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With the recent approvals for the application of monoclonal antibodies that target the

well-characterized immune checkpoints, immune therapy shows great potential against

both solid and hematologic tumors. The use of these therapeutic monoclonal antibodies

elicits inspiring clinical results with durable objective responses and improvements in

overall survival. Agents targeting programmed cell death protein 1 (PD-1; also known as

PDCD1) and its ligand (PD-L1) achieve a great success in immune checkpoints therapy.

However, themajority of patients fail to respond to PD-1/PD-L1 axis inhibitors. Expression

of PD-L1 on the membrane of tumor and immune cells has been shown to be associated

with enhanced objective response rates to PD-1/PD-L1 inhibition. Thus, an improved

understanding of how PD-L1 expression is regulated will enable us to better define its

role as a predictive marker. In this review, we summarize recent findings in the regulation

of PD-L1 expression.
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INTRODUCTION

With rapid development of immunotherapy for cancer treatment in decades, immune checkpoint
therapy that mediates tumor cell death through the reactivated immune system has become the
most attractive strategy for cancer therapy due to their impressive therapeutic efficacy. Immune
checkpoints, a cluster of immune inhibitory receptors and their reciprocal ligands that negatively
regulate the immune system function, are important for avoiding autoimmunity and for protecting
collateral tissue from damage under physiological conditions. On the other hand, cancer cells could
alsomake use of immune checkpoints to inhibit the activity of T cells, leading to the immune escape
of tumors.

The role of immune checkpoints in the suppression of T cell activity has led to the development
of immune checkpoint inhibitors in the treatment of cancer. Among the immune checkpoints,
programmed cell death protein 1 (PD-1) and its ligand PD-L1 have stood out because of their
proven value as therapeutic targets in a large number of malignancies. Inhibition of the PD-
1/PD-L1 axis contributes to important clinical advances in cancer therapy, including melanoma
(1, 2), non-small cell lung cancer (NSCLC) (3–5), renal cell carcinoma (RCC) (6), Hodgkin’s
lymphoma (7, 8), bladder cancer (9, 10), head and neck squamous cell carcinoma (HNSCC)
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(11–13), Merkel-cell carcinoma (14), urothelial carcinoma (15),
and microsatellite instable-high (MSI-H) or mismatch repair-
deficient (dMMR) solid tumors (16–18). However, despite the
considerable improvement in patient outcome that has been
achieved with PD-1/PD-L1 blockade, the durable objective
responses to the checkpoint therapeutics are various among
different tumor types and limited in only a minority of patients.
Intra-tumoral PD-L1 expression is generally associated with
a better response to PD-1/PD-L1 blockade in patients across
multiple cancer types (3, 19–21). Therefore, in order to predict
the efficiency and optimize the anti-PD-1/PD-L1 therapy alone or
in combination, improving the understanding of the regulatory
mechanisms of PD-L1 in cancer should be of utmost importance
for not only identifying its role as biomarker but also for
designing the synergistic treatment combinations. Here, we focus
on the current knowledge of PD-L1 regulation.

ANTI-PD-1/PD-L1 INHIBITORS AS
IMMUNE CHECKPOINT THERAPY

Although the immune system of our body should eliminate
cancer cells as “foreign,” the interactions between the immune
system and cancer cells are complex. A natural balance called
tolerance may be reached between immune response and
cancer, where cancer cells are seen as “self.” Furthermore,
tumor cells may evade immune destruction by suppressing
immunity through multiple mechanisms, thus called immune
escape. T cell immunity, especially activation of cytotoxic T
lymphocyte (CTL) determines the ultimate amplitude and
quality of antitumor immune response. Signals from T cell
receptor, which recognizes antigen along with the major
histocompatibility complex (also known as human leukocyte
antigen) presented on the surface of antigen-presenting
cell (APC), and additional co-stimulatory signals provided
by the engagement of CD28 on the T cell surface with B7
molecules (CD80 and CD86) on the APC, are required for T
cell activation (22, 23). Activated T cells attack and eventually
destroy tumor cells that express tumor-specific antigens
as “foreign.”

