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ABSTRACT
Objective: To demonstrate an application of Bayesian
model averaging (BMA) with generalised additive
mixed models (GAMM) and provide a novel modelling
technique to assess the association between inhalable
coarse particles (PM10) and respiratory mortality in
time-series studies.
Design: A time-series study using regional death
registry between 2009 and 2010.
Setting: 8 districts in a large metropolitan area in
Northern China.
Participants: 9559 permanent residents of the 8
districts who died of respiratory diseases between
2009 and 2010.
Main outcome measures: Per cent increase in daily
respiratory mortality rate (MR) per interquartile range
(IQR) increase of PM10 concentration and corresponding
95% confidence interval (CI) in single-pollutant and
multipollutant (including NOx, CO) models.
Results: The Bayesian model averaged GAMM
(GAMM+BMA) and the optimal GAMM of PM10,
multipollutants and principal components (PCs) of
multipollutants showed comparable results for the
effect of PM10 on daily respiratory MR, that is, one IQR
increase in PM10 concentration corresponded to 1.38%
vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88%
increase, respectively, in daily respiratory MR.
However, GAMM+BMA gave slightly but noticeable
wider CIs for the single-pollutant model (−1.09 to 4.28
vs −1.08 to 3.93) and the PCs-based model (−2.23 to
4.07 vs −2.03 vs 3.88). The CIs of the multiple-
pollutant model from two methods are similar, that is,
−1.12 to 4.85 versus −1.11 versus 4.83.
Conclusions: The BMA method may represent a
useful tool for modelling uncertainty in time-series
studies when evaluating the effect of air pollution on
fatal health outcomes.

INTRODUCTION
Numerous time-series studies have indicated
a positive association of ambient inhalable
coarse particles, including particulate
matters with diameters >2.5 µm and <10 µm

(PM2.5−10) and PM10 with daily respiratory
death counts.1–6 In time-series studies, one
major methodology concern is potential con-
founding due to factors that vary on similar
timescales as the pollutant concentrations or
outcome. Although time-series studies have
substantially strengthened the evidence base
for the adverse health effect of PM10, metho-
dological development of time-series studies
to better adjust for confounding is still fully
justified.7 The impact of potential confoun-
ders, for example, weather and time, on the
association of PM10 with mortality or other
health outcomes can be non-linear and may
vary with season. Thus, a wide variety of
approaches have been developed and applied
in modelling and estimating the non-linear
functions of continuous confounders in
recent years. Prominent examples are smooth-
ing splines,8 penalised basis splines,9 adaptive
regression splines10 11 and local polyno-
mials.12 These methods allow for greater flexi-
bility in data modelling, because they relax
the linearity assumption traditionally required
in standard parametric methods.
The generalised additive mixed model

(GAMM), an extension of the generalised
additive model (GAM), has become a widely
used method for evaluating short-term effect
of air pollution. The fact that it allows for

Strengths and limitations of this study

▪ Provide a novel modelling technique allowing for
the modelling uncertainty derived from knots
selection for conventional GAMM to assess the
association between air pollutants and adverse
health outcomes.

▪ Provide robust effect estimation from time-series
studies on PM10 and fatal health outcomes.

▪ Uncertainty from variable selection and other
sources was not investigated.

▪ No lag effect of PM10 on respiratory mortality
was examined.
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serial correlations and spatial designs makes it a popular
method in environmental epidemiological studies.13

However, often there are several competing models to
select from (ie, using different combinations of confoun-
ders), and the process of selecting the best/optimal
model often varies and evaluating one’s ultimate selec-
tion among the others is difficult. Model uncertainty
can be significant, as selection of models might lead to
largely different conclusions, but often the classical
approach conditioning on a single presumed model
ignores or underestimates such uncertainty.14

One common way to comprehend the problem is to
conduct a ‘sensitivity analysis’ using a range of different
plausible models to investigate the robustness of the esti-
mates.15 However, this still does not incorporate model
uncertainty into effect estimates because it still requires
selection of a single final model. To address this,
researchers have proposed the Bayesian model averaging
(BMA) method when assessing the triggering effect of
air pollution on mortality.16 BMA is a technique
designed to account for the uncertainty of the model
selection process. By averaging over many different com-
peting models, BMA incorporates model uncertainty
into the estimation of parameters and prediction. BMA
has been applied successfully in many statistical model
classes including linear regression, generalised linear
models, Cox regression models and discrete graphical
models, in all cases improving predictive performance.17

