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Endothelial TLR4 Expression
Mediates Vaso-Occlusive Crisis
in Sickle Cell Disease
Joan D. Beckman†, Fuad Abdullah, Chunsheng Chen, Rachel Kirchner ,
Dormarie Rivera-Rodriguez , Zachary M. Kiser , Aithanh Nguyen, Ping Zhang,
Julia Nguyen, Robert P. Hebbel , John D. Belcher* and Gregory M. Vercellotti*

Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN,
United States

Heme, released from red blood cells in sickle cell disease (SCD), interacts with toll-like
receptor 4 (TLR4) to activate NF-kB leading to the production of cytokines and adhesion
molecules which promote inflammation, pain, and vaso-occlusion. In SCD, TLR4 inhibition
has been shown to modulate heme-induced microvascular stasis and lung injury. We
sought to delineate the role of endothelial verses hematopoietic TLR4 in SCD by
developing a TLR4 null transgenic sickle mouse. We bred a global Tlr4-/- deficiency
state into Townes-AA mice expressing normal human adult hemoglobin A and Townes-
SS mice expressing sickle hemoglobin S. SS-Tlr4-/- had similar complete blood counts
and serum chemistries as SS-Tlr4+/+ mice. However, SS-Tlr4-/- mice developed
significantly less microvascular stasis in dorsal skin fold chambers than SS-Tlr4+/+ mice
in response to challenges with heme, lipopolysaccharide (LPS), and hypoxia/
reoxygenation (H/R). To define a potential mechanism for decreased microvascular
stasis in SS-Tlr4-/- mice, we measured pro-inflammatory NF-kB and adhesion
molecules in livers post-heme challenge. Compared to heme-challenged SS-Tlr4+/+

livers, SS-Tlr4-/- livers had lower adhesion molecule and cytokine mRNAs, NF-kB
phospho-p65, and adhesion molecule protein expression. Furthermore, lung P-selectin
and vonWillebrand factor immunostaining was reduced. Next, to establish if endothelial or
hematopoietic cell TLR4 signaling is critical to vaso-occlusive physiology, we created
chimeric mice by transplanting SS-Tlr4-/- or SS-Tlr4+/+ bone marrow into AA-Tlr4-/- or AA-
Tlr4+/+ recipients. Hemin-stimulated microvascular stasis was significantly decreased
when the recipient was AA-Tlr4-/-. These data demonstrate that endothelial, but not
hematopoietic, TLR4 expression is necessary to initiate vaso-occlusive physiology in
SS mice.
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INTRODUCTION

Sickle cell disease (SCD), which is caused by a single point
mutation in the b-globin gene of hemoglobin, manifests with
chronic intra- and extravascular hemolysis, oxidative stress,
inflammation, and vaso-occlusive crisis (VOC). Recently, the
role of the innate immune system in perpetuating SCD
inflammation and vaso-occlusive physiology has been
recognized (1–9). Specifically, heme, which is released during
intravascular hemolysis, is able to serve as a damage-associated
molecular pattern (DAMP) to stimulate TLR4 signaling on blood
cells and the vasculature leading to vaso-occlusion and
pulmonary injury (8–11). Heme mediates pain via TLR4 in
SCD mice and blockade or knockout of TLR4 attenuates
hyperalgesia suggesting heme -induced microglial activation
via TLR4 in the central nervous system contributes to the
initiation and maintenance of sickle pain (12). Consequentially,
downstream of TLR4, activation of the pro-inflammatory
transcription factor NF-kB leads to the production of cytokines
and adhesion molecules that promote inflammation,
coagulation, and vaso-occlusion (8, 9). Additionally, work done
in drug-induced hemolysis models suggests that TLR4-mediated
P-selectin release increases complement activation to further
drive endothelial activation (13). Collectively, these studies
have raised speculation that TLR4 and complement-targeted
therapies may reduce severity of VOC in SCD.

Several critical questions regarding the consequences of TLR4
inhibition in SCD remain. Our prior work demonstrated that
knockout of TLR4 in the vessel wall was sufficient to ablate SCD
VOC physiology (8). However, those transplant studies of SS
bone marrow into TLR4 knockout mice could not examine the
effects of TLR4 knockout in hematopoietic cells on VOC. We
previously showed that monocytes isolated from SCD patients
can activate endothelial monolayers and others have shown that
heterocellular aggregates play an important role in vaso-
occlusion (14–16). Here we asked the question, does knockout
of TLR4 in circulating hematopoietic-derived cells, but not the
vessel wall, ablate microvascular stasis?