In addition to initiating proliferation and functional
differentiation, T cell activation also induces the stimulation of
inhibitory pathways (also known as checkpoint pathways), which
eventually attenuate and terminate T cell responses (24–26).
Many types of solid tumors generate an immunosuppressive
microenvironment to avoid the destiny of being lysed by CTL
through the inhibitory ligand called PD-L1 that is expressed
on the surface of tumor cells (27, 28). PD-1 (CD279), which
belongs to the CD28 family, is encoded by the PDCD1 gene
located on chromosome 2q37.3 and is mainly expressed on
activated T cells (29). It has two ligands, PD-L1 (CD274,
B7-H1) and PD-L2 (CD273, B7-DC), with different expression
patterns, which are, respectively, encoded by the CD274 and
PDCD1LG2 genes located on chromosome 9p24.1. PD-L1 is
expressed abundantly on immune cells (e.g., T cells, B cells,
dendritic cells (DCs), and macrophages) and parenchymal
tissue cells (mesenchymal stem cells, epithelial, endothelial cells,

and brown adipocytes), as well as tumor cells. The expression
of PD-L2 is considered to be mainly restricted to activated
DCs and macrophages (30–33). Studies have shown that PD-
1/PD-L1 axis can be hijacked by tumors as a co-inhibitory
pathway to compromise the immune response toward cancer
via blocking proliferation, induction of apoptosis by CTL,
and promotion of regulatory T cell differentiation, which
eventually induces an immunosuppressive microenvironment
in tumor (25, 26). Considering that PD-L1 overexpression is a
situation that is commonly seen in tumors and usually confers
a poor prognosis, the therapeutic intervention targeting this
co-inhibitory axis is substantially enticing to researchers and
patients (34–37). Antibodies blocking the interaction between
PD-1 and PD-L1 by either targeting PD-1 (pembrolizumab,
nivolumab, and cemiplimab) or PD-L1 (atezolizumab, avelumab,
and durvalumab) (Table 1) both induce durable objective
responses in patients with melanoma (1, 2), NSCLC (3–5)
and RCC (6), and other malignancies (7–15). Although the
immune checkpoint therapy targeting either PD-1 or PD-L1
has been usually recognized as the same subclass in the field of
tumor immunotherapy at present, PD-1 and PD-L1 blockades
may differ in the mechanism of action due to the complicated
subtle interactions among the immune checkpoint system.
For example, in addition to PD-1, studies have reported that
co-stimulatory molecule CD80 (B7-1) can also serve as a
receptor for PD-L1, and the binding affinity of CD80 to PD-L1 is
comparable to its affinity for CD28 (38). More importantly, the
binding of PD-L1 to CD80 functionally inhibits the proliferation
of T cells and promotes the apoptosis of activated CD8+ T
cells (38, 39). Similarly, in addition to PD-L1, PD-1 also binds
to its ligand PD-L2, which is expressed on solid tumor cells
and hematological malignancies (40–45) and bears an impact
on the anti-PD-1 therapy (41, 42, 46). Furthermore, PD-L2
has even been characterized as a novel potential therapeutic
target for cancer treatment (45). Therefore, more evidence is
needed to underpin the unique characteristics of PD-1 and
PD-L1 inhibitors in order to achieve a better understanding of
their differences.

PD-L1 REGULATION IN CANCER

Expression of PD-L1 is complicated and various in different
tumor types. It can be regulated by various intrinsic and
extrinsic signals, such as chromosomal alterations, epigenetic
modifications, aberrant oncogenic and tumor suppressor signals,
inflammatory cytokines, and other factors at the genetic,
transcriptional, post-transcriptional, translational, and post-
translational levels.