Our study re-examined the association between the
concentration of PM10 (including PM2.5−10) and the
daily respiratory mortality rate (MR) from a time-series
study design.1 The goal of this paper is to demonstrate
application of BMA within the GAMM frame and
provide novel modelling techniques for time-series
studies. We first demonstrated the application of the
BMA method in GAMM. Second, we compared the esti-
mates of three modelling techniques, that is, generalised
linear mixed model (GLMM), optimal GAMM and
Bayesian model averaged GAMM (GAMM+BMA). The
study was approved by the Institutional Review Board of
Basic Medical Sciences, Chinese Academy of Medical
Sciences, China.

MATERIALS AND METHODS
The data used in this study included the number of
daily respiratory deaths, air quality and meteorological
conditions from 1 January 2009 to 31 December 2010 in
eight districts having air quality monitoring stations of a
metropolitan area in Northern China. The geographic
location of the eight districts was published elsewhere.1

Respiratory mortality data were obtained from the
regional Causes of Death Registry (CDR). All deaths in
CDR were coded according to the 10th version of the
International Classification of Diseases (ICD-10). The
data collection was described in detail elsewhere.1 18 In
this study, ICD-10 codes J00–J98 were used to identify
deaths due to respiratory diseases. In total, 10.38 million

permanent residents and 9559 respiratory deaths were
included in the study. Air quality data included the con-
centrations of PM10, nitrogen oxides (NOx) and carbon
monoxide (CO). The daily concentrations of these pol-
lutants were presented as an average of 24 hourly mea-
surements. To adjust for the effect of weather
conditions, data on meteorological conditions, including
mean daily temperature, relative humidity, wind speed
and barometric pressure during the study period, were
obtained from the local meteorological administration.
Previous studies conducted in the same area mostly used
citywide average pollutant concentrations,19 20 whereas
our study used pollutant concentrations measured in 11
stations of the study area and used station-specific pollu-
tant concentrations. The spatial distribution of these
monitoring stations over the districts was described
elsewhere.1

The daily numbers of respiratory deaths in the eight
districts were assumed to follow quasi-Poisson distribu-
tion to account for overdispersion by relaxing the distri-
bution assumption that the variance equals the mean.21

Given the non-linear relationship of the daily number of
respiratory deaths to calendar day, temperature and
barometric pressure, we used GAMM to account for
these non-parametric components and district-level
random effect. Natural splines were used to fit the non-
linear trend of the mortality, adjusting for potential con-
founders, that is, meteorological conditions and day of
the week (DOW). The full GAMM for single-pollutant
included PM10, relative humidity, wind speed, DOW,
smoothing functions for calendar day, temperature and
barometric pressure, as well as random effect of districts,
and can be expressed as:

LogðEðy i;tÞÞ ¼ b0 þ b1 � PM10i;t þ b2

� relative humidityt þ b3

� wind speedt þ b4 � DOWt

þ sðdayt;n1=yearÞ
þ sðtemperaturet;n2Þ
þ sðBarometric pressuret;n3Þ þ b

� districti þ Zimþ logðpopulationiÞ ð1Þ

where E(yi,t) is the expected number of deaths in district
i on t-th day, DOW is a dummy variable for day of week,
Districti is a dummy variable for the eight districts and Zi

is a random intercept for districts i. s(.)s are the smooth-
ing functions realised by natural cubic spline with n1

knots per year to adjust for long-term temporal trend,
n2 knots for temperature and n3 knots for barometric
pressure.22 Although natural cubic spline offers less
flexibility at the limits where the second derivatives are
zero, it presents a larger variance around the limits.23

We used the annual average population size of each dis-
trict as the offset in the Poisson regression model.24 We
also used the multipollutant model that included NOx
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and CO to adjust for potential confounding from other
pollutants. The optimal GAMM with the most appropri-
ate number of knots for calendar day, temperature and
relative humidity was determined by minimising Akaike
information criterion (AIC).25