Therefore, we bred a global Tlr4-/- deficiency state into
Townes-AA mice expressing normal human adult hemoglobin
A and Townes-SS mice expressing sickle hemoglobin S. We
demonstrate that loss of TLR4 in SCD does not alter chronic
hemolysis, but does decrease response to an acute stimulus with
hemin, LPS or ischemia through loss of downstream NF-kB
signaling. Downstream of NF-kB, SS-Tlr4-/- mice exhibit
decreased pro-inflammatory and adhesive protein expression.
Importantly, using bone marrow chimeras, we demonstrated
that endothelial, but not hematopoietic, TLR4 signaling is critical
in mediating SCD VOC.
MATERIALS AND METHODS

Mice
All animal experiments were approved by the University of
Minnesota’s Institutional Animal Care and Use Committee.
These studies used male and female Townes-AA and -SS mice
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on a 129/B6 mixed genetic background (17) and Tlr4-/- mice
(TLR4lps-del, Jackson Labs) with knockout of the entire Tlr4 gene,
expressing murine alpha and beta globins on a C57B6 genetic
background. We bred a global Tlr4-/- deficiency state into
Townes-AA mice expressing normal human adult hemoglobin
A and Townes-SS mice expressing sickle hemoglobin S. These
Tlr4-/- Townes mice were backcrossed 10 generations to
homogenize their genetic background with our Tlr4+/+ Townes
mouse colony. All animals were housed in specific pathogen-free
rooms to limit infections and kept on a 12 hour (h) light/dark
cycle at 21°C. All animals were monitored daily for health
problems, food and water levels, and cage conditions. All
animals were included in each endpoint analysis and there
were no unexpected adverse events that required modification
of the protocol. Mice were aged 8–24 weeks.

Bone Marrow Transplants
Chimeric mice were generated by harvesting bone marrow (BM)
from SS-Tlr4+/+ or SS-Tlr4-/- mice followed by transplant into
lethally irradiated AA-Tlr4+/+ or AA-Tlr4-/- mice. Recipients (8–10
weeks of age) were irradiated with 2 doses of 5 Gy (X-RAD 320
Biological Irradiator) 3 hours apart. During the 3-hour interval,
BM donors were sacrificed and BM was collected from both
femurs. Ten million BM cells were injected via tail vein into
each irradiated recipient. Drinking water containing 0.2%
neomycin sulfate (Sigma-Aldrich) was given to transplanted
mice for 3 weeks immediately after transplantation. Eight weeks
post-transplant, globin phenotype was confirmed by hemoglobin
isoelectric focusing and Tlr4 genotype was verified by PCR.
Chimeric mice were employed 16 to 24 weeks after transplant.

Blood Analysis
Blood was collected via cardiac puncture at the time of
euthanasia from mice into sodium EDTA or serum separator
tubes at time points indicated. Complete blood counts with
differential, hematocrit levels, and reticulocytes were measured
in EDTA blood by the University of Minnesota Veterinary
Diagnostic Laboratory.

Measurement of Vaso-Occlusion
(Microvascular Stasis)
Mice were anesthetized with a mixture of ketamine (106 mg/kg)
and xylazine (7.2 mg/kg) and implanted with dorsal skin-fold
chambers (Supplemental Figure 1). After implantation, mice
were placed on an intravital microscopy stage and 20–24 flowing
subcutaneous venules in the chamber window were selected and
mapped as previously described (18). After baseline selection of
flowing venules, mice were infused with a bolus infusion via tail
vein with the indicated doses of hemin (3.2 µmol/kg) or
lipopolysaccharide (LPS, 1 mg/kg; Escherichia coli, serotype
O111:B4; Sigma-Aldrich) or exposed to H/R which consisted
of 1-hour hypoxia (7%O2/93%N2) followed by 4-hours
normoxia. Each of the same venules selected and mapped at
baseline were visually re-examined for stasis (no flow) at 1, 2, 3,
and 4 hours after infusion or H/R. The static venules in each
mouse were counted and percent stasis at 1–4 h was calculated by
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dividing the number of static venules by the total (static +
flowing) number of venules.

Western Blots
Microsomes and nuclear extracts were isolated from tissues of
mice as previously described (19). Immunoblots of cellular
subfractions (15–30 mg of protein) were immunostained with
primary antibodies to NF-ĸB phospho-p65 (Ser536, Cell
Signaling #3031), total p65 (Cell Signaling #3034), VCAM-1
(Abcam #174279), ICAM-1 (Abcam #ab124759), E-selectin
(BioVision #3631) and loading control GAPDH (Sigma-
Aldrich #G9545). Primary antibodies were detected with
appropriate secondary antibodies conjugated to alkaline
phosphatase and visualized with ECF substrate (GE
Healthcare) and a Typhoon FLA 9500 imager (GE Healthcare).

