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Abstract

The study of natural language using a network approach has made it possible to character-

ize novel properties ranging from the level of individual words to phrases or sentences. A

natural way to quantitatively evaluate similarities and differences between spoken and writ-

ten language is by means of a multiplex network defined in terms of a similarity distance

between words. Here, we use a multiplex representation of words based on orthographic or

phonological similarity to evaluate their structure. We report that from the analysis of topo-

logical properties of networks, there are different levels of local and global similarity when

comparing written vs. spoken structure across 12 natural languages from 4 language fami-

lies. In particular, it is found that differences between the phonetic and written layers is

markedly higher for French and English, while for the other languages analyzed, this sepa-

ration is relatively smaller. We conclude that the multiplex approach allows us to explore

additional properties of the interaction between spoken and written language.

Introduction

The complexity of natural language has been studied from different perspectives of scientific

research [1–5], among which characterizations based on phonological [6–8], morphological

[9, 10], syntactic [11, 12], and semantic aspects [13, 14] stand out. Some of these approaches

have shown that the complexity expressed in these aspects (phonetic, lexical, syntactic, seman-

tic) are general properties, such as Zipf’s law [15] and other linguistic laws, observed in all lan-

guages [1, 8, 16–18], while some particularities, such as the divergence between written and

spoken language, may exhibit differences across languages. In some previous studies, the levels

of complexity have been evaluated in terms of modeling based on complex single-layer net-

works or their extension to multilayer networks [19–21]. Of particular interest are findings

about emergent organizational properties that encompass facets of language ranging from

semantics to phonetics, including the written structure of language [22–25]. In many of these

network-based approaches, it has been found that the behavior of the connectives -the number

of neighbors of a given node- is often described by distributions that lie between power-law
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and narrow exponential behavior, depending on the language and the association criterion.

For instance, Arbesman et al. [6] reported that in the case of phonological networks, the degree

distribution follows a truncated power law with different parameters when comparing differ-

ent languages [6]. From the perspective of orthographic networks, it has been reported [22]

that the distribution of connectives for the mental lexicon of elementary-level learners is well

described by a power law with small-world properties. Although different natural language

properties based on transformations to complex networks have been analyzed, few of them

have focused on incorporating multilayer aspects of the language [20, 26]. In this study, we

address orthographic and phonetic features of language using a multiplex approach. In partic-

ular, by estimating the similarity between word pairs, a two-layer network is constructed in

which the nodes are the words, and a link exists if a threshold value of the similarity is satisfied.

For the purpose of our study, this distance similarity between two words, A and B, can be

defined as the minimum number of edit operations needed to transform A into B, which is the

well-known Damerau-Levenshtein (DL) [27–29] (see Methods). Among the widely recognized

characteristics of many natural languages is the non-existence of a biunivocal correspondence

between the writing of a word and its corresponding pronunciation. Thus, the correspondence

between graphemes and phonemes is not biunivocal, giving rise to situations such as homogra-

phy (when one letter corresponds to two phonemes), digraphy (two letters correspond to one

phoneme or vice versa), heterography (one phoneme corresponds to two or more letters), etc.

[30–35]. In fact, at the word level, the appearance of phenomena such as homophony and

transparency in natural languages has been the subject of extensive study from the linguistic

perspective [36, 37]. On the other hand, the use of complex networks has been incorporated

into systems analysis as the language where multiplex modeling is most appropriate. In these

cases, the nodes are placed in layers with connections between them and the nodes are com-

mon to all layered networks. Several real and simulated multilayer networks have been studied

in contexts such as finance and economics [38–40], social systems [41, 42], synchronization

[43] and linguistics [21]. A direct comparison between orthographical and phonological net-

works would be important to quantify the local and global connectivity patterns and their

changes across different languages. Related to the latter, and in the context of psycholinguistic

studies, the identification of these differences and similarities potentially contribute to the

understanding of the mechanisms that act on cognitive processes, such as word recognition

and retrieval, and whose manifestations are particularly different when looking at ortho-

graphic or phonetic organization. In a more potentially applicable context, the relationship

between orthographic and phonological networks could be of great interest for the robustness

of automatic speech recognition systems, as they are often prone to failures in transcription to

written text. And it could also impact issues such as cross-language transfer learning, where a

neural network that can recognize one language might perform well in another language

depending on the similarity of the multiplexed network. The contributions of this study focus

on answering the questions that were posed in the registered protocol and are summarized as

follows. (i) Unlike previous studies based on single-layer networks, multiplex orthographic-

phonetic networks were constructed for 12 natural languages based on similarities between