Genetic Basis of PD-L1 Expression in
Cancer
The genetic aberrations of the chromosome 9p24.1, on which
CD274 resides, represent a key mechanism affecting PD-L1
expression. Copy number alterations (CNAs) in chromosome
9p involving PD-L1 were recently detected in 22 cancer types
(47). It revealed that gains of copy numbers in chromosome
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TABLE 1 | Characteristics of current FDA-approved PD-1/PD-L1 checkpoint blockades.

Drug Brand

name

Target Company Time

approved

FDA approved indications

Pembrolizumab Keytruda PD-1 Merck 09/04/2014

12/18/2015

08/05/2016

03/15/2017

05/18/2017

05/10/2017

05/23/2017

09/22/2017

06/12/2018

06/13/2018

Metastatic NSCLC

Unresectable or metastatic melanoma

Recurrent of metastatic HNSCC

Refractory cHL

Advanced or metastatic urothelial carcinoma

Untreated metastatic non-squamous NSCLC (combined with

pemetrexed and carboplatin)

Unresectable or metastatic MSI-H or dMMR solid tumors

Advanced gastric cancer

Recurrent or metastatic cervical cancer

Refractory PMBCL

Nivolumab Opdivo PD-1 Bristo-Myers

Squibb

12/22/2014

03/04/2015

10/09/2015

11/23/2015

05/17/2016

11/10/2016

02/02/2017

08/01/2017

09/22/2017

12/20/2017

07/10/2018

Unresectable or metastatic melanoma

Metastatic squamous NSCLC

Metastatic NSCLC

Untreated advanced renal cell carcinoma

Relapsed cHL

Recurrent or metastatic HNSCC

Advanced or metastatic urothelial carcinoma

MSI-H or dMMR metastatic CRC

HCC previously treated with sorafenib

Resectable or metastatic melanoma

Advanced RCC (Combined with ipilimumab)

Cemiplimab Libtayo PD-1 Sanofi/Regeneron 09/28/2018 Metastatic CSCC

Atezolizumab Tecentriq PD-L1 Genetech/Roche 05/18/2016

10/18/2016

Advanced or metastatic urothelial carcinoma

Metastatic NSCLC

Avelumab Bavencio PD-L1 EMD Serono 03/23/2017

05/09/2017

Metastatic MCC

Advanced or metastatic urothelial carcinoma

Durvalumab Imfinzi PD-L1 AstraZeneca 05/01/2017

02/16/2018

Advanced or metastatic urothelial carcinoma (UK Limited)

Unresectable stage III NSCLC

FDA, US Food and Drug Administration; PD-1, programmed death protein 1; PD-L1, programmed death ligand-1; NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous

cell carcinomas; cHL, classical Hodgkin lymphoma; MSI-H, microsatellite instability-high; dMMR, mismatch repair-deficient; PMBCL, primary mediastinal large B-cell lymphoma; CRC,

colorectal cancer; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; CSCC, cutaneous squamous cell carcinoma; MCC, Merkel cell carcinoma.

9p occur frequently in bladder, breast, cervical, colorectal, head
and neck, and ovarian carcinomas, but are a rare event in
pancreatic, renal cell, and papillary thyroid carcinoma. On the
other hand, PD-L1 gene deletions were found to bemore frequent
than PD-L1 gains in cancers, especially in melanoma and
NSCLC (>50%). Generally, overexpression of PD-L1 frequently
occurs in tumors coupled with copy number gains, especially
amplification of the PD-L1 gene. Other studies also revealed
high CNAs in classical Hodgkin lymphoma (cHL) and primary
mediastinal B-cell lymphoma (48, 49). A recent study showed
that the CNAs of PD-L1 are also prevalent in soft-tissue
sarcomas (21.1%), with higher frequency in myxofibrosarcoma
(35%) and undifferentiated pleomorphic sarcoma (34%) (50). In
contrast, absence or low frequency of CNAs has been reported
in lung cancer (51–53) and diffuse large B-cell lymphoma
(DLBCL) (54).