However, because we usually have rather limited
knowledge about seasonal or longer time trend in the
mortality time series, knot selection in GAMM might be
complicated and oversmoothing or undersmoothing the
series may potentially attenuate a true pollution effect.7

In such a situation, the BMA method provides a plaus-
ible solution to incorporate the model uncertainty
derived from the knot selection. The basic idea behind
BMA is summarised as follows.17

Considering model Mk having the structure given by
equation 1, if β is the coefficient of interest, then its pos-
terior distribution given data D is

pr(bjD) ¼
XK
k¼1

pr(bjMk;D)pr(MkjD) ð2Þ

This is an average of the posterior distributions under
each of the GAMM models considered, weighted by
their posterior model probability. In equation (2),
M1, …, MK are the models considered. The posterior
probability for the model Mk is given by

pr(MkjD) ¼ prðDjMkÞpr(Mk)PK
l¼1 prðDjMlÞpr(Ml)

ð3Þ

where Mk is one of the potential underlying models for
data D with a prior probability pr(Mk) that it is true, and

pr(DjMk) ¼
ð
prðDjbk; MkÞprðbkjMkÞdbk ð4Þ

is the integrated likelihood of model Mk. In equation
(4), βk is the coefficient of model Mk, pr(βk|Mk) is the
prior density of βk under model Mk, pr(D|βk, Mk) is the
likelihood and all probabilities are implicitly conditional
on all models being considered.

The posterior mean and variance of β are defined as:

E½bjD� ¼
XK
k¼1

b̂k prðMkjDÞ ð5Þ

and

Var[bjD]¼
XK
k¼1

(Var[bjD;Mk]þðb̂k�E½bjD�Þ2)pr(MkjD);

ð6Þ

where b̂k¼E½bjD;Mk�.
The 95% Bayesian credible interval (CI) of β is

E[bjD]+ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½bjD�

p
ð7Þ

The posterior probability pr(Mk|D) in the above formula
for each model was estimated by:26

pr(MkjD) ¼ pr(Mk) � e�0:5(BICMk�BIC)

PK
l¼1 pr(Mk) � e�0:5(BICMl�BIC)

ð8Þ

where BICMk is the Bayesian information criterion (BIC)
of model k, which extracts a penalty according to the
number of terms in the model, and BIC is the average
of BICMl (l=1,…, K).
b̂k in equation 5 and Var[b; Mk] in equation 6 are

the posterior mean and variance of the parameter of
interested, which derived from existing functions to esti-
mate GAMMs may not correspond to the posterior
mean and variance. In addition, we use BIC in equation
8 to approximate Bayes factors. Thus, the method pre-
sented here is an empirical approximation to a fully
Bayesian form of model averaging, bridging classical
frequentist and Bayesian estimation methods.27 28

Table 1 Daily respiratory mortality rate and PM10 concentrations by districts in the study area, 2009–2010

Mortality rate

(1/100 000

persons) PM10 (μg/m
3) NOx (μg/m

3) CO (mg/m3)

Districts Population (in 1000) Median P25–P75 Median P25–P75 Median P25–P75 Median P25–P75

District 1 896 0.11 0–0.22 94.0 57–138 52.0 33–78 1.20 0.8–1.7

District 2 3001 0.10 0.06–0.13 106.5 67–151 72.0 50.5–109.5 1.30 0.85–1.9

District 3 851 0.24 0.12–0.35 110.3 73.5–159 70.5 50.5–107.5 1.38 1.0–2.1

District 4 2814 0.07 0.04–0.14 112.0 71–154 79.0 52–116 1.20 0.8–2.0

District 5 316 0.00 0–0.32 82.5 49–124 33.0 23–53 1.00 0.6–1.4

District 6 546 0.18 0–0.18 129.0 83–174 60.0 44–88 1.40 1.0–2.0

District 7 736 0.00 0–0.14 108.5 66–154 52.0 37–75 0.90 0.6–1.4

District 8 1218 0.25 0.08–0.33 105.5 68.5–150.5 73.0 53–107.5 1.35 0.95–2.0

Total 10 378 0.11 0–0.22 106.0 66–150 61.0 41–93 1.20 0.8–1.8

P25, the 25th percentile; P75, the 75th percentile.
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In our study, the prior probability pr(Mk) was assumed
to be from the uniform distribution, thus:

pr(Mk) ¼ 1
K

ð9Þ

According to equation 5, the posteriors mean is averaged
over all models, applying weights that depend on the
degree to which data support each model. The weight

given by equation 8 incorporates the BIC component
that penalises for dimensionality of the model.
Therefore, the best models are weighted heavily in equa-
tion 5 by equation 8, which in turn heavily favours parsi-
monious models as well.
To consider correlations between PM10 and CO and