5x104 words. The observed properties reveal that it is possible to differentiate levels of organi-

zation between orthographic and phonetic structure in natural language. (ii) Our results indi-

cate that while certain languages exhibit a high correlation, for node-based measures, between

phonetic and orthographic similarity, for others this correlation is rather low, reinforcing the

identification of differences at the local level. (iii) Our approach based on a multiplex analysis

presents an alternative view for understanding the organization of language by combining the

written and spoken form.
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Orthographic and phonological network

In this study, the multiplex language network consists of an orthographic network and phono-

logical network (see Fig 1 for a schematic representation). For the orthographic network, we

generate a similarity network at word-level G[O] = (V[O], E[O]), where nodes are words and a

link between two nodes is defined if the DL distance is smaller or equal than a threshold value

ℓ. In a similar way, the phonological network G[P] = (V[P], E[P]) is constructed in terms of

nodes which represent words translated to the international phonological alphabet (IPA), and

links are defined if the DL, is smaller or equal than a given threshold ℓ. Next, the orthographic

and phonological networks are combined to generate a two-layer network, denoted by

G½a�L ¼ ðV ½a�;E½a�Þ, with α = O, P. Here, the adjacency matrix for the multiplex network is given

a½a�ij , where a½a�ij ¼ 1 indicates that there is a link between node (word) i and node (word) j at

layer α. More formally, the adjacency matrix associated with each layer is defined as:

a½a�ij ¼ ½Yð‘ � d
½a�

ij Þ � dij�I½a�maxði; jÞ, where Θ(−) represents the Heaviside function, δij is the Kro-

necker delta, d½a�ij the DL distance between word i and word j at layer α. Here, the factor

I½a�maxði; jÞ ¼ ½1 � Yðd
½a�

ij � maxðl½a�i ; l
½a�

j Þ� is considered to exclude the cases for which the link

does not reflect similarity, and l
½a�

i and l
½a�

j are the lengths (in characters) of words i and j,
respectively.

Databases

Our study focuses on analyzing orthographic-phonological networks of 12 natural languages

belonging to four language families: Germanic (English, German, Dutch and Swedish),

Romance (French, Spanish, Portuguese and Italian), Slavic (Russian, Ukrainian and Polish)

and Uralic (Hungarian). A corpus of words for each language was constructed using a set of

books available from the Gutenberg project www.gutenberg.org. The written texts were pre-

processed to remove function words, stop words and any mark symbol. The titles of the writ-

ten texts and the resulting corpus are described in https://doi.org/10.6084/m9.figshare.

14668593 [44]. The final corpora contains 50 × 103 words with their corresponding translation

Fig 1. Construction of the multiplex language network. Representative multiplex network for English language and several distance thresholds. Each

layer represents the orthographic (top) and phonological (bottom) networks. Here, nodes are words and there is a link if the Damerau-Levenshtein

distance is smaller than a given threshold (a) ℓ = 1, (b) ℓ = 2 and (c) ℓ = 3. Notice that words in the phonological layer were translated into the

International Phonetic Alphabet and then the DL was calculated. The figures where generated by using the free python library pymnet [45, 46].

https://doi.org/10.1371/journal.pone.0274617.g001
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to the international phonetic alphabet for each language (transliterated by the epitran library

of Python version 3.6.8).

Results

First, prior to the description of the multiplex properties of the OP network, we present

updated results for the calculations of the basic structural properties of the orthographic and

phonological networks (see Methods for details). These results correspond to topological fea-

tures calculated for corpus with 50 × 103 words for each of the 12 languages in our study.

Table 1 shows the results for 4 representative languages of each linguistic family (see support-

ing information online at FigShare [44] for results from all the languages in our study). For a

comparison between the interlayer values of these network metrics, the phonological/ortho-

graphic ratios for the different languages are shown in Fig 2.