RNA Analysis
RNA was extracted using RNeasy kit (Qiagen), followed by
cDNA generation according to the manufacturer’s protocol
(Bio-Rad). Prime PCR RNA array was used for genes. Each
reaction contained 20 ng of cDNA, lyophilized primers,
SSoAdvanced SYBR Green QPCR master mix (BioRad). The
PCR conditions included activating the DNA polymerase at 95°C
for 10 min, followed by 40 cycles of three step PCR (95°C for 10 s,
60°C for 30 s). Melt curves for each primer set was run and
verified. The cycle threshold (Ct) values from samples of each
gene and the internal control (GAPDH) were obtained and the
relative quantification for each gene was calculated using the
DDCt method (20).

Immunohistology
Mice were infused with hemin (3.2 mmol/kg) 4 hours before
tissue collection. Lungs were collected and placed in optimal
cutting temperature (OCT) compound, snap-frozen in liquid
nitrogen and stored at -85°C prior to frozen sectioning in a
microtome-cryostat into 6 µm sections. Tissues were stained
with primary antibodies to P-selectin (R&D Systems #AF737)
and vonWillebrand factor (vWF, Cedarlane #CL20176A-R), and
with the nuclear stain DAPI (Sigma-Aldrich). Primary
antibodies in tissues were identified with the appropriate
fluorescent- labe led secondary ant ibodies ( Jackson
Immunoresearch). Slides were mounted using DPX mounting
medium (Electron Microscope Sciences #13514), visualized, and
images acquired using a FluoView FV1000 BX2 upright confocal
microscope (Olympus, Center Valley, PA) with UPlanSApo 20X/
0.80 and UPlanApo N 60X/1.42 objectives with zoom (Z) 2.
Images were processed with FluoView (Olympus) and Adobe
Photoshop software (San Jose, CA).

Statistics
Descriptive statistics are presented as mean ± standard error.
Normality assessments were conducted for groups. Analysis for
each experiment is included in legends, with multiple
comparisons analyzed using ANOVA with the Holm-Sidak
method or Kruskal-Wallis with the Dunn’s test for multiple
comparisons using GraphPad Prism (v 8).
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RESULTS

Generating Townes-AA and –SS Tlr4
Knockout Mice
In SCD mice, inhibition of TLR4 signaling using the small
molecule inhibitor TAK-242 reduces microvascular stasis in
presence of hemin, LPS, and hypoxia/reoxygenation (H/R) (8,
9). Furthermore, TLR4 inhibition prevents hemin-mediated
lethality. Therefore, to determine if knockout of Tlr4 in mice
carrying human hemoglobin S (Townes-SS) would reduce
hemolysis and inflammation, we generated Townes-SS mice
with Tlr4-/- genotype. Tlr4-/- mice (TLR4lps-del, Jackson Labs)
with knockout of the entire Tlr4 gene, expressing murine alpha
and beta globins on a C57B6 genetic background were breed with
Townes-AA Tlr4+/+ mice expressing human alpha- and beta-
globins on a mixed 129/B6 genetic background. Male and female
heterozygous offspring were bred together and pups expressing
exclusively human alpha- and beta-globins and at least one
deleted Tlr4 gene were selected for backcrossing 9 generations
with Townes-AA Tlr4+/+ mice from our colony with AA mice
heterozygous for Tlr4 knockout selected for breeding with AA-
Tlr4+/+ mice at each new generation. After 9 backcrosses,
heterozygous AA-Tlr4+/- were bred with SS-Tlr4+/+ mice from
the colony for the 10th backcross. AS-Tlr4+/- offspring were breed
together and AA, AS and SS-Tlr4-/- offspring were selected for
breeding to expand the Townes-AA-, AS-, and SS-Tlr4-/- colony
and generate mice for experimentation (Supplemental
Figure 2).

Compared to SS-Tlr4+/+ mice, SS-Tlr4-/- mice had no
differences in white blood cell counts or in markers of
hemolysis (Table 1). Likewise, there was no difference in organ
function, as demonstrated by serum chemistries (Table 1).
Therefore, knockout of the Tlr4 gene in SS mice does not
appear to reduce chronic hemolysis.