In addition to the CNAs, a previous study confirmed that
a somatic mutation at a naturally occurring polymorphism
locus, rs4143815, in the 3′ untranslated region (3′-UTR)
of PD-L1 gene is correlated with elevated PD-L1 protein
expression in gastric cancer (55, 56). Another polymorphism

in the promoter region of PD-L1 was verified to upregulate
PD-L1 mRNA and protein expression by offering a binding
site for transcriptional factor SP1 in gastric cancer (57). The
disruption of PD-L1 3′-UTR was further confirmed to invariably
lead to a marked elevation of aberrant PD-L1 transcripts.
Using whole-genome sequencing, Kataoka et al. (58) identified
a novel genetic mechanism termed structural variants for
PD-L1 overexpression in adult T cell leukemia/lymphoma
(ATL), DLBCL, and gastric adenocarcinoma. These structural
variants invariably generate PD-L1 transcripts with aberrant
3′-UTR, leading to a delayed clearance of the transcripts
and elevated PD-L1 expression. Furthermore, expression
of 3′-UTR-truncated PD-L1 transcripts in EG7-OVA cells
contributes to tumor immune evasion in a mouse model,
which is effectively inhibited by PD-1/PD-L1 blockade.
Kogure and Kataoka (59) also reported that structural variants
induce PD-L1 overexpression in ATL. More recently, a
study in gastric cancer has revealed that PD-L1 rs2297136
AA+AG genotype, a new polymorphism in 3′-UTR of PD-
L1, is also correlated with the positive protein expression of
PD-L1 (60).
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Epigenetic Regulation of PD-L1 Expression
in Cancer
DNA methylation and post-translational histone modifications,
the most foundational epigenetic events, are central mechanisms
in cancer development and progression (61, 62). Both of
them contribute to immunosuppressive environment within
tumors by manipulating the expression of genes associated
with the process of antigen presentation, immune evasion,
and T-cell exhaustion (63, 64). Hypomethylating agents and
histone deacetylase inhibitors enhance the processing and
presentation of tumor-associated antigens and promote the
expression of additional immune-related genes, chemokines, and
co-stimulatory molecules (65, 66), hence reversing the immune
suppression. It suggests that the efficacy of epigenetic agents
is dependent, at least in part, on adaptive immune responses.
Interestingly, recent studies on the role of epigenetics in
immune evasion have identified a role for epigenetic modulators
in the upregulation of immune checkpoint. Yang et al. (67)
reported that application of hypomethylating agents elevates
PD-L1, which is responsible for the resistance of patients
to the original treatment. As a corollary, a blockade of the
PD-1/PD-L1 axis may be an option to help overcome the
resistance. On the other hand, sufficient expression of PD-L1
within tumor microenvironment is the basis for anti-PD-1/PD-
L1 therapy. Deficiency of PD-L1 could contribute to “target
missing” resistance (68). Treatments leading to the upregulation
of PD-L1 within a tumor may sensitize PD-1/PD-L1 checkpoint
therapy. Therefore, it is possible that combined application of
epigenetic therapies with PD-1/PD-L1 inhibitors will exhibit a
synergy antitumor effect through the altered expression of PD-
L1, as well as the host immune response.

DNA Methylation
Recent studies suggested that the DNA methylation status of the
PD-L1 promoter can serve as a prognostic biomarker in various
malignancies (69–72). There are robust data to support that
DNA methylation plays a fundamental role within the dynamic
expression of the PD-L1. In melanoma, both the changes in
global methylation and the DNA methylation of CpG loci in
the PD-L1 promoter are involved in regulating the expression
of PD-L1 (72, 73). Consistently, hypomethylation of the PD-
L1 promoter was found to be inversely correlated with both
mRNA and protein expression in HNSCC (74). In glioma,
the cancer genome atlas (TCGA) data showed that cytosolic
NADP+-dependent isocitrate dehydrogenase 1 (IDH1) mutation
tumors represent an attenuated level of PD-L1 expression
accompanied by higher PD-L1 gene promoter methylation
(75, 76). Supportively, the addition of 2-hydroxyglutarate, key
production of IDH1 mutation, transiently showed efficacy to
elevate the DNA methylation in CpG site within PD-L1 and
diminish the expression of PD-L1 (76). Moreover, it was reported
that transforming growth factor β1 (TGFβ1) induces decreased
expression of DNA methyltransferase 1 (DNMT1) and PD-L1
promoter demethylation, which subsequently results in PD-
L1 overexpression in lung cancer cells undergoing epithelial-
mesenchymal transition (EMT) (77). These results spark
significant interest in detecting the effect of hypomethylating