Table 1. Results for the basic topological network quantities obtained from the ortographic (GO) and phonological (GP) networks.

Language
Metric

Network GO GP

Threshold ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 1 ℓ = 2 ℓ = 3

English Density 1.38(10−4) 10.32(10−4) 74.58(10−4) 2.62(10−4) 18.05(10−4) 97.81(10−4)

Average degree �k 4.76 47.57 366.41 8.79 81.63 476.86

Nearest neighbor �knn 5.90 66.94 552.60 10.92 113.03 689.39

Clustering �c 0.20 0.28 0.32 0.21 0.31 0.35

Average component size 3.63 18.58 143.69 4.49 19.29 125.42

Maximum modularity Q� 0.80 0.55 0.39 0.80 0.55 0.39

Spanish Density 0.82(10−4) 4.66(10−4) 33.46(10−4) 1.02(10−4) 6.69(10−4) 47.95(10−4)

Average degree �k 2.79 21.19 163.83 3.67 31.17 235.96

Nearest neighbor �knn 3.43 29.65 249.16 4.58 43.77 354.44

Clustering �c 0.14 0.31 0.31 0.14 0.30 0.31

Average component size 2.75 16.00 118.23 3.36 23.26 161.59

Maximum modularity Q� 0.85 0.54 0.38 0.85 0.54 0.38

Russian Density 0.82(10−4) 2.90(10−4) 19.96(10−4) 0.86(10−4) 2.57(10−4) 14.48(10−4)

Average degree �k 2.21 12.61 95.69 2.16 10.77 68.16

Nearest neighbor �knn 2.66 17.26 145.03 2.60 14.60 101.85

Clustering �c 0.22 0.34 0.32 0.21 0.35 0.34

Average component size 2.28 9.25 49.25 2.19 7.14 28.47

Maximum modularity Q� 0.95 0.71 0.49 0.95 0.71 0.49

Hungarian Density 1.08(10−4) 3.26(10−4) 18.19(10−4) 1.13(10−4) 3.28(10−4) 16.40(10−4)

Average degree �k 2.36 12.77 83.07 2.36 12.39 73.43

Nearest neighbor �knn 2.92 17.74 129.16 2.90 16.81 109.21

Clustering �c 0.17 0.31 0.35 0.18 0.30 0.33

Average component size 2.31 9.18 34.88 2.30 8.18 30.56

Maximum modularity Q� 0.94 0.72 0.54 0.94 0.72 0.54

Table notes. Topological metrics of the orthographic network and the phonological network. These results were obtained from networks with 50 × 103 words at each

layer. The average values of the degree (�k), clustering (�c) and nearest neighbor (�knn) are presented. We observe that the density, �k, �c and �knn exhibit an increasing

behavior for the four languages and the two layers, with some similarities such as it occurs for �c in both layers and distances ℓ = 2, 3. For the modularity and the average

cluster size, we observe they exhibit opposite trends, while the modularity decreases as l increases, the average cluster size increases because a larger number of nodes

tends to be connected to a giant component. See extended data online at https://doi.org/10.6084/m9.figshare.14668593 FigShare [44].

https://doi.org/10.1371/journal.pone.0274617.t001
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Fig 2. Ratio (phonological/orthographic) values for some metrics shown in Table 1. The cases of (a) density, (b)

average clustering, and (c) average component size are depicted. Here a value close to 1 indicates that similar metric-

values are obtained either for the ortographic or phonological layer, while a value greater (smaller) than 1 is obtained

when the phonological (orthographic) exceeds the opposite layer. It is observed that French exhibits the highest

asymmetry for density and component size, while for clustering, most languages display values close to 1, except

German with higher values in the orthographic layer.

https://doi.org/10.1371/journal.pone.0274617.g002
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The density ratio (Fig 2a) indicates that the phonological network has more connections

than the orthographic network, confirming that the sound affinity between words is greatest

in languages such as French, and to a lesser extent for English and German. This result also

aligns with previous findings about properties like homophony (when two or more words

sound the same, but carry distinct meanings) in several human languages [33], which favors

the increase of the degrees in the phonetic layer, while the word spelling is circumscribed by

the repetition of the characters. The average clustering coefficient exhibits relatively similar

ratio values for almost all languages (Fig 2b), indicating that the local structure (presence of tri-

angles) is similar whether looking at orthographic or phonological properties. Moreover, as

shown in Fig 2, the average cluster size obtains larger values in the phonological vs. ortho-

graphic layer for French and to a lesser extent for Spanish, while for the rest of the languages

the difference is smaller and even reverses this behavior for the Slavic family and Hungarian.

