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AI-powered transmitted light 
microscopy for functional analysis 
of live cells
Dongyoung Kim1, Yoohong Min1, Jung Min Oh1,2 & Yoon-Kyoung Cho   1,2*

Transmitted light microscopy can readily visualize the morphology of living cells. Here, we introduce 
artificial-intelligence-powered transmitted light microscopy (AIM) for subcellular structure 
identification and labeling-free functional analysis of live cells. AIM provides accurate images of 
subcellular organelles; allows identification of cellular and functional characteristics (cell type, viability, 
and maturation stage); and facilitates live cell tracking and multimodality analysis of immune cells in 
their native form without labeling.

Microscopy imaging experiments constitute essential assays for cell biology research1. There are three common 
aims: (1) subcellular structure segmentation2, (2) cell status determination3, and (3) analysis of live cell dynam-
ics4. Subcellular structure visualizations are typically performed using fluorescence labeling. Cell status character-
istics such as their viability, type, and activity can be classified by dyeing representative biomarkers and evaluating 
their expression levels. However, performance of such analyses on a live cell is challenging. Expression of exog-
enous proteins through various transfection techniques would allow application of a specific fluorescent tag to 
target certain subcellular structures and/or biomarkers in live cells. However, several problems are associated 
with this approach: expression of exogenous proteins can have unexpected side effects, and some cells, especially 
immune or primary cells, are not transfectable5,6. It is notable that all limitations pertain to fluorescence labeling, 
with the additional restriction of fluorophore/wavelength selection7,8.

Digital image processing heavily extends the ability of the optical microscopy. Algorithms such as detection 
and segmentation allow making measurements and quantifications from the microscopic images3. Although, it 
may fail with many biological sample data due to its innate heterogeneity and complexity9. Recent advances in 
image processing with artificial intelligence (AI) break such limitations. Especially, deep neural network (DNN) 
explicate microscopy images in classification and segmentation with great performance10. For example, a DNN 
is able to interpret tissue section images and classify diseases on the level of trained experts11. Cell segmenta-
tion from microscopic images is carried out using DNNs12,13. In-silico staining approaches14–16 were developed, 
in which DNNs generate predictions for fluorescent labels from unstained cells. Microscopic object tracking is 
demonstrated by a DNN17.

Here, we introduce an AI-based software package to perform a complete live cell microscopy data analysis, 
called AI-powered transmitted light microscopy (AIM, Fig. 1a). Using a set of AI modalities including hierarchical 
k-means clustering algorithm of unsupervised machine learning, convolutional neural networks in deep learning18,19 
and a complementary learner solving regression problems of machine learning20, AIM performs all three common 
aims from transmitted light microscopy (TL) images. In this work, we demonstrate (1) production of subcellular 
structure images of cell nuclei, mitochondria, and cytoskeleton fibers using AIM. In addition, (2) cellular and func-
tional status information is attained; for example, cell viability, cell type, and immune cell maturation stages are iden-
tified. Furthermore, (3) accurate live cell tracking with subsequent analysis of the multimodality functions described 
above is presented, which enables completely label-free and multiplexed live cell imaging.

Results
The AIM package consists of a hierarchical k-means clustering algorithm of unsupervised machine learning, 
convolutional neural networks in deep learning and a complementary learner solving regression problems of 
machine learning. We propose three functional networks: CellNet, ClassNet, and TrackNet (see Methods and 
Supplementary Notes 1–4). CellNet is engineered to develop images showing subcellular structures from TL 
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images. This is achieved using both unsupervised and supervised machine learning techniques (Fig. 1b and 
Supplementary Note 2). Intensity clusters are first created from fluorescence microscopy (FL) images using a 
hierarchical K-means clustering algorithm21. The intensity cluster and corresponding TL images are fed to a fully 

Figure 1.  Artificial-intelligence-powered transmitted light microscopy (AIM) with three functional interfaces 
finds subcellular structures, cellular & functional status information, and cell trajectories from transmitted 
light microscopy images. (a) AIM workflow. Transmitted light images are fed into (b) CellNet for subcellular 
structure segmentation and (c) ClassNet for cellular and functional classification, which identifies cell type, 
viability, conditions, etc. This is extended to live cell tracking and analysis using (d) TrackNet (see Methods for 
details).
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convolutional neural network (FCN) that performs pixel-wise classification (see Methods and Supplementary 
Note 2)22. This trains CellNet to create FL-like images from TL images (Fig. 1a). ClassNet is designed for cell loca-
tion and status classification (Fig. 1a) and is implemented through two convolutional neural networks (CNNs): 
one region-proposal CNN for cell searching and another CNN for cell classification (Fig. 1c and Supplementary 
Note 3)23,24. Finally, TrackNet is for automated cell tracking. TrackNet exploits an ensemble composed of a cor-
relation filter and a pixel-wise probability to track a live cell (Fig. 1d and Supplementary Note 4)20. For each 
tracking procedure, cellular and functional information are obtained through subsequent analysis with CellNet 
and ClassNet (Fig. 1d).