NOx, we introduced principal components (PCs)
derived from principal component analysis (PCA) into
the multipollutant models to exclude the impacts of

Table 2 Meteorological conditions in the study area 2009–2010

Mean SD Min Q1 Median Q3 Max

Air temperature (°C) 13.0 11.7 −12.5 1.7 14.7 24.3 34.5

Wind speed (m/s) 2.2 1.0 0.5 1.5 2.1 2.7 6.4

Relative humid (%) 51.0 19.2 13.0 35.0 52.0 67.0 92.0

Barometric pressure (kPa) 101.2 1.0 99.0 100.4 101.1 102.0 103.7

Table 3 Pairwise Pearson correlation coefficients between pollutants and meteorological conditions

PM10 NOx CO Temperature Barometric pressure Relative humidity

NOx 0.4780*

CO 0.5532* 0.8210*

Temperature −0.0157* −0.3206* −0.2939*
Barometric pressure −0.1845* 0.1535* 0.0892* −0.8266*
Humidity 0.2178* 0.1699* 0.3215* 0.3258* −0.3121*
Wind speed −0.1413* −0.4626* −0.4800* −0.0668* 0.0509* −0.4859*
*p<0.05.

Figure 1 Observed proportion and predicted probability based on Poisson distribution of number of daily respiratory deaths in

the study area between 2009 and 2010.

4 Fang X, et al. BMJ Open 2016;6:e011487. doi:10.1136/bmjopen-2016-011487

Open Access



collinearity between the three pollutants.18 We then
transformed the regression coefficients of the PCs back
to the regression coefficients of the original pollutants.
All analyses in our study were conducted in the statis-

tical software Stata (V.14.1; StataCorp LP, College
Station, Texas, USA) and using R software (V.3.2.3)
packages ‘mgcv’, ‘splines’ and ‘lme4’. Since <2% of the
observations in the data set were incomplete, the listwise
deletion method was used to handle missing values.

RESULTS
The daily respiratory mortality rate (per 100 000
persons) and PM10, NOx and CO concentrations of the
eight districts are shown in table 1. The highest daily
mortality rates were found in districts 3 (median=0.24;

IQR=0.24) and 8 (median=0.25; IQR=0.25). During the
2-year study period, the annual median concentrations
for PM10, NOx and CO were 106.0 μg/m3, 61.0 μg/m3

and 1.20 mg/m3, respectively. The annual median con-
centrations of PM10 and NOx were above the limits of
Class II of the National Ambient Air Quality Standards
of China (70 μg/m3 for PM10 and 50 μg/m3 for NOx),
but that for CO was below the national limit (4 mg/m3).29

The meteorological conditions of the same period in
the study area are shown in table 2. The mean tempera-
ture was 13.0°C ranging from −12.5°C to 34.5°C, the
mean relative humidity was 51.0% ranging from 13.0%
to 92.0% and the mean barometric pressure was
101.2 kPa ranging from 99.0 to 103.7 kPa, a characteris-
tic of a typical subhumid warm continental monsoon
climate.