This reveals that the fragmentation of the layers occurs differently when comparing the lan-

guages, with the phonological layer showing the greatest cohesion in the languages noted

above.

In addition, the determination of the functional form of the degree distribution of nodes

has gained notoriety for establishing the behavior of connectivities and structural analysis of

networks [47]. In the case of the distributions corresponding to the orthographic and phono-

logical layer, it is observed that they correspond to distributions with a broad degree distribu-

tion, also known as fat-tailed distribution [48] (See Fig 3). For each degree distribution in our

study, we performed fits to the data by considering the following distributions: Gumbel, Expo-

nential, Loglogistic, Lognormal, Weibull and Power-law (see Supplementary Material [44]).

To establish the best distribution that fits the data of the phonological and orthographic net-

works, we used the Akaike and Bayesian information criteria [49, 50] (see Methods and Sup-

plementary Material [44] for details). According to statistical tests, most of the degree

distribution networks of each layer (either orthographic or phonological) can be well described

by the Weibull distribution, while for the remaining distributions the best fits correspond to

Fig 3. Degree distributions for phonological and orthographic networks. The cases of English, Spanish, Russian and Hungarian are depicted for

three distance thresholds. The top row shows the distributions of the orthographic layer, while the bottom row shows the phonological layer. Dashed

lines represent a Weibull-type function fit (see Table 4 in Supplementary Material at FigShare [44]). We find that for the majority of languages and both

layers, the distributions display a heavy-tailed behavior. For a better comparison of the data, the insets of each plot show the corresponding degree

distribution for normalized degrees k/k� (horizontal axis), where k� = max(log(k)).

https://doi.org/10.1371/journal.pone.0274617.g003
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the Loglogistic and Lognormal, although the Weibull remains the second best fit in most of

these cases (see Supplementary Material [44]). The corresponding survival cumulative distribu-

tion of the Weibull is represented by a stretched exponential function which have been used to

describe a variety of phenomena [51–56]. We note that this distribution is more skewed than a

single exponential distribution but less skewed than a power law distribution. As shown in

Table 4 of the Supplementary Material [44], the Weibull fitting exponents (â and l̂, for the

orthographic are slightly greater than the corresponding phonological exponent, except for

Spanish and French, indicating that larger connectivities are present in phonological networks,

i. e., a relatively small number of words concentrate similarity with many other words in terms

of phonetic structure. These new values for the scaling exponents improve the description of

the connectivities previously reported in the preliminary analysis [57], and are consistent with

the fact that the distributions are of the heavy-tailed type. To reinforce the choice of the fit to a

Weibull function in most cases, we have performed the likelihood ratio test as described by

Clauset et al. [58] (see Methods for details). The results show that almost all the fits lead to p-val-

ues lower than 10−10, in terms of the probability that they fit better to a Weibull-type function

than to any other of the four distributions considered in our analysis. Similar conditions were

found when considering cases where the selection corresponds to Loglogistic or Lognormal.

Our findings of the behavior of degree distributions are also in general agreement with previous

estimates made for some languages and based on phonological and written similarities [6].