CellNet synthesizes FL images from TL images. In this study, subcellular structures (nuclei, mitochondria, 
and actin fibers) were predicted using this DNN (Fig. 2a–c). From differential interference contrast (DIC) 
microscopy images of MDA-MB-231 and SK-BR-3 cells, CellNetNuc generated cell nucleus images, which were 
comparable to 4′,6-diamidino-2-phenylindole (DAPI)-stained FL images (Fig. 2a). We noticed a few apparent 
false-positive cells, i.e., cells without DAPI staining that were identified as nuclei by CellNet. In each investiga-
tion, we found that most of those cases were in fact true positives with very low DAPI stains (see Supplementary 
Fig. 1). The CellNetNuc performance was evaluated according to three criteria: the recall, contour matching score 
(denoted by the BF score), and intersection-over-union (IoU) score (Fig. 2b, see Methods). CellNetNuc identified 
the MDA-MB-231 and SK-BR-3 cell nuclei with more than 98.36% and 96.93% recall and 97.27% and 94.85% 
IoU, respectively. It also found the respective nucleus boundaries (BF score) with 95.77% and 93.85%. Similarly, 
CellNetMito and CellNetActin were constructed to find mitochondria and actin fibers from TL images, respec-
tively (Fig. 2c,d, Supplementary Note 2). Hence, FL-comparable images could be generated from TL images with 
96.88% and 90.12% recall for mitochondria and actin fibers, respectively (Supplementary Fig. 2).

ClassNet was designed to find cell status information, such as details of cell viability, cell type, and dendritic 
cell maturation stage from TL images alone (Fig. 2e–m). We performed cell viability tests of SK-BR-3 cells with 
three different causes of death (Fig. 2e, see Methods). A control (live sample) was also considered. The three 
causes of death were as follows: cell permeabilization (Death 1), phototoxicity (Death 2), and high temperature 
(Death 3). From the cell images, ClassNetViability could not only identify the cell viability with 99.78% classification 
accuracy (Supplementary Fig. 3a), but also classify each death condition with 99.69% classification accuracy 
(Fig. 2f). The receiver operating characteristic (ROC) curves for ClassNetViability indicate almost perfect classifica-
tion performance (Fig. 2g and Supplementary Fig. 3b).

In addition, cancer cell classification was demonstrated using ClassNetCancer (Fig. 2h–j). Five cell lines from the 
breast cancer cell panel were used, which were differentiated by molecular signatures (Supplementary Table 1). 
ClassNetCancer could distinguish breast cancer cells from normal breast cells with 99.47% classification accuracy 
(Supplementary Fig. 3c), and differentiate five breast-cancer-cell subtypes with more than 98.80% classification 
accuracy (Fig. 2i). The ROC curves of both cancer and subtype classifications mark the perfect classification per-
formance of ClassNetCancer (Supplementary Figs. 2j and 3d).

Dendritic cells (DCs) play a crucial role in adaptive immunity against pathogens and cancer cells via the 
maturation process25. DC maturation involves upregulation of MHC class II, CD40, CD80, and CD8626. We 
successfully demarcated immature DC (imDC) from mature DC (mDC) using ClassNetDC (Fig. 2k–m), again 
from DIC images obtained without fluorescent labeling. ClassNetDC found the imDC and mDC with 98.63% 
classification accuracy and the results were well correlated with the CD86 and CD40 expression levels (Fig. 2l 
and Supplementary Fig. 4). The corresponding ROC curve confirms the good classification performance of 
ClassNetDC (Fig. 2m).

