additional
real estate on the die. Other methods require new test signals or modification of existing
signals necessitating perhaps additional electronic circuitry. A quantification of this “ease
of implementation” is presented here and consists of a scoring scheme with each level
assigned to a level of difficulty, ranging from 1 (difficult) to 3 (easy). The scoring method is
presented in Table 1 and enables the objective scoring of this performance metric.

7.1.2. Usefulness

The degree of “usefulness” of a BIST method for MEMS was broken into two main
categories: whether it supports parametric fault detection or catastrophic fault detection
only. The latter property provides only a pass/fail information about the MEMS, whereas
the former can be used to detect deviations from system specifications. Parametric fault
detection methods are the pillars for embedded intelligence in MEMS. These techniques
make it possible to include additional support and evaluation tools, such as on-line health
monitoring, BISR, RUL, self-tuning and EOL prediction. Multi-modal sensing was included
in the evaluation list due to its benefits in not only in BIST but BISR support. The two main
categories each are worth 1 point and one point is awarded for each additional support
tool included. This creates a ranking system from 1–5 with 1 being the lowest score and 5
being the highest. The scoring system is shown in Table 2.

7.1.3. Test Duration

Test duration defines the domain of application of the BIST method with tests with
long duration are preferably applied when the device is powered on. This quantity is less
important however in cases where the test method does not perturb the normal operation
of the MEMS and is running concomitantly. The durations of the test indicated in the
classification table have been either taken from literature or estimated.

7.1.4. Power Consumption

Power consumption is a critical aspect of the test. The MEMS should not have heat
dissipation problems due to increased power demand from the test. Depending on the
application and assuming that the BIST method is applied to mobile devices, the test should
not put an undue increased load on the battery. Unfortunately, no data were available
regarding power consumption for the various BIST methods reviewed. The classification
table therefore does not figure this important performance metric.

7.2. Classification of the BIST Methods

The applications of the BIST methods have been categorised as to whether they
are implemented on the run (field test), during power-on of the system or during the
manufacturing/assembly phase of the MEMS.

7.2.1. Field Test

Tests happening on the run are referred to as field tests. The device is in use or
assumed that it can be used anytime. The test duration must therefore be very short as the
test must not interfere with the user experience of the device. A typical test duration of less
than 100 ms would be deemed to be acceptable. Test methods used in field tests have been
labelled A in the classification table.
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7.2.2. Power-On Test

A power-on test occurs during the switch-on phase of the system. As such, an
extended amount of test time is available and could range from 100 ms up to 30 s. Test
methods in that category have been labelled B in the classification table.

7.2.3. Assembly Phase Test

Testing happening during the manufacturing or assembly phase of the device has
virtually unlimited test time and power consumption. The device is not in use and is
usually connected to an external power source. A label C has been indicated for these types
of test methods in the classification table.

8. General Conclusions

From this review, it is quite clear that there is no absolute “best BIST” method. The
most suitable test technique for implementation is likely to be based on the MEMS sensing
and actuating properties and the domain of application, as well as the MEMS failure modes
to be monitored or detected. Some of the BIST methods come with an increased number
of manufacturing steps and with an overhead in term of die area, resulting perhaps in
cost increase. This review article did not attempt to quantify such costs. The expenditure
introduced by the additional functionalities should be offset however by the reduced yield
loss and increase device lifetime provided by the BIST methods. A quick summary of the
advantages of the various methods is provided in this final section and should be read
alongside the classification table.

Parameter extraction comes with probably the most complex circuitry regarding eval-
uation of the output signal. However, the test method can extract important information
regarding physical parameters of the device and enable RUL estimation. Symmetrical test
method is only advised in combination with single-ended testing and is able not only to
detect hard to detect faults, but to characterise/configure the system provided that it has
some form of symmetry. For certain systems, where the number of failure modes is limited
(e.g., electrode degradation), indirect parameter measurement can be a good an inexpensive
option. Delay based methods present one of the fastest ways of self-testing. Only suitable
for capacitive MEMS and therefore inadequate for complete system characterisation, they
require additional circuitry to convert capacitance variations into time differences. It is
hard to draw conclusions about pulse excitation due to the lack of literature on MEMS
applications, but the pseudo-random test method shows great promise on system impulse
response extraction, thus it is suitable not only for catastrophic fault detection, but also for
system characterisation. The test time duration depends on the number of bits used for the
MLS, which is device-dependent.

All the previously mentioned methods are intrusive and require a normal operation
of the device to stop while the test is running. A great alternative is the superposition
test methods that offer an on-line test solution mostly with minimum overhead. They
are capable of catastrophic fault detection. Finally, multimodality sensing, albeit not
a requirement for BIST, can play an important role in BIST and BISR. Through cross-
sensitivity, the overhead of redundancy can be reduced while maintaining its benefits.

This review article approached BIST strategies from a single device point of view,
however one might not be limited to a particular MEMS unit. The BIST method could easily
take place in a different system component, along with the electronic processing enabling
decision making. With proper communication between the components of the system,
the evaluation and decision making could easily run on a processor that is dedicated for
another work, during its idle period. Such communication approaches and the required
interfaces already exist. One of these approaches is coming from the MIPI alliance, an
organisation working on hardware and software interfaces that make the integration of
components into a mobile device simpler [99]. Perhaps such an approach will pave the
way for the future of BIST methods in MEMS.
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AC Alternating Current
ATPG Automatic Test Pattern Generation
BISR Built-In Self-Repair
BIST Built-In Self-Test
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CRC Cyclic Redundancy Check
DC Direct Current
DDM Delay Detection Module
DLL Delay Locked Loop
DUT Device Under Test
EOL End of Life
HABIST Histogram-Based Analog BIST
HVCP High Voltage Charge Pump
IC Integrated Circuit
IR Impulse Response
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LBIST Logic BIST
LIRMM Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
LFSR Linear Feedback Shift Register
LTI Linear Time Invariant
MBIST Memory BIST
MBISR Memory Built-In Self-Repair
MEMS Micro-Electro-Mechanical Systems
MFS Multi-Functional Sensor
MLS Maximum Length Sequence
OTM Oscillation-Based Test Method
PBIST Programmable BIST
PE Pulse Extraction
PFD Phase-Frequency-Detector
PVT Process, Supply Voltage and Temperature
PLL Phase-Locked Loop
PRPG Pseudo-Random Pattern Generator
RF Radio Frequency
RUL Remaining Useful Life
SNR Signal-to-Noise Ratio
TDC Time-to-Digital Converter
TSMC Taiwan Semiconductor Manufacturing Company
VCO Voltage-Controlled Oscillator
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