In order to assess the similarities between distributions from different languages we resort

to a robust measure to estimate the distance between them: the Jensen-Shannon distance

(JSD), (see Methods). Fig 4 shows the matrix of JSD values between all pairs of orthographic vs

phonological degree distributions for ℓ = 1, 2, 3. The order of columns and rows has been

determined by their similarities by using an agglomerative hierarchical clustering methodol-

ogy (see Methods for details). The resulting dendograms are shown in top and left sides of the

distance matrices. From the orthographic perspective, it is observed that English is the most

divergent from the rest, while Russian, Hungarian and Ukranian are the least distant to one

Fig 4. Language similarity evaluated by the Jensen-Shannon distance between layers orthographic (horizontal) and phonological (vertical). The

cases of (a) ℓ = 1, (b) ℓ = 2 and (c) ℓ = 3 are depicted. The dendograms have been determined in terms of the similarities between languages by using the

agglomerative hierarquical clustering method. We observe that for ℓ = 1 and ℓ = 2, the dendogram for the orthographic dimension at intermediate

height (dashed line), four groups are identified, G1 (Russian, Hungarian and Ukranian) is the one which exhibits the highest internal similarity (low

JSD); the other three groups correspond to G2 (English), G3 (Dutch, Italian and Swedish), G4 (Spanish, Polish, German and Portuguese). It is

important to notice that in groups G3 and G4, Romance, Germanic and Slavic families are mixed and English is an isolated language. In contrast, for

the phonological dimension, the JSD values at an intermediate cut-off (dashed line), also four groups are again observed, being the English and French

the ones that stands out for a large distance with any other language, while Ukranian, Russian and Hungarian are described by relatively low distances.

For ℓ = 3, we observe that English is the most divergent from the rest in terms of writing, while English and French are the most divergent in terms of

phonological structure.

https://doi.org/10.1371/journal.pone.0274617.g004
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another, specially for ℓ = 1 and ℓ = 2. With respect to the phonetic component, clearly English

and French are the languages with the greatest separation from the rest, while Russian, Hun-

garian and Ukrainian are also the closest languages.

Next we further explore the relationship between some topological features of the ortho-

graphic and phonetic networks. First, the Spearman-rank coefficient is calculated to evaluate

the presence of correlations. Fig 5 shows the results of the calculations of the correlations for

degree, clustering and average nearest neighbor. Positive correlations are observed in all prop-

erties, but some differences are remarkable when comparing individual languages and linguis-

tic families. For degrees (Fig 5a), we observe that English, German and French exhibit a

relatively low correlation values for the threshold value ℓ = 3, while for the rest of languages

and the three threshold values, a higher correlation is present (�0.7). These results indicate

that, for most of the languages in our study, words with high similarity in their orthographic

structure tend to have also more phonological similarity and viceversa, except for the three lan-

guages listed above. For knn (Fig 5b), higher and similar coefficient values for the correlation

are observed for all languages and threshold values ℓ = 1 and ℓ = 2, confirming that by increas-

ing the mean spelling similarity (with other words) of the neighbors of a given word, the pho-

netic similarity of the neighbors also increases. This fact is particularly remarkable for

Romance languages, except French. For clustering (Fig 5c), languages which belong to the Ger-

manic family and French have lower correlations coefficients, revealing that words with a high

fraction of connected (with similar orthographic structure) neighbors tend to have rather a

smaller fraction of connected neighbors in terms of phonological similarity and viceversa.

In other to evaluate the link overlap across orthographic and phonological layers, the nor-

malized local Jaccard’s index was calculated (see Methods). Here, a value close to one would

indicate that words tend to have the same neighbors, either in the orthographic or phonologi-

cal layer, while when it is close to zero, words do not necessarily share the same neighbors. Fig

6a shows the results of the calculations of the Jaccard’s index. The Germanic family (Dutch,

English, German and Swedish) together with French display a relatively low index value, indi-

cating that a low overlapping is present across both layers, while for the Romance, Slavic and

Uralic families, similar values are observed which represent the fact that words tend to have

the same neighbors across layers.

Moreover, we also explored the similarities between both layers from the perspective of

modularity, which measures the property of a given network to be divided into groups [59].

First, we evaluated the ratio between single-layer modularity. Fig 6b show the ratio phonologi-

cal/orthographic for all languages. It is observed that for Dutch and Swedish the dissociation

between modules tends to be markedly high in the phonetic layer compared to the ortho-

graphic one, while the opposite is observed for French, i.e., for French the modules tend to be

not very well defined due to a dense connectivity with different phonetically similar groups.