Figure 2 Relationship between number of daily respiratory deaths and (A) days; (B) PM10 concentrations and (C–F)

meteorological conditions. Lowess; locally weighted scatterplot smoothing.
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The pairwise Pearson’s correlation coefficients
between pollutants and meteorological conditions are
shown in table 3. We observed strong linear correlation
between temperature and barometric pressure (r=−0.83,
p<0.001). To control for the collinearity, we included
temperature, relative humidity and wind speed but not
barometric pressure in the conventional GLMM analysis.
The observed and predicted (based on quasi-Poisson

distribution) numbers of daily respiratory deaths of the
eight districts between 2009 and 2010 corresponded well
with no zero-inflation observed, supporting the distribu-
tional assumptions in GAMM analysis (figure 1). There
were a clear temporal trend of daily number of respira-
tory deaths (figure 2A) and a non-linear relationship
between daily number of respiratory deaths and tem-
perature as well as barometric pressure (figure 2C, D),
supporting the choice of including them as smoothing
functions in GAMM. There was a moderate linear rela-
tionship of daily average relative humidity to daily
number of respiratory deaths (figure 2E), and we there-
fore included daily average relative humidity as a linear
component in the model. However, we did not observe a
clear linear or non-linear relationship between daily
number of respiratory deaths and wind speed (figure
2F). As a result, we included wind speed as a linear com-
ponent first and as a smoothing function later in a sensi-
tivity analysis.
We also examined the seasonality of respiratory mor-

tality using autocorrelation function (ACF). The slow
decrease in autocorrelation from lag 1 to lag 50 shown
in the correlogram (figure 3A) indicates that there is
some temporal trend in the mortality series. We
removed this trend by regressing the mortality against a
smoothing function of time. The correlogram of the
residuals after removing the seasonality (figure 3B)
shows substantially less autocorrelation. Thus, season is
an important factor related strongly to PM10, meteoro-
logical conditions and mortality as shown in figures 2
and 3.
There were moderate to strong correlations between

PM10 and CO as well as NOx (table 3), and we intro-
duced the first and the second PCs derived from PCA
into the multipollutant models. They accounted for
94.22% of variation of the three pollutants.
For GAMM analyses, we used different combinations

of number of knots (from 3 or 4 to 24 knots for each
smoothing function of calendar day, temperature and
barometric pressure) and showed the results of combi-
nations with the relative large posterior probability
around the best model, that is, 12, 14 and 16 knots cal-
endar day; 5, 6 and 7 knots for temperature and 4, 5
and 6 knots for barometric pressure, respectively. The
knot combinations with convergence problem or
extreme small posterior probability were excluded. The
estimated coefficients, their corresponding SEs as well as
AICs and BICs of 27 considered versions of single-
pollutant (ie, PM10) GAMMs are shown in table 4. The
estimated regression coefficients of PM10 changed little

with different knots for barometric pressure but
increased with the increasing knots for temperature.
However, when the number of knots of calendar day
changed from 12 to 14 and from 14 to 16, the regression
coefficients of PM10 showed a slight U-shape (table 4).
Estimated increases in respiratory MR for single-

pollutant, multipollutant and PCA-based multipollutant
models are presented in figure 4. The same knot com-
bination for temperature, etc, was optimal across the
single-pollutant and the multipollutant models. The
results of the GLMMs, optimal GAMMs and GAMM
+BMA are presented of in table 5. Only GLMM of the
single-pollutant model confirmed a statistically signifi-
cant association between PM10 and daily number of
respiratory deaths, with the largest effect of PM10 3.07
(95% CI 0.91 to 5.27) per cent increase in daily respira-
tory MR per IQR increase in PM10 concentration.
GAMM+BMA and the optimal GAMM of single-
pollutant, multipollutants and PCA-based multipollutant
showed comparable results for the effect of PM10 on
daily respiratory MR, that is, one IQR increase in PM10

concentration corresponded to 1.38% vs 1.39%, 1.81%
vs 1.83% and 0.87% vs 0.88% increase, respectively, in
daily respiratory MR (table 5). However, by incorporating
the uncertainty in knots selection, GAMM+BMA gave
slightly but noticeable wider CIs for the single-pollutant

Figure 3 ACF for respiratory mortality for (A) raw data and

(B) residuals after removing seasonality. ACF, autocorrelation

functions.
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model (−1.09 to 4.28 vs −1.08 to 3.93) and the
PCA-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The
CIs of the multiple-pollutant model from the two
methods are similar, that is, −1.12 to 4.85 versus −1.11
versus 4.83. The results indicate that BMA provides infer-
ence about parameters taking account of the different
knot selection strategies, this sometimes being an
important source of uncertainty in additive model ana-
lysis, and in our example we have found that single
model-based CIs tend to be narrow, which might
increase the probability of false-positive finding.
In addition, the effect of the first PC in GAMM and

GAMM+BMA was statistically significant (data not
shown), potentially indicating a joint effect of PM10,
NOx and CO on respiratory mortality. For sensitivity ana-
lysis, including wind speed as a linear component or a
smoothing function in GAMM changed the results little
(data not shown).