Label-free, multiplexed live cell tracking and analysis were achieved by combining CellNet, ClassNet, and 
TrackNet. MDA-MD-231 breast cancer cells were imaged for 16 hours using TL and analyzed using TrackNet 
(Fig. 3a and Supplementary Video 1–3). Cell images along the trajectory were evaluated by CellNet and ClassNet, 
which identified the cell nuclei, type, and viability over time (Fig. 3b). Here, we report on two cases: Tracks #01 
and #07 of Fig. 3a. Based on the trajectories, the cumulative displacements were plotted over time (Fig. 3c). The 
Track #01 cell moved continuously to the end of the track whereas the motility of the Track #07 cell decreased. 
The cell nucleus area was computed for each trajectory (Fig. 3d). No cell nucleus was found after 500 min for 
Track #07. The cell type (ClassNetCancer) and viability (ClassNetViability) classification probabilities were plotted over 
time (Fig. 3e). We found that the cell in Track #07 was dead after 500 min, because of the phototoxicity, which was 
correlated with its motility and the measured cell nucleus size.

We also demonstrated our AIM through application to immune cells. Live imDCs were collected and imaged 
for 20 h using TL (Fig. 3f–i, Supplementary Videos 4–7). To stimulate DC maturation, lipopolysaccharide (LPS) 
was added (denoted “imDC + LPS”). The DC trajectories were found using TrackNet and the maturation stages 
were evaluated using ClassNetDC. Two trajectories, i.e., Tracks #04 and #01 for imDC and imDC + LPS, respec-
tively, are discussed as examples here (Fig. 3g). ClassNetDC found that the cell in Track #01 became an mDC after 
830 min (Fig. 3g,h, see Supplementary Note 5). The diffusion rate of Track #01 was measured as being higher than 
that of Track #04 (Fig. 3i). In particular, the mean squared displacement (MSD) increased dramatically after an 
830-min delay, implying that the DC diffusive behavior changed after maturation (Fig. 3i; Track #01).

Discussion
The AIM is an AI toolkit for live cell microscopy from TL images. Three functional AIs, CellNet, ClassNet, and 
TrackNet, performs cell staining, cell classification and cell tracking accurately (Fig. 1). We were able to pro-
duce subcellular structure images of cell nuclei, mitochondria, and cytoskeleton fibers using CellNet (Fig. 2a–d). 
Identifying cell viability, cell type, and immune cell maturation stage with over 99% classification accuracy was 
possible with ClassNet (Fig. 2e–m). TrackNet in addition of CellNet and ClassNet performs live cell tracking and 
analysis (Fig. 3, Supplementary Videos 1–7). The AIM is easy to incorporate to cell biology experiment with exist-
ing conventional microscopy setup. The modular architecture of our AIM brings flexibility of experimental design 
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and reusability of each component (Supplementary Notes 1–4). The AIM is an example of using existing AI tech-
nologies into a scientific problem. The AI such as SegNet22, GoogLeNet24, or Staple20 were used for self-driving 
system, image classification, or object tracking problems and were transformed to solve cell staining, disease 

Figure 2.  Label-free subcellular structure identification and cellular and functional classification using AIM. 
(a) CellNetNuc identified cell nuclei from DIC images of MDA-MD-231 and SK-BR-3 cells. (b) The CellNetNuc 
performance was evaluated based on recall, BF score, and IoU. Demonstrations of (c) CellNetMito and (d) 
CellNetActin for mitochondrial and actin fiber identification from DIC images, respectively. ClassNet identified 
the (e) cell type, (h) cell viability, and (k) maturation stage of dendritic cells. The ClassNet classification 
performance was evaluated using (f,i,l) confusion matrixes and (g,j,m) receiver operating characteristic curves 
(ROCs) for cell type (f,g), cell viability (I,j), and maturation stage identification for dendritic cells (l,m). Scale 
bar: (a,c,d) 100 µm, (e,h,k) 20 µm.
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Figure 3.  AIM for live cell analysis. (a) Example of live cancer cell tracking using TrackNet. (b) Label-free, 
multiplexed live cell analysis performed by combining all three networks: CellNet, ClassNet, and TrackNet. 
Tracks #01 and #07 of (a) were taken as representative examples. (c–e) Cumulative trajectory displacements, 
cell nucleus areas detected using CellNetNuc, and classification probabilities of ClassNetCancer and ClassNetViability, 
respectively, for Tracks #01 and #07 plotted over time. (f) Live cell tracking and analysis of immature dendritic 
cells (imDC) for 20 h. The imDCs were in a cell culture medium (imDC; top) or a cell culture medium 
containing lipopolysaccharides (LPS) (imDC + LPS; bottom). (g) Live cell trajectories were obtained for imDC 
and imDC + LPS using TrackNet (Tracks #04 and #01, respectively) and the maturation stages were identified 
using ClassNetDC. (h) The classification probabilities of the DC maturation stage were plotted for Tracks #04 and 
#01 of (g). (i) The mean squared displacements (MSDs) were plotted for Tracks #04 and #01 from (g). Scale bar: 
(a,f) 100 µm.
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classification, or living cell tracking in our AIM toolkit. AIM performance is limited by the information availa-
ble in the TL images. However, this performance could be improved through application of state-of-the-art AI 
technology. For instance, the spatial resolution of CellNet may be improved using other semantic segmentation 
techniques27 (Supplementary Note 2). In addition, we may construct experiment-exclusive DNNs for ClassNet 
rather than using networks optimally designed for the ImageNet Large Scale Visual Recognition Competition 
classification challenge28 (Supplementary Note 3, Figs. 5 and 6). Similarly, TrackNet can be improved by using 
different supervised or unsupervised techniques17,29 (Supplementary Note 4). The AIM package developed in this 
work introduces a new dimension of microscopy and live cell imaging.