agents on PD-L1 expression and the combination efficiency
of this epigenetic therapy and anti-PD-1/PD-L1 inhibitors. As
expected, decitabine, which induces the inhibition of global
methylation, upregulates the transcript and protein of PD-
L1 in NSCLC cell lines (78). In a study in myelodysplastic
syndrome, a high level of PD-L1, PD-L2, PD-1 and cytotoxic
T lymphocyte associated antigen 4 (CTLA4) expression was
observed in patients treated with decitabine (67). Furthermore,
the supplement of decitabine to anti-PD-1 therapy improves the
efficiency of antitumor immunity (79, 80). Of note, anti-PD-1
therapy enhanced PD-L1 promoter methylation was identified to
be involved in the resistance to immune checkpoint inhibitor in
NSCLC (80).

Histone Modifications
Histone deacetylases (HDACs) have pleiotropic efficiency in
regulating immune response (81). HDAC inhibitors have been
evaluated as anticancer drugs over the past two decades (82).
The role of HDACs in immunotherapies has recently been
investigated (65, 83–86). In melanoma, inhibition of HDAC8, a
class I histone deacetylase, was proven to elevate the expression
of PD-L1 via increasing the activity of a fragment of the PD-
L1 promoter (87). Another study also demonstrated the durable
upregulation effect of three class I histone deacetylase inhibitors
on PD-L1 due to enhanced histone acetylation of the PD-L1 gene
in melanoma (88). In contrast, Lienlaf et al. (89) have described
a negative effect of HDAC6 (a class IIb histone deacetylase)
inhibition or depletion on PD-L1 expression, which is mediated
by activated signal transducer and activator of transcription 3
(STAT3). Both HDAC6 and STAT3 are recruited to the PD-
L1 gene promoter in melanoma. Consistently, in a study in
multiple myeloma, ACY241 (an HDAC6 selective inhibitor)
significantly decreases PD-L1 expression on CD138+ myeloma
cells in patients (90). In a recent study by Booth et al. (86),
two pan-HDAC inhibitors were found to decrease the expression
of PD-L1 both in vitro and in vivo. The authors argued that
knockdown of HDAC1 and HDAC2, members of the class I
histone deacetylase family, contributes to the reduced expression
of PD-L1, but not HDAC6 and HDAC10, which belong to the
class IIb histone deacetylase family (86). Discrepancy of HDACs
inhibitors in regulating PD-L1 expression was also reported in
lung cancer (65, 83, 91).

In addition to HDACs, in a screening for epigenetic
mechanisms that regulate PD-L1 expression in pancreatic
cancer, histone methylation (H3K4me3) is evident to be
enriched in the proximal CD274 promoter region both in
vitro and in vivo. Chromatin immunoprecipitation (ChIP)
analysis revealed that MLL1, one of the H3K4 methylation-
specific histone methyltransferases, is directly associated with the
CD274 promoter region. SilencingMLL1 expression dramatically
decreases the H3K4me3 level in the CD274 promoter region,
leading to a decreased PD-L1 mRNA in both human and mouse
pancreatic cancer cells (92).