DISCUSSION
Yang et al1 and Zhang et al30 had examined the trigger-
ing effect of PM10 on respiratory mortality in the same
area previously. However, the studies were based on
GAM. Although GAM is a powerful method for model-
ling non-linear effects of continuous covariates in

regression models with non-Gaussian response, it cannot
account for the between-cluster heterogeneity and
within-cluster correlation of the pollutant concentra-
tions. In recent years, smoothing based mixed model,
that is, GAMM and its extensions have gained popularity
in part for its ability to account for such limitations.13 31–33

Using a subset of multisite time-series data from Yang
et al’s1 study, we reinvestigated the associations between
short-term exposure to ambient inhalable coarse parti-
cles PM10 and daily number of deaths from respiratory
diseases. By adding the random effect of districts to the
additive predictors, we used GAMM to provide a unified
likelihood framework for non-parametric regression for
potentially correlated exposures.13

Standard statistical methods for estimating the associ-
ation between air pollutants and adverse health out-
comes often fail to incorporate the model uncertainty in
effect estimates. For example, knot selection for splines
used in GAMM is critical, because it determines the
degree of smoothness in the smoothing function of time
as well as the amount of residual temporal variation in
mortality. In studies using GAMM to examine effect of
pollutants, we usually have rather limited knowledge
about the complexity of the seasonal and long-term
trends in the mortality time series or in the pollution
time series. Although there are often biological or