Tlr4 Knockout Reduced Microvascular
Stasis in Sickle Cell Mice
We have previously demonstrated that compared to AA mice, SS
mice exhibit a chronic baseline hemolysis that leads to increased
occlusion of skin venules (8). However, SS, but not AA mice, also
exhibit robust microvascular vaso-occlusion when stimulated with
excess hemin, LPS, or H/R (8). Therefore, to determine if TLR4
knockout would protect SS mice from vaso-occlusion, we used
dorsal skin fold chambers to assess microvascular stasis at 1h, 2h,
3h, and 4h post-stimulation with hemin, LPS or H/R in SS-Tlr4+/+

and SS-Tlr4-/- mice (Supplemental Figure 1). Compared to hemin-
stimulated SS-Tlr4+/+ mice, hemin-stimulated SS-Tlr4-/- mice had a
significant reduction in % venules occluded at 1–4 h post-infusion
(Tlr4+/+ % occluded range 17.5%-28.7% versus Tlr4-/- % occluded
range 1.8%-3.9%, p < 0.005, Figure 1A). With LPS stimulation,
compared the SS-Tlr4+/+ mice, SS-Tlr4-/- mice also exhibited
decreased % venules occluded at 1–4 h post-infusion (Tlr4+/+ %
occluded range 17.7–37.1% vs. Tlr4-/- % occluded range 3.3–11.3%,
p < 0.02, Figure 1B). After H/R, compared to SS-Tlr4+/+, SS-Tlr4-/-

exhibited decreased occlusion at 1 h (Tlr4+/+ % occluded 20.1 vs.
Tlr4-/- % occluded 3.2%, p < 0.01, Figure 1C) and 2 h time points
January 2021 | Volume 11 | Article 613278
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(Tlr4+/+ % occluded 13.9 vs. Tlr4-/- % occluded 3.2%, p < 0.01,
Figure 1C). Collectively, these data suggest that loss of TLR4 in SS
mice does not reduce baseline hemolysis, but does eliminate
microvascular stasis after challenge with hemin, LPS, or H/R.

Loss of TLR4 Reduces NF-ĸB Signaling
The innate immune system activates signaling cascades within
cells in order to promote inflammation. The TLR4 and NADPH
oxidase (NOX)-dependent signaling cascades converge to
increase pro-inflammatory NF-kB signaling (21). When
stimulated with hemin, Tlr4-/- mouse pulmonary vein
endothelial cells demonstrate reduced NF-kB activation (8).
Likewise, treatment of human umbilical vein endothelial cells
with the TLR4 inhibitor TAK-242 also reduces NF-kB signaling.
Frontiers in Immunology | www.frontiersin.org 4
To evaluate if knockout of TLR4 reduces NF-kB signaling in SS
mice, we performed western blots on nuclear extracts from livers
isolated from hemin-stimulated SS-Tlr4+/+ and SS-Tlr4-/- mice.
Compared to hemin-stimulated SS-Tlr4+/+, hemin-stimulated
SS-Tlr4-/- mice lacked phosphorylation of NF-kB p65 (Figure
2). This suggests that loss of TLR4 reduces inflammation through
abrogation of NF-kB signaling.

SS-Tlr4-/- Mice Challenged With Hemin
Exhibit Reduced Pro-Inflammatory
Cytokine and Adhesion Molecule mRNA
Vaso-occlusion requires both inflammation and adhesion to
occur, with NF-kB signaling serving as a crucial transcription
signaling for numerous pro-inflammatory and adhesive genes.
A B C

FIGURE 1 | Townes SS-Tlr4-/- mice are protected from developing microvascular stasis under inflammatory stimuli. (A) Microvascular stasis in Townes SS-Tlr4+/+

(black) and SS-Tlr4-/- (red) mice after stimulation with 3.2 µmol/kg hemin. (B) Microvascular stasis after stimulation with LPS (1 mg/kg). (C) Microvascular stasis after
1 h hypoxia at 7%. All treatment groups with n = 4 mice/group. P < 0.05 for all time point except where n.d. is present to signify no difference as done by multiple
t-tests via Holm-Sidak method.
TABLE 1 | Complete blood count and serum chemistries from AA-Tlr4+/+, AA-Tlr4-/-, SS-Tlr4+/+ and SS-Tlr4-/- mice.

Complete Blood Count AA-Tlr4+/+ (n = 4–5, ± std dev) AA-Tlr4-/- (n = 5–6, ± std dev) SS-Tlr4+/+ (n = 5–6, ± std dev) SS-Tlr4-/- (n = 4, ± std dev)

White blood cells 1.68 ± 0.68 2.04 ± 1.20 36.62 ± 19.0 33.24 ± 9.66
(WBC), 103/µl
Neutrophils (%)
Lymphocytes (%)
Monocytes (%)
Eosinophils (%)
Basophils (%)

22.8
72.8
1.3
2.5
0.8

19.4
76.6
1.8
1.8
0.4

9.8
87.3
2.5
0.0
0.3

14.5
80.8
3.3
0.8
0.8

Red blood cells
(RBC), 106/µL

10.8 ± 1.1 11.3 ± 1.8 5.1 ± 1.1 4.4 ± 1.1

Hemoglobin (Hgb). g/dL 9.5 ± 0.9 9.8 ± 1.5 4.8 ± 1.0 3.9 ± 1.1
Hematocrit (Hct), % 32.1 ± 5.6 35.2 ± 6.1 20.6 ± 4.8 20.3 ± 3.0
Platelets, 103/µl 700 ± 112 1012 ± 74 480.1 ± 65.3 445.5 ± 63.3
Reticulocytes (%) 6.6 ± 1.4 11.8 ± 7.9 40.2 ± 29.1 44.9 ± 26.9
Serum Chemistries AA-Tlr4+/+ AA-Tlr4-/- SS-Tlr4+/+ SS-Tlr4-/-