Methods
AI-powered transmitted light microscopy (AIM).  The artificial-intelligence-powered transmitted 
light microscopy (AIM) package is constructed from three functional neural networks: CellNet, ClassNet, and 
TrackNet (Fig. 1). CellNet is designed based on a SegNet22 to perform semantic segmentation of subcellular struc-
tures. ClassNet is a convolutional neural network (CNN)23,24 for cellular and functional classification. TrackNet is 
constructed based on an ensemble composed of a correlation filter and the intensity histogram approach20 and is 
designed for living cell tracking (see Supplementary Notes 1–4 for details).

CellNet consists of an unsupervised and a supervised machine learning algorithm. Desired features are 
first identified from fluorescence microscopy images using the hierarchical K-means clustering algorithm 
(HK-means)21,30,31. HK-means is an unsupervised machine learning approach30,31 and defines intensity classes 
from fluorescence microscopy images. The results of the unsupervised machine learning are used to super-
vise CellNet, which is structured using the convolutional encoder-decoder architecture of SegNet22 (Fig. 1b 
and Supplementary Fig. 7). This structure recovers a fine-resolution classification map from a low-resolution 
encoder feature map. CellNet must be tuned in accordance with the imaging conditions, e.g., the effective pixel 
size, desired structure dimension, and input image size (Supplementary Fig. 8)22. See Supplementary Note 2 for 
information on data preprocessing and optimization conditions.

ClassNet uses a CNN for cell classification (Fig. 1c and Supplementary Note 3) Two CNN approaches are 
employed in two steps: cells are found using a region proposal CNN (R-CNN) and the cell status is classified using 
experiment-specific CNNs. A Faster R-CNN23 is used for the cell search. Cell classification is performed by train-
ing existing CNNs such as AlexNet18, GoogLeNet24, Inception-V332, and Inception-ResNet-V233 (Supplementary 
Note 3 and Supplementary Fig. 5). Note that the performance of these networks differs from the input class 
(Supplementary Fig. 6). GoogLeNet24 was used for the examples presented in the main manuscript (Fig. 2d–l). 
DNNs were modified according to the input image size and the output class numbers.

TrackNet performs live cell tracking and analysis using CellNet and ClassNet (Fig. 1d). Cells are first found 
using the R-CNN approach used in ClassNet (Supplementary Fig. 9). For each detection process, live cell tracking 
is performed by computing the image correlation and intensity histogram in subsequent frames20. For each trajec-
tory, the cell images are extracted and analyzed using the pretrained CellNet and ClassNet (Fig. 3, Supplementary 
Notes 2–4, and Videos 1–7).

All computations reported in this paper were performed using MATLAB (MathWorks, USA) on a personal 
computer configured with an Intel i7 7700 central processing unit and a single Nvidia GTX 1080 graphics pro-
cessing unit (GPU). The computations were mostly performed using the GPU. Full details of the network struc-
ture used in the manuscript are listed in Supplementary Data 1 to 6.