Table 4 Coefficients of PM10 of GAMMs for single-pollutant with different knots

Model Number of knots (D, T, P) b̂ SE AIC BIC Posterior probability

1 12, 5, 4 0.0001609643 0.0001499442 15063.93 15230.75 0.028997

2 12, 5, 5 0.0001609382 0.0001499458 15063.93 15230.75 0.028997

3 12, 5, 6 0.0001609357 0.0001499460 15063.93 15230.75 0.028997

4 12, 6, 4 0.0001611031 0.0001497939 15063.70 15230.51 0.032694

5 12, 6, 5 0.0001611031 0.0001497939 15063.70 15230.51 0.032694

6 12, 6, 6 0.0001611030 0.0001497939 15063.70 15230.51 0.032694

7 12, 7, 4 0.0001649193 0.0001497870 15063.35 15230.16 0.038947

8 12, 7, 5 0.0001649172 0.0001497871 15063.35 15230.16 0.038947

9 12, 7, 6 0.0001649211 0.0001497870 15063.35 15230.16 0.038947

10 14, 5, 4 0.0001592525 0.0001503313 15063.58 15230.39 0.034716

11 14, 5, 5 0.0001592566 0.0001503310 15063.58 15230.39 0.034716

12 14, 5, 6 0.0001592535 0.0001503312 15063.58 15230.39 0.034716

13 14, 6, 4 0.0001607594 0.0001500942 15063.40 15230.21 0.037985

14 14, 6, 5 0.0001607662 0.0001500939 15063.40 15230.21 0.037985

15 14, 6, 6 0.0001607661 0.0001500939 15063.40 15230.21 0.037985

16 14, 7, 4 0.0001646505 0.0001500780 15063.04 15229.85 0.045477

17 14, 7, 5 0.0001646507 0.0001500780 15063.04 15229.85 0.045477

18 14, 7, 6 0.0001646507 0.0001500780 15063.04 15229.85 0.045477

19 16, 5, 4 0.0001633165 0.0001502163 15063.64 15230.46 0.033522

20 16, 5, 5 0.0001633165 0.0001502164 15063.65 15230.46 0.033522

21 16, 5, 6 0.0001633165 0.0001502164 15063.65 15230.46 0.033522

22 16, 6, 4 0.0001650914 0.0001499675 15063.46 15230.27 0.036863

23 16, 6, 5 0.0001650913 0.0001499675 15063.46 15230.27 0.036863

24 16, 6, 6 0.0001650912 0.0001499675 15063.46 15230.27 0.036863

25 16, 7, 4 0.0001690050 0.0001499511 15063.10 15229.91 0.044133

26 16, 7, 5 0.0001690088 0.0001499509 15063.10 15229.91 0.044133

27 16, 7, 6 0.0001690044 0.0001499512 15063.10 15229.91 0.044133

AIC, Akaike information criterion; BIC, Bayesian information criterion; D, day; GAMMs, generalised additive mixed models; P, barometric
pressure; T, temperature.
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mechanistic information that is applied, current
approaches in choosing the number and location of
knots are mainly data-driven34 35 and are based on prior
knowledge of the timescales where confounding is more
likely to occur. More importantly, the single model selec-
tion at the end that ignores the entire process of getting
to the final model and the failure to account for this
uncertainty might bias our judgment.
Thus, there is concern about underestimated uncer-

tainty in model selection in time-series air pollution
studies. If a single ‘best’ model was used, the variance
estimates for its coefficients will not fully reflect their

true uncertainties.36 A coherent and conceptually
simple way to take into account model uncertainty when
making reference is BMA. In theory, BMA provides
better average predictive performance than any single
model, and this theoretical result has now been sup-
ported in practice in a range of applications involving
different model classes and types of data.17 While BMA
is an attractive solution to the problem of model uncer-
tainty, it is not yet part of the standard data analysis tools
in epidemiological studies due to several practical diffi-
culties, including impractical exhaustive summation of
posterior distribution, the computational difficulty of
integrals and the challenge of specifying prior distribu-
tion over competing models. In addition, owing to lack
of official solution for GAMM in common commercial
statistical software, model fit criteria such as the BIC are
not handily available,26 making it difficult to construct
the model weight to weigh estimated coefficients of the
individual models. Although Whitney and Ngo26 demon-
strated the application of BMA in the GAM frame, they
only examined the piece-wise linear relationship
between air pollutants and mortality, essentially limiting
their algorithm to a GLMM.
In our study, we demonstrated the feasibility of imple-

menting BMA in GAMM frame in R software environ-
ment. For single-pollutant and multipollutant models,
our optimal GAMM and GAMM+BMA gave equivalent
point estimates for effect of PM10 on respiratory MR.
Compared with previously published studies, our GAMM
+BMA method for single-pollutant gave comparable
results (per cent increases ranging from 0.87 to 1.38 vs
1.01 to 2.071 18 30 37 38). However, our multipollutant
models showed smaller effect of PM10, which was consist-
ent with previous findings suggesting that the effect of
PM10 in multipollutant models was about two to three
times smaller1 18 or slightly reversed.30 Although the
relative increase of MR is rather small, taking into
account the huge population (>10 million) in the study
area, it still raises a severe public health challenge.
However, our main interest was not the estimated coef-

ficients but the uncertainty of the estimation from differ-
ent modelling strategies. The GAMM+BMA gave slightly
but noticeable wider confidence even when only con-
sidering the model uncertainty from the knot. The aver-
aged estimate across a set of potential valid models

Table 5 Per cent increase in daily respiratory MR associated with an IQR increase in PM10 concentration from GLMM,

optimal GAMM and GAMM+BMA

Single-pollutant Multipollutant Multipollutant (PCA)

Model Per cent 95% CI Per cent 95% CI Per cent 95% CI

GLMM 3.07 (0.91 to 5.27) 1.94 (−0.80 to 4.75) 1.47 (−1.17 to 4.17)

Optimal GAMM* 1.39 (−1.08 to 3.93) 1.83 (−1.11 to 4.83) 0.88 (−2.03 to 3.88)

GAMM+BMA 1.38 (−1.09 to 4.28) 1.81 (−1.12 to 4.85) 0.87 (−2.23 to 4.07)

*Knots for days, temperature and barometric pressure are 14, 7 and 4, respectively.
BMA, Bayesian model averaging; GAMM, generalised additive mixed model; GLMM, generalised linear mixed model; MR, mortality rate; PCA,
principal component analysis.