AST 169 ± 43.5 132.7 ± 45.8 653.4 ± 422 416.5 ± 299
ALT 73.2 ± 22.6 57.2 ± 25.7 515.8 ± 478 617.3 ± 720
Total bilirubin 0.1 ± 0.05 0.2 ± 0.11 1.5 ± 0.80 1.2 ± 0.25
Albumin 2.5 ± 0.14 2.5 ± 0.23 2.9 ± 0.13 2.6 ± 0.23
Blood urea nitrogen 26.4 ± 4.3 22.8 ± 4.4 22.0 ± 2.9 25.0 ± 3.2
Creatinine 0.2 ± 0.08 0.1 ± 0.09 0.1 ± 0.1 0.2 ± 0.08
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FIGURE 3 | Hemin-stimulated Townes SS-Tlr4-/- mice do not upregulate pro-inflammatory cytokine and adhesive genes. Liver mRNA was extracted and underwent
qRT-PCR analysis. (A) Macrophage inflammatory protein 1-a (MIP-1a, Ccl3). (B) Macrophage inflammatory 2-a (MIP-2a, Cxcl2) mRNA. (C) IL-6 (Il6) mRNA.
(D) Vcam1 mRNA (E) Icam1 mRNA. (F) E-selectin (Sele) mRNA. Values are mean ± standard error of mean (SEM), with p-values determined by one-way analysis of
variance with Holm-Sidak’s multiple comparison testing.
FIGURE 2 | Hemin-stimulated Townes SS-Tlr4-/- mice do not activate NF-kb signaling. Western blot of liver nuclear extracts isolated from hemin-stimulated Townes
SS-Tlr4+/+ and SS-Tlr4-/- mice probed for NF-kB phopsho-p65 and total p65. (n = 4 per group).
Frontiers in Immunology | www.frontiersin.org January 2021 | Volume 11 | Article 6132785
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Therefore, we sought to evaluate the downstream consequences of
reduced NF-kB activation in hemin-stimulated SS-Tlr4-/- mice by
assessing the livers of SS-Tlr4+/+ and SS-Tlr4-/- mice for changes in
pro-inflammatory and adhesion gene expression. First, compared
to untreated SS-Tlr4+/+ mice, hemin-treated SS-Tlr4+/+ mice have
significant upregulation of macrophage inflammatory protein 1-a
(MIP-1a, Ccl3) and macrophage inflammatory 2-a (MIP-2a,
Cxcl2) mRNA by 3.5-fold (Ccl3, P < 0.004, n = 4–5 mice per
group, Figure 3A) and 16-fold respectively (Cxcl2, P < 0.0004, n =
4–5 mice per group, Figure 3B). Compared to untreated SS-Tlr4-/-

mice, hemin-stimulated SS-Tlr4-/- mice do not upregulate either
Ccl3mRNA (Figure 3A) or Cxcl2mRNA (Figure 3B). Moreover,
for both chemokines, comparison between hemin-treated SS-
Tlr4+/+ mice to hemin-treated SS-Tlr4-/- mice demonstrated
significant loss of Ccl3 and Cxcl2 mRNA upregulation in
absence of TLR4. Next, we assessed IL-6 (Il6) mRNA
expression. Similar to Ccl3 and Cxcl2, compared to untreated
SS-Tlr4+/+ mice, hemin-treated SS-Tlr4+/+ mice had an 11-fold
increase in Il6 mRNA (P < 0.03, n = 4–6 mice per group, Figure
3C). In untreated and hemin-stimulated SS-Tlr4-/-, there was no
difference in Il6 mRNA (n = 4–6 mice per group, Figure 3C).
Additionally, comparison between hemin-treated SS-Tlr4+/+ mice
to hemin-treated SS-Tlr4-/- mice demonstrated a reduced Il6
mRNA upregulation (p=0.09) in absence of TLR4. This was also
seen in the kidneys (Supplemental Figure 3A). Collectively, these
data suggest that loss of TLR4 in SCD leads to decreased
inflammation-mediated cytokine gene expression.