Next, to get further insight in the identification of differences and common properties between

layers, we explore the similarity between the communities associated to a given modularity Q,

i.e. to which extent words which belong to a certain community in the orthographic layer are

also contained in the corresponding group in the phonological network. We resort to the

index F1�-score (see Methods) to estimate the similarity (in terms of overlapping of communi-

ties) between the two layers. Fig 6c shows that for English and French F1� exhibits lower val-

ues, specially for ℓ = 3, indicating that for these languages words tend to fall into different

communities across layers. In contrast, higher values for F1� are observed for the rest of the

languages, which are consistent with the fact that most words are identified with the same

group regardless of whether they are written or spoken.

Finally, we performed multiple robustness tests to explore the similarities and differences

between layers in terms of two general strategies: directed attacks and random failures [60]. To
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Fig 5. Correlations between some structural properties of the orthographic and phonological networks. We show

the Spearman-rank correlation coefficient for (a) degree, (b) average nearest neighbor degree and (c) average

clustering. For most of the languages, similar levels of positive correlations are observed for the three properties, except

the cases of the Germanic family and French for which the clustering is noticeable lower compared to the rest of

languages.

https://doi.org/10.1371/journal.pone.0274617.g005

PLOS ONE A multiplex analysis of phonological and orthographic networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0274617 September 15, 2022 9 / 19

https://doi.org/10.1371/journal.pone.0274617.g005
https://doi.org/10.1371/journal.pone.0274617


Fig 6. Average Jaccard index (J), modularity ratio and similarity F1�. (a) Jacccad’s index which indicate the extent

of link overlap across layers. (b) Modularity ratio between layers. The value of the phonological layer divided by the

value of the orthographic layer is shown. (c) Score F1� to evaluate the similarity between communities associated to a

given modularity.

https://doi.org/10.1371/journal.pone.0274617.g006
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test whether both layers are affected by the removal of a fraction f of most connected nodes or

selected at random, the mean size of the components and the diameter of the networks were

monitored. Fig 7 presents the results of the calculations for four representative languages (see

extended data online at Figshare [44]). For attacks, we find that for ℓ = 1 and for both layers

(Fig 7a), as we increase the fraction of removed nodes, the normalized diameter tends to

increase until a maximum value and then it decreases. The threshold value (f�) for which the

diameter exhibits a peak changes for each language, while for Slavic languages and Hungarian

is located below 0.1, for Germanic and Romance languages it is located slightly above 0.1 (see

accompanying information online at FigShare [44]). Interestingly, this transition occurs in the

phonological layer systematically for slightly larger values of removed node fractions, except

for the Slavic family and Hungarian, which exhibit transitions at similar values of f. For larger

values of the DL distance, the transition point seems to be located to the right, i.e., a larger

value of f is needed to detect the transition (Fig 7a). For the case of random failures, increasing

fractions of removed nodes reveals a limited effect on the normalized diameter in all languages.

In contrast, when the average component size is monitored in terms of f, important differences

emerge between the layers and languages (Fig 7b). We observe that both layers exhibit a decay-

ing behavior with different rates for attack compared with random failures. For a more direct

comparison between both layers, we computed the average differences between the values of

the normalized component size of the phonetic and the corresponding values of the ortho-

graphic layer for either attack or random failures (Fig 8). French is the language with the larg-

est deviations either positive or negative, i. e., the orthographic layer is more robust under

attacks while for random failures, the phonological layer is more robust. A similar behavior,

Fig 7. Robustness of the networks. Directed attacks consist in removing the most connected nodes and for the failures nodes are removed randomly.

a) Behavior of the normalized diameter in terms of the fraction of removed nodes. b) As above but for normalized component size. Different profiles for

the decay are observed when comparing orthographic and phonological networks from the four languages. The results for failures correspond to the

average from 10 independent realizations.

https://doi.org/10.1371/journal.pone.0274617.g007
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Fig 8. Average component size differences between phonological and orthographic networks. We show the cases of

attacks (filled circles) and failures (open circles) for several thresholds ℓ of the DL distances, a) ℓ = 1, b) ℓ = 2, and c) ℓ =

3. The results for failures correspond to the average from 10 independent realizations.

https://doi.org/10.1371/journal.pone.0274617.g008
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but to a lesser extent, is present in Spanish, while for Germanic languages a greater robustness

is observed from the orthographic perspective. The rest of the languages exhibit small devia-

tions with a slightly higher orthographic robustness either for failures or attacks.