Performance evaluation.  To evaluate the CellNet performance, the following scores were examined: recall, 
BF score, and IoU (see Fig. 2b,d)34. Recall denotes the ratio of correctly labeled pixels on the following relation:
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where FP is the number of false positive pixels.
In this work, the ClassNet performance was evaluated by calculating the confusion matrix36 and the receiver 

operating characteristic (ROC) curve37. Classification accuracy is defined:

TP TN
TP FP TN FN

Classification accuracy ,
(5)

=
+

+ + +

where TP, FP, TN, or FN are the true positive, false positive, true negative, or false negative of the predictions 
from the ClassNet. Confusion matrixes with absolute data counts are available in Supplementary Table 2. The 
ROC curves were obtained using the one versus the rest approach38. All the performance evaluations were con-
ducted using experimentally independent data sets. Please see Supplementary Note 6 for our comments on this 
evaluation approach.

Transmitted light and fluorescence microscopy.  The transmitted light and fluorescence microscopy 
imaging were performed using an inverted microscope (Eclipse-Ti; Nikon, Japan) configured with 20x and 40x 
dry objective lenses (Plan Apo 20x/0.75NA and 40x/0.95NA, respectively; Nikon, Japan). The transmitted light 
microscopy was conducted using a differential interference (DIC) contrast setup (Nikon, Japan) configured with 
white-light light-emitting-diode (LED) illumination (pE-100; CoolLED, UK). For the fluorescence microscopy, 
the sample was illuminated using colored LED light sources (pE-4000; CoolLED, UK). TRI, RFP, and Cy5 filters 
(Nikon, Japan) were used, depending on the fluorescence label. The microscopic images were recorded using an 
electron-multiplying charge-coupled-device camera (iXon Ultra; Andor, UK). A focus stabilization system (PFS; 
Nikon, Japan) was used for all imaging experiments. All the data were acquired by focusing fiducial markers 
immediately above the coverslip. The microscope system was controlled using MetaMorph software (Molecular 
Device, USA).

Data acquisition and preprocessing for AIM.  A motorized stage (Ludl Electronic product, USA) with 
automated sample scanning capability and a multi-position imaging system (MetaMorph; Molecular Device, 
USA) were configured for the data acquisition. DIC and nucleus (4′,6-diamidino-2-phenylindole (DAPI) or 
Hoechst 33342) stained cell images were acquired for all fixed cell imaging experiments. Other fluorescence 
channel images were obtained in accordance with the experimental conditions. Imaging area were set to 
16 mm × 16 mm per sample. The cell nucleus images were segmented using the HK-means algorithm and regions 
of interest (ROIs) were found by centering the cell nucleus. ROIs were in 101 pixels × 101 pixels (equivalent to 
65 μm × 65 μm in 20x magnification, or equivalent to 32.5 μm × 32.5 μm in 40x magnification). 10,000 to 15,000 
ROIs were identified per sample. Three samples were prepared per conditions, 20,000 to 30,000 ROIs from two 
samples were used as training data and 10,000 to 15,000 ROIs from the other sample were used for validation data. 
Number of training, validation, and testing images used the manuscript is available in Supplementary Table 3.

Cell lines and reagents.  MCF-10A, MCF-7, BT-474, MDA-MB-231, SK-BR-3, and CCD-1058Sk breast cell 
lines were obtained from the American Type Culture Collection (ATCC) and maintained by following ATCC 
protocol (Supplementary Table 1). DAPI (Sigma-Aldrich, USA) or Hoechst 33342 (ThermoFisher, USA) were 
used in accordance with the manufacturer protocol for the cell nucleus staining. A FluoCellsTM prepared slide 
#1 (ThermoFisher, USA) was used for the mitochondrial and actin fiber imaging experiments (Fig. 2c). The 
dendritic cells were fluorescently labeled using the following antibodies: anti-CD86 fluorescein isothiocyanate 
(FITC)-conjugated antibody and anti-CD40 phycoerythrin (PE)-conjugated antibody (ThermoFisher, USA). 
Cells were fixed using 3.4% paraformaldehyde (PFA; Sigma-Aldrich, USA) in phosphate buffered saline (1xPBS; 
Sigma-Aldrich, USA).

Cell viability assay.  SK-BR-3 cells were plated on glass-bottom dishes (SPL Life Science, South Korea). Cell 
death conditions, i.e., permeabilization (Death 1, Fig. 2d), phototoxicity (Death 2, Fig. 2g) and high temperature 
(Death 3, Fig. 2j), were simulated as follows. To synthesize Death 1, SK-BR-3 cells were treated with 0.1% saponin 
(Sigma Aldrich, USA) for 10 min at room temperature. Death 2 was achieved by irradiating SK-BR-3 cells with 
ultraviolet light at 27.9 mW/cm2 for 1 h (UVO cleaner; Jelight Company, USA). For Death 3, the SK-BR-3 cells 
were heat shocked for 10 min at 45 °C using a water bath. The cells were stained using a live/dead viability/cyto-
toxicity kit (ThermoFisher, USA) according to the manufacturer’s protocol. The cells were fixed using 3.4% PFA 
in 1xPBS for 10 min at room temperature. The cells were stained with DAPI and imaged using the microscope as 
described above.