Next, to determine if loss of TLR4 reduces hemin-mediated
upregulation of endothelial adhesion molecules, we assessed
mRNA expression of Vcam1, Icam1, and E-selectin (Sele).
Compared to untreated SS-Tlr4+/+ mice, hemin-stimulated SS-
Tlr4+/+ mice had a significant 1.8-fold upregulation of Vcam1
mRNA (P < 0.05, Figure 3D) and 1.6-fold upregulation of Icam1
mRNA (P < 0.05, Figure 3E). In SS-Tlr4-/- mice, compared to
untreated, hemin-stimulated SS-Tlr4-/- mice had no difference in
Vcam1 mRNA (Figure 3D) or Icam1 mRNA (Figure 3E).
Similar to pro-inflammatory markers, comparison between
hemin-treated SS-Tlr4+/+ mice and SS-Tlr4 - / - mice
demonstrated significant loss of Vcam1 mRNA and Icam1
Frontiers in Immunology | www.frontiersin.org 6
mRNA upregulation in absence of TLR4. Last, for Sele,
compared to untreated SS-Tlr4+/+ mice, hemin-stimulated SS-
Tlr4+/+ mice upregulated Sele mRNA 9-fold (P < 0.05, Figure
3F), whereas compared to untreated SS-Tlr4-/-mice, hemin-
stimulated SS-Tlr4-/-mice did not upregulate Sele mRNA
(Figure 3F). Similar pattern of mRNA expression changes were
also observed for these genes in the kidney (Supplemental Figures
3B–D). Collectively, these data suggest that in SS mice, loss of TLR4
reduces upregulation of both pro-inflammatory and endothelial
adhesion genes.

Hemin-Stimulated SS-Tlr4-/- Mice Do Not
Upregulate Endothelial Adhesion Proteins
In SCD, upregulation of endothelial adhesion proteins
contributes to vaso-occlusion. Therefore, to evaluate if
endothelial adhesion molecule protein expression is reduced in
SS mice by TLR4 knockout, we performed western blots on liver
microsomes isolated from SS-Tlr4+/+ and SS-Tlr4-/- mice after
hemin stimulation. Consistent with mRNA data, compared to
hemin-stimulated SS-Tlr4+/+ mice, hemin-stimulated SS-Tlr4-/-

mice do not increase VCAM-1 (Figure 4A). Likewise, compared
to hemin-stimulated SS-Tlr4+/+ mice, hemin-stimulated SS-
Tlr4-/- mice do not increase ICAM-1 or E-selectin (Figures
4B–D). Together with mRNA data, these data suggest that loss
of TLR4 in SS mice reduces heme-mediated endothelial cell
activation leading to reduced adhesion molecule expression and
decreased inflammation.

Hemin-Stimulated SS-Tlr4-/- Mice Exhibit
Reduced P-Selectin and VWF Release
From Endothelium
TLR4 blockade reduces heme-mediated release of P-selectin and
VWF from endothelial cell Weibel Palade bodies (8). Therefore,
we performed immunofluorescence of SS-Tlr4-/- and SS-Tlr4+/+

lungs in mice treated with and without hemin to evaluate heme-
mediated P-selectin and VWF release. Compared to SS-Tlr4+/+

mice, SS-Tlr4-/- treated with hemin exhibit decreased P-selectin
and VWF release (Figure 5). Collectively, these data confirm that
loss of TLR4 signaling in SS mice reduces pro-adhesive and
A

B

D

C

FIGURE 4 | Hemin-stimulated Townes SS-Tlr4-/- mice lose upregulation of adhesion proteins. Western blot of liver microsomes isolated from hemin-stimulated
Townes SS-Tlr4+/+ and SS-Tlr4-/- mice probed for (A) VCAM-1, (B) ICAM-1, (C) E-selectin, and (D) GAPDH loading control. (n = 4 per group).
January 2021 | Volume 11 | Article 613278
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thrombotic P-selectin and VWF secretion from endothelial
Weibel-Palade bodies.