Figure 4 Estimated per cent increase in daily respiratory

deaths per IQR increase in PM10 concentration in GLMM,

optimal GAMM, GAMMs with different knots in day,

temperature and pressure (indicated by D, T and P) and

GAMM+BMA for single pollutant, multiple pollutants and PCA.

BMA, Bayesian model averaging; GAMM, generalised additive

mixed model; GLMM, generalised linear mixed model; PCA,

principal component analysis.
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would derive more robust interval estimation for redu-
cing the type I error. Future studies may use our tech-
nique to build a model-averaged dose–response
relationship between PM10 and daily mortality to
account for model uncertainty with respect to location
and number of knots. Our method allows for a fully
parametric characterisation of the effect of air pollutants
on adverse health outcomes as well as adjusts for the
non-parametric effects of other covariates.
There are also limitations in our study. First, we only

considered the uncertainty from the knots selection but
not from the selection of covariates and confounders,
which is another major source of the uncertainty in esti-
mating the effect of PM10. However, this limitation can
be easily overcome by including different covariates and
smoothing functions in the GAMM. Second, GAMM
sometimes demonstrates problems in convergence and
SE estimation, which might result in the failure of coeffi-
cient estimation. The data with many zeros can cause
such problems in a model with a log link, because a
mean of zero corresponds to an infinite range of linear
predictor values. Fundamentally, it is due to lack of iden-
tifiability, and it is the case in our study. However, the
problem can be addressed using stricter convergence
criteria and panelised splines.39 Third, in our study, we
did not investigate the lag effect of PM10 on respiratory
mortality, because our interest lies on the uncertainty of
the estimated association but not the association itself.
However, previous studies in the same area indicated
that the strongest effect of air pollutants on respiratory
mortality was in day 0 (lag 0) and day 1 (lag 1), and the
strongest cumulative effect was in 2-day moving average
of day 0 and day 1.18 We incorporated lag 1 of PM10 con-
centration in the single-pollutant and multipollutant
models as a sensitivity analysis and estimated effects of
lag 0 PM10 on respiratory MR increase per IQR increase
in lag 0 PM10 reduced to 0.79 (−1.91 to 3.55) and 1.20
(95% CI −1.93 to 4.42), respectively. Similar results were
found for GAMM+BAM. Thus, the effects of PM10 need
to be investigated in further GAMM+BAM with different
lag structures.
In our study, we selected a uniform distribution for

the prior distribution. In Bayesian statistics, the choice
of the prior distribution is often controversial. Different
rules for selecting priors have been suggested in the lite-
rature.40 The most intuitive solution is to use the
uniform distribution as a non-informative prior when no
information is available, although it does not integrate
to 1 in most of the cases (this does not pose a major
problem for Bayesian analyses). In view of the large
sample size in our study, the data will dominate the pos-
terior distribution (they will overwhelm the prior), so
the selection of prior distribution would not pose much
effect on our parameter estimation. Actually, we were
informed by previous studies on the knot and variable
selection, but we pretended to be uninformative in the
current study in order to incorporate uncertainty (includ-
ing inappropriate models) as more as possible. We would

like to use informative prior distribution to narrow the
range of the included models and examine performance
of different prior distributions in future studies.
In conclusion, there is an increasing interest in the

use of GAMM to investigate the association between
short-term exposure to PM10 and adverse health out-
comes in time-series studies. Epidemiology studies
incorporate different modelling strategies to adjust for
confounding, making it difficult to compare results
across studies. Furthermore, the uncertainty of model
selection has rarely been considered and quantified in
these studies. Using BMA in the GAMM frame is a pro-
mising approach to investigate the association of air pol-
lution with adverse health using time-series data, as well
as other applications. Naturally, BMA tends to produce
larger SE than the models that ignore model uncertainty
do. However, the conclusions of BMA are more robust
than those derived from analyses dependent upon a par-
ticularly selected model. Future work should aim to
extend the model averaging over more extensive families
of models, employing the method to explore heterogen-
eity in other areas (such as confounder selection), deve-
loping corresponding package in R for widespread use
and exploring implications of utilising these resulting
estimates of effect and corresponding uncertainty on
policy-making and decision-making.
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