Discussion and conclusion

We have shown that orthographic and phonological layers exhibit similarities and differences

across several languages from four linguistic families. Interestingly, our network analysis based

on a wide variety of measures showed that natural languages reveal different levels of proxim-

ity when viewed from the written or spoken perspective. Our findings significantly extend pre-

vious studies based on small word corpora and limited to a few languages [32]. In previous

works, models of inter-word similarity networks have been approached based only on purely

orthographic or phonological properties, showing that there are changes in network character-

istics when different languages are compared. In our approach, the different metrics are com-

pared in parallel and the differences or asymmetries are highlighted across languages. More

importantly, the results about a higher density in the phonological layer for languages like

French and English are consistent with linguistic reports which point out the presence of

homophony and more opacity in these languages [31, 33, 36, 37].

A remarkable fact, in the context of our study, is that when languages were grouped based

on the distance between connectivity distributions, the categorizations did not necessarily cor-

respond to the classification by language family, with cases such as English and French having

a greater divergence (specially phonetic) with respect to the rest of the languages. Although

our approach is based on a simple string-distance metric without incorporating other elements

such as syllables, morphemes, etc., the similarities and differences suggest that additional

quantitative evaluations, which can incorporate these additional information, can be per-

formed across several natural languages. The results we report here are in general agreement

with studies focused either on phonological or orthographic networks, and reinforce the idea

of common general organization in natural languages. In addition, the accuracy of the network

metrics and their changes across layers to determine similarities and differences make it

appropriate to benchmark with other languages, and eventually apply this approach on a scale

beyond the word level. The present study can be naturally extended with the incorporation of

additional layers containing semantic information, polarity information, etc., to explore addi-

tional properties with potential use in contexts of text classification, automatic speech recogni-

tion systems and pattern identification in natural languages.

Our study has some limitations, the most notorious of which is that the similarity of pho-

netic structure based on the Damerau- Levenhstein distance tends to be overestimated because

the discretization of sounds leads to a loss of structure [8]. Also, the sample size may impact

the estimation of some parameters of the multiplex network.

We conclude that the multiplex analysis reveals additional features, which have not been

evaluated by other methods, and provides a way to obtain important information about the

interaction between spoken and written language. In addition, this study offers an alternative

multiplex network-based methodology for language analysis and can be easily extended to

other languages to contribute to the understanding of language complexity.

Methods

Damerau-Levenshtein distance

The distance similarity between two strings A and B can be defined as the minimum number

of edit operations needed to transform A into B. These operations are: (1) substitute a charac-

ter in A to a different character, (2) insert a character into A, (3) delete a character of A, and
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(4) transpose two adjacent characters of A. The Damerau-Levenshtein (DL) distance is then

defined as the length of the optimal edit sequence [27–29]. In our analysis, we adopt the DL

distance ℓ as a threshold value to define a link between two words.

Network metrics

Our analysis is focused on the basic topological characteristics of individual networks, and

then to proceed to investigate similarities and differences of the two layers. We listed the sin-

gle-layer-network measures (of a network with N nodes) in a multiplex network that are evalu-

ated [61, 62]:

• Density. The density of a layer α, ρ[α], is given as:

r½a� ¼
2m½a�

NðN � 1Þ
ð1Þ

wherem[α] is the number of actual connections within the layer α.

• Degree distribution. The degree k½a�i of a node i is the number of links outgoing (or incoming)

to that node,

k½a�i ¼
XN

j¼1

a½a�ij : ð2Þ

The degree distribution for layer α is then defined as the fraction of nodes in the network

with degree k,

P½a�ðkÞ ¼
n½a�k
N
; ð3Þ

where n½a�k is the number of nodes with degree k.

• Clustering Coefficient. Measures the degree of transitivity in connectivity among the nearest

neighbors of a node i within the layer α. C½a�i is calculated as [61],

C½a�i ¼
2E½a�i

k½a�i ðk
½a�

i � 1Þ
; ð4Þ

where E½a�i is the number of links between the k½a�i neighbors of the node i within the layer α.