Whilst the regulation of DNA methylation and histone
modifications in PD-L1 expression has been explored, a novel
epigenetic drug, JQ1, a selective bromodomain inhibitor (BETi),
was corroborated to suppress PD-L1 expression in ovarian cancer
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to restore cytotoxic T cell responses (93). Another study reported
by Hogg et al. (94), corroborated that both constitutive and
inducible expression of PD-L1 can be directly repressed at
transcriptional level in different tumor cell lines and primary
patient samples via decreasing the occupancy of bromodomain
and extraterminal protein at theCD274 locus. Downregulation of
PD-L1 plays a crucial role in JQ1 mediated anti-cancer therapy
since ectopic expression of PD-L1 blunted the therapeutic
effect of JQ1. The role of BET inhibition in modulating PD-
L1 expression was further confirmed by Cioffi et al. revealing
that OTX015 (a BETi) diminishes the expression of CD274
via upregulating miR-93 and miR-106b (95). Furthermore, JQ1
in combination with anti-PD-1 antibody enhances antitumor
responses in mice bearing Myc-driven lymphomas and KRAS-
driven NSCLC (94).

Non-coding RNAs
MicroRNAs (miRs) are a group of small non-coding RNAs
known to regulate target genes at the post-transcriptional level
(96). Adding to the growing body of evidence, the role of miRs
in regulating PD-L1 expression via several mechanisms has been
demonstrated. In general, most miRs are negatively correlated
with PD-L1 through inducing the degradation or translational
repression of PD-L1 mRNA by direct binding to PD-L1 3′-
UTR, whereas several miRs are found to be positively connected
with PD-L1 expression. For example, MiR-3127-5p and miR-
135 are associated with elevated levels of PD-L1 in NSCLC by
targeting STAT3 and TRIM16/JAK/STAT, respectively (97, 98).
MiR-20b, miR-21, miR-130b, and miR-142-5P induce PD-L1
overexpression via inhibiting phosphatase and tensin homolog
(PTEN) (99, 100). The detailed information for miR-mediated
PD-L1 regulation is delineated in Table 2 (95, 97–128).

Moreover, the profiled miRs in serum from NSCLC patients
uncover seven miRs (miR-215-5p, miR-411-3p, miR- 493-5p,
miR-494-3p, miR-495-3p, miR-548j-5p, miR-93-3p) strongly
associated with overall survival after treatment with the immune
checkpoint inhibitor, nivolumab (129). In addition, a study in
CRC highlights the role of circular RNA in accommodating PD-
L1 expression, revealing that circular RNA has_circ_0020397
promotes the expression of PD-L1 by inhibiting miR-138 activity
(130). More importantly, a very recent study has identified
miR-146a as a comparable immune checkpoint molecule in
melanoma, and amiR-146a antagomiR combined with anti-PD-1
enhances the anti-tumor effect of anti-PD-1 therapy, suggesting
that miRNAs may be a novel combination target for immune
checkpoint therapy (131).

Extrinsic Control of PD-L1 Expression
Virus Infection and Inflammatory Signaling
Although a generalized conclusion for PD-L1 expression in
virus infection remains uncertain as comparable levels of PD-L1
were detected in individuals with or without infection (74, 132–
134), escalated PD-L1 levels were shown to be connected with
specific viruses, such as Epstein-Barr virus (EBV) (135–139),
hepatitis B viral (HBV) (114, 140, 141), hepatitis C virus (HCV)
(142–146), human immunodeficiency virus (HIV) (132, 147–
150), human papilloma virus (HPV) (135, 151–155), Merkel