Endothelial, Not Hematopoietic, TLR4
Drives SS Vaso-Occlusion
Several groups have demonstrated that knockdown of TLR4 in
endothelial cells reduces monocyte and neutrophil adhesion (22,
23). Further, prior work demonstrated that knockout of TLR4 in
the vessel wall was sufficient to ablate SCD VOC physiology (1).
However, those studies transplanted SS BM into TLR4 knockout
mice and therefore could not examine the effects of TLR4
knockout in circulating hematopoietic cells on VOC. This
is an important question because monocytes isolated from
SCD patients can activate endothelial monolayers (14)
and heterocellular aggregates play an important role in
vaso-occlusion (15, 16). Here we addressed the question does
knockout of TLR4 in circulating hematopoietic-derived cells
ablate microvascular stasis? Therefore, we performed BM
chimera studies using the SS-Tlr4-/- and SS-Tlr4+/+ mice into
AA-Tlr4-/- or AA Tlr4+/+ recipients followed by assessment of
hemin-stimulated vaso-occlusion in dorsal skin fold chambers
(Figures 6A, C). First, to assess the contribution of
hematopoietic expression of TLR4, we compared chimeras
generated from SS-Tlr4-/- mice transplanted into AA-Tlr4+/+ or
AA-Tlr4-/- recipients (Figure 6A). Hemin-stimulated SS or SS-
Tlr4+/+ mice exhibit average % occlusion of ~30% (historic and
Figure 1A); loss of TLR4 in hematopoietic cells (SS-Tlr4-/- mice
into AA-Tlr4+/+ recipients) lead to no change in % venules
occluded (range % occluded 21.0–31.6%, Figure 6B).
Comparatively, and consistent with SS-Tlr4-/- mice, transplant
of SS-Tlr4-/- marrow into AA-Tlr4-/- recipients significantly
reduced the % venules occluded (range 3.1–11.0% occluded
vessels, p < 0.001, Figure 6B). Overall, these data suggest that
Frontiers in Immunology | www.frontiersin.org 7
hematopoietic TLR4 signaling is not essential in triggering vaso-
occlusive response. Next, to assess effects of endothelial TLR4
knockout, we created chimeras transplanting SS-Tlr4+/+

hematopoietic cells into AA-Tlr4+/+ and AA-Tlr4-/- recipients
(Figure 6C). Similar to SS and SS-Tlr4+/+ mice, transplant of SS-
Tlr4+/+ hematopoietic cells into AA-Tlr4+/+ lead to vaso-
occlusion (range 17.2–31.3% occluded vessels Figure 6D).
Strikingly, transplant of SS-Tlr4+/+ marrow into AA-Tlr4-/-

mice abrogated vessel occlusion (range 1.6–7.2% occluded
vessels, p < 0.001, Figure 6D). Collectively, these data
demonstrate that endothelial, but not hematopoietic, TLR4
expression is necessary to initiate vaso-occlusive physiology in
SS mice.
DISCUSSION

Intravascular hemolysis of sickle red blood cells release
hemoglobin S (HbS) into the plasma which is promptly
oxidized to methemoglobin, which readily releases free heme.
Heme is a DAMP that can activate the innate immune pattern
recognition receptor complex of CD14, MD-2 and TLR4 (8–10);
this process promotes a pro-inflammatory and pro-adhesive
phenotype, which ultimately leads to VOC (1, 8–10). Herein,
we demonstrate that loss of TLR4 signaling in SCD leads to
decreased VOC stimulated by numerous agonists, including
heme, LPS and H/R. Importantly, we also demonstrate that
endothelial, but not hematopoietic, TLR4 expression is
necessary to initiate vaso-occlusion in SS mice. Collectively,
these data illustrate the indispensable role of the endothelium
in mediating the crosstalk between hemolysis and the innate
immune system in SCD VOC physiology.
FIGURE 5 | Hemin-stimulated Townes SS-Tlr4-/- mice have decreased pulmonary expression of VWF and P-selectin. Immunostaining of surface P-selectin (green)
and von Willebrand factor (red) on blood vessels in the lungs of hemin-infused Townes-SS Tlr4+/+ and Tlr4-/- mice (3.2 µmol/kg and lungs removed at 1h). Scale bars
(white) 30 µm. Representative images are presented.
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In SCD, chronic hemolysis leads to organ dysfunction due to
recurrent cycles of I/R physiology. However, VOC occurs when
pro-inflammatory stimuli are present, such as heme or LPS and
the compensatory mechanisms responsible for rebalancing the
system are overcome (24). Therefore, when approaching SCD
pathogenesis, acute verses chronic stimulation of the innate
immune system should be considered. Our work demonstrates
that compared to Townes SS-Tlr4+/+ mice, Townes SS-Tlr4-/-

mice did not have changes in baseline hemolytic markers.
However, importantly, our studies demonstrate that in
response to an acute increase in heme, such as would be
expected during an acute VOC, loss of TLR4 signaling results
in decreased pro-inflammatory and adhesive gene expression
and ultimately decreased stasis. Therefore, we speculate that
during VOC, strategies to target TLR4 may reduce incidence
and perhaps duration of VOC.