• Average Nearest-Neighbor Degree. Measures the average of the neighbors of a node [61].

The �k ½a�nn;i is calculated as:

�k ½a�nn;i ¼
1

k½a�i

XN

j¼1

a½a�ij k
½a�

j : ð5Þ

• Modularity. Given c½a�i the community associated to the node i within the layer α, where

c½a�i 2 f1; 2; . . . ; Pg, with P a natural number. The modularity, Q[α] of a given layer α is given

by [62]:

Q½a� ¼
1

2m½a�
X

ij

a½a�ij �
k½a�i k

½a�

j

2m½a�

 !

dðc½a�i ; c
½a�

j Þ; ð6Þ
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where δ is the Kronecker delta. We use the Louvain algorithm [63] to perform a greedy opti-

mization of the modularity.

Fitting of degree distributions

To determine functional forms of the degree distributions, we have resorted to procedures

based on two indicators: the Akaike information criterion (AIC) [50, 64] and the Bayesian

information criterion (BIC) [49, 50]. These criteria represent two of the most widely used fam-

ilies of model selection indicators for identifying the “best model”. Details of our procedure for

discriminating the significance of adjustments can be found in the Supplementary Material

[44]. Besides, we evaluated the goodness-of-fit by calculating the p-values of the likelihood

ratio test introduced by Clauset et al. [58, 65] to compare the fits, thereby confirming that in

most the cases, the observed data fit better to a Weibull distribution than to any of the other

four distributions considered in our analysis. Similarly, when the best fit corresponded to

Loglogistic or Lognormal, the p-values were very small (p< 10−10)

Jensen-Shannon distance and agglomerative clustering

Given two distributions P and Q, the JSD is defined as JSDðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½DKLðPjjRÞ þ DKLðQjjRÞ�

p
,

where R = (P+ Q)/2 and DKL is the Kullback-Leibler divergence. For a better description of the

distances between distributions, an agglomerative hierarchical clustering algorithm was used

[66]. Briefly, the clustering method consists in recursively cluster two items at a time. At the

beginning, each item defines its own cluster and two most similar items are then clustered.

Next, the process is repeated for most similar items or clusters until forming a single cluster.

In our case, the JSD was used as a similarity between two languages either from an ortho-

graphic or phonetic perspective.

Communities and F1-score

For multiplex networks we adjust the F1-score [67] defined in Ref. [68] as follows. Given two

collections of communities Sa
and Sb

of layers α and β, respectively. We define the F1�-score

as:

F1�ðSa
;Sb
Þ ¼

1

2
ðF1aðS

a
;Sb
Þ þ F1bðS

b
;Sa
ÞÞ;

where F1 represents the average F1-score of a reconstructed community with respect to the

best match in the opposite layer [68]. It is important to notice that F1α and F1β are well

defined, since the node sets are the same in both layers (V[α] = V[β]). The F1�-score between

two collections of communities can be interpreted as the degree of similarity between them.

For the Louvain method [63] and F1-score implementation, we use NetworKit [69].

Jaccard index

For each node i, the local overlap [62] between two layers α and β is defined as the total num-

ber of nodes such that they are neighbors of node i in both layer α and layer β:

o½a;b�i ¼
XN

j¼1

a½a�ij a
½b�

ij :

The local overlap can be normalized to have a bounded measure which indicates the similarity

PLOS ONE A multiplex analysis of phonological and orthographic networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0274617 September 15, 2022 15 / 19

https://doi.org/10.1371/journal.pone.0274617


of neighbors of nodes across the layers, obtaining the Jaccard index:

J ½a;b�i ¼
o½a;b�i

PN

j¼1

ða½a�ij þ a
½b�

ij � a
½a�

ij a
½b�

ij Þ

:

The average Jaccard index is constructed by simply considering the total number of nodes in

the network.
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35. Schäfer M. The semantic transparency of English compound nouns. Language Science Press; 2018.
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Available from: https://doi.org/10.6084/m9.figshare.14668593.
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