Cell line classification assay.  MCF-10A, MCF-7, BT-474, MDA-MB-231, and SK-BR-3 cells were plated 
on glass-bottom dishes and incubated for one day in the incubator. The cells were then fixed using 3.4% PFA in 
1xPBS for 10 min at room temperature. The cells were stained with DAPI and imaged using the microscope as 
described above.

Animals.  All animal experiments were conducted under protocols approved by the Institutional Animal Care 
and Use Committee of Ulsan National Institute of Science and Technology (UNISTIACUC-16-13). All animal 
experiments were conducted in accordance with the National Institutes of Health “Guide for the Care and Use of 
Laboratory Animals” (The National Academies Press, 8th Ed., 2011). The personnel who performed the experi-
ment had completed the animal research and ethics courses of the Collaborative Institutional Training Initiative 
(CITI) Program (USA).
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Dendritic cell preparation.  The dendritic cells were isolated as described previously39. Briefly, the tib-
ias and femurs of BALB/c mice (8–12 weeks of age, females) were used. To isolate bone-marrow-derived den-
dritic cells (BMDCs), red blood cells were lysed using ammonium-chloride-potassium (ACK) lysis buffer 
(Gibco, USA). Bone marrow cells were plated on 24-well cell culture plates (1 × 106 cells/ml). The cells were 
incubated in a culture medium containing RPMI 1640 supplemented with 5% fetal bovine serum, 1% 100x 
antibiotic-antimycotic solution, 1% 100x 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, 
0.1% 1000x 2-mercaptoethanol, 1% L-glutamine (all from Gibco, USA) and 20 ng/ml recombinant mouse gran-
ulocyte macrophage colony-stimulating factor (GM-CSF) (Peprotech, USA). The culture medium was replaced 
on days two, four, and six. Non-adhesive and loosely adherent cells were gently collected through a pipette and 
transferred to Petri dishes. Immature MDCs, which appeared as floating cells, were collected after one day. The 
BMDCs were validated through flow cytometry assay (Supplementary Note 7 and Figs. 10 and 11).

Dendritic cell imaging experiment.  Glass-bottom dishes were plasma-treated using a plasma cleaner 
(CUTE-1MPR; Femto Science, South Korea) for 90 s at 100 W. The dishes were then coated with 10 µg/ml 
fibronectin for one hour at room temperature. BMDCs were plated on the fibronectin-coated dish and incubated 
for one day in the incubator. To stimulate BMDC maturation, immature BMDCs were treated with 100-ng/ml 
lipopolysaccharide (LPS; Sigma, USA) for 18 h. The cells were fixed using 3.4% PFA in 1xPBS for 10 min at room 
temperature. The cells were fluorescently stained and imaged as described above.

Live cell imaging.  The microscope was installed in a cage incubator system (Chamlide HK; Live Cell 
Instrument, South Korea), which maintained the microscope stage case at 37 °C with 95% humidity and 5% 
CO2 during the experiments. The cancer cells were imaged for 16 h and DIC images were obtained every 5 min 
(Fig. 3a–e). The dendritic cells were imaged for 20 h and DIC images were obtained every 3 min (Fig. 3f–i).

Live cell tracking and analysis.  Live cell trajectories were found from sets of DIC images using TrackNet 
(Fig. 3a,f). Along the trajectories, a set of regions of interest (ROIs) was created by centering the track coordi-
nates. The ROIs were analyzed by CellNet and/or ClassNet (Fig. 3b,g). The cumulative displacements (Fig. 3c) 
or mean squared displacements (MSDs) (Fig. 3h)40 were calculated from the live cell trajectories provided by 
TrackNet. Cell nucleus images were obtained from the ROIs using CellNet (Fig. 3b). The cell nucleus size was 
measured from the segmented cell nucleus nearest to the track coordinates (Fig. 3d). The classification proba-
bilities were estimated from ClassNet and plotted over time (Fig. 3e,i). See Supplementary Note 8 for living cell 
analysis pseudo code.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
All software will be available on GitHub when the manuscript being public. The software used for live cell tracking 
was originally from Staple20.
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