In SCD, the prominent end-organ damage is associated with
the vasculature, including pulmonary hypertension, strokes, and
priapism and retinal disease. However, renal failure, liver damage
Frontiers in Immunology | www.frontiersin.org 8
and hyposplenism are also manifestations of chronic, progressive
I/R damage (25). Therefore, we performed analysis of
inflammatory markers and adhesion markers in the liver, lungs
and kidneys. In the liver, resident hepatic macrophages, also
known as Kupffer cells, and hepatic stellate cells are key
mediators of hepatic fibrogenesis. Hepatic stellate cells are the
main target of TLR4 ligands in the liver (26). Once stimulated,
hepatic stellate cells stimulate chemokine secretion, which drives
Kupffer cell chemotaxis and pro-fibrotic TGF-b production.
Overall, it has been found that loss of hepatic stellate cell
TLR4-MyD88 signaling reduces development of hepatic
fibrosis. Of note, during chimera generation, hepatic stellate
cells are not replaced by BM-derived cells, and without
clodraonate-mediated depletion, only a proportion of Kupffer
cells become replaced by BM-derived cells (26, 27). Therefore, in
our chimera studies, the AA-Tlr4-/- recipients lack hepatic stellate
cells responsive to TLR4 ligands. Of note, when comparing SS-
Tlr4-/- mice to hemin-treated SS-Tlr4-/- mice, there was a trend
toward decreased pro-fibrotic TGF-b expression in both liver
A B

D
C

FIGURE 6 | Loss of endothelial, but not hematopoietic, TLR4 expression prevents microvascular stasis. (A) Schematic for bone marrow chimera crosses using SS-
Tlr4-/- donor marrow into AA-Tlr4+/+ or AA-Tlr4-/- recipients. (B) Hemin-stimulated microvascular stasis in chimeric AA-Tlr4+/+ (black) and AA-Tlr4-/- (red) recipients
that received SS-Tlr4-/- marrow. (C) schematic for bone marrow chimera crosses using SS-Tlr4+/+ donor marrow into AA-Tlr4+/+ or AA-Tlr4-/- recipients. (D) Hemin-
stimulated microvascular stasis in chimeric AA-Tlr4+/+ (black) and AA-Tlr4-/- (red) that received SS-Tlr4+/+ marrow. All treatment groups with n = 4 mice/group.
P < 0.05 for all time points analyzed by multiple t-tests via Holm-Sidak method.
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and kidney samples (Supplemental Figure 4). Therefore one
may speculate that long-term SS-Tlr4-/- mice may be protected
from fibrosis.

In other I/R models, such as cardiac transplant, loss of
endothelial TLR4/Trif-mediated signaling reduces neutrophil
adhesion and recruitment (23). Our data is consistent with
these models, as the livers of hemin-treated Townes SS-Tlr4-/-

mice demonstrate loss of Ccl3 and Cxcl2 gene upregulation, two
chemokines important for the initiation of selectin-mediated
rolling and leukocyte recruitment. Of note, in our kidney mRNA
assessment, we did not see a significant change in Ccl3 or Cxcl2
mRNA changes; this likely reflects that kidneys lack cells similar
to stellate cells and that renal disease in SCD is not characterized
by inflammatory cell infiltrates. Last, our data demonstrates loss
of heme-mediated release of Weibel-Palade bodies from the lung
endothelium in SS Tlr4-/- mice. This is important as surface
expression of von Willebrand factor and P-selectin are involved
in platelet binding, leukocyte recruitment, and stasis (8, 28–31).
Collectively, these data suggest that endothelial TLR4 response to
heme leads to increased leukocyte recruitment, rolling, and
adhesion to amplify I/R physiology.

With the advent of gene-therapy on the horizon for SCD, the
importance of hematopoietic verses non-hematopoietic TLR4
signaling is a crucial distinction as TLR4 expression on
hematopoietic cells is essential for bacterial clearance. As
current transplant paradigms incorporate myelo-ablation,
which increases risk of infections, strategies that reduce VOC
but maintain effective pathogen clearance in SCD are desirable.
Therefore, within the context of SCD, targeting of heme-
mediated vascular TLR4 signaling, but not LPS-mediated TLR4
signaling, may be a strategy to prevent or decrease I/R injury
while maintaining immune function.

One limitation of this work is we did not quantitate leukocyte
recruitment during VOC physiology; however, we have
previously demonstrated reduced leukocyte rolling in Tlr4-/-

mice transplanted with SS BM (8). Second, our studies have
not evaluated SS-Tlr4-/- mice for reductions in acute pain but
recent studies by Lei et al. used BERK- SS-Tlr4-/- mice to
demonstrate a causal role of free heme in the genesis of acute
and chronic sickle pain (12).

In conclusion, endothelial TLR4 signaling triggered by heme is
critical for SCD VOC. We demonstrate the knockout of vascular,
not hematopoietic, TLR4 signaling reduces heme-mediated
inflammation and VOC. Overall, these data suggest that targeted
inhibition of heme-mediated vascular endothelial TLR4 signaling
may be a potential strategy to break the inflammatory cycle of I/R
that is initiated by HbS-driven hemolysis.
Frontiers in Immunology | www.frontiersin.org 9
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