cell polyomavirus (MCPyV) (156), bovine leukemia virus (BLV)
(157), and Kaposi sarcoma-associated herpes virus (KSHV)
(158). The pathobiological mechanisms by which viruses trigger
the expression of PD-L1 were revealed. Pathogen associated
molecular patterns (PAMPs) stemming from a pathogen (for
example virus, bacteria, and fungi) activate toll like receptors
(TLRs) to initiate the immune response and protect the host
against pathogens infection. TLR agonists-induced synthesis of
PD-L1 has been observed in a variety of cell types (159–164).
PAMPs from EBV was reported to induce PD-L1 upregulation
in a TLR-dependent manner (136, 165, 166). Similarly, HIV
stimulates PD-L1 expression on APC via TLR signaling or in
an indirect manner by increasing the production of cytokines
(149, 150). Several downstream signaling pathways activated by
virus infection, such as JAK/STAT, MAPK, and NF-κB signaling,
are involved in both TLR agonists- and virus infection-mediated
regulation of PD-L1 (114, 137, 138, 159, 161, 166), further
supporting the notion that TLR signaling serves as an effector for
the induction of PD-L1 upon virus infection. TLRs-independent
induction of PD-L1 in virus infection was also uncovered (114,
139, 148). For an example, amplification of PD-L1 gene, a major
cause of PD-L1 overexpression, was observed in EBV-positive
gastric tumors (139).

Persistent infections of pathogens lead to chronic
inflammation via promoting the secretion of inflammatory
cytokines. Pro-inflammatory molecules or cytokines, such as
IFN-γ, IFN-α, IFN-β, TNF-α, EGF, IL-17, IL-4, and IL-27 have
been reported to induce PD-L1 expression in tumors (167–175).
Among them, IFN-γ is the most potent inducer of PD-L1.
Upregulation of PD-L1 by IFN-γ has been extensively described
in diverse cell types (31, 168, 176–179). PD-L1, largely induced
locally at the tumor by tumor-infiltrating lymphocytes (TILs)-
derived IFN-γ, which are termed adaptive immune resistant, was
first reported in melanomas by Taube et al. (180) and Abiko et al.
(181). JAK/STAT and NF-κB pathways are the main downstream
signals in the inflammation for IFN-γ-induced PD-L1 expression
(170, 182–184). Another transcriptional mechanism is used for
controlling the expression of PD-L1 by IFN-γ in melanoma
and medulloblastoma, in which activation of JAK/STAT signal
increases the expression of a series of transcription factors named
the interferon-responsive factors (IRFs) (182, 185). Likewise,
TNF-α, another pro-inflammatory cytokine, upregulates PD-L1
expression via TNF-α-NF-κB pathway (167, 170, 172, 186).
Furthermore, TNF-α was reported to synergistically act with
IFN-γ to induce PD-L1 expression at both mRNA and protein
levels and enhance the adaptive immune resistance mediated
by IFN-γ-induced PD-L1 in hepatocellular carcinoma cells via
upregulating the expression of IFN-γ receptors (187).

Transforming Growth Factor β (TGF-β)
TGF-β, which is generally considered as an anti-inflammatory
cytokine, plays a paradox role in cancer. High levels of
TGF-β render tumor cells capable of escaping immune
surveillance (188–190). It was recently reported that TGF-β
elevated PD-L1 expression. In lung cancer, TGF-β-mediated
EMT facilitates PD-L1 expression through an epigenetic
mechanism (77, 191, 192). Consistently, TGF-β-induced EMT
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TABLE 2 | microRNAs regulate PD-L1 expression.

miR Cell types Regulation of PD-L1 Targets References

miR-106b PDAC − − (95)

miR-130b CRC + PTEN (99)

miR-135 NSCLC + TRIM16/JAK/STAT (98)

miR-138-5p CRC − 3′-UTR (101)

miR-140 NSCLC − 3′-UTR (102)

miR-140 Osteosarcoma − 3′-UTR (103)

miR-140 Cervical cancer − 3′-UTR (104)

miR-142 Cervical cancer − 3′-UTR (104)

miR-142-3p Macrophage, DC + − (105)

miR-142-5p PDAC − 3′-UTR (106)

miR-142-5p NSCLC − PTEN/PI3K/Akt (100)

miR-15a MPM − 3′-UTR (107)

miR-155 HDLEC & DF − 3′-UTR (108)

miR-16 MPM − 3′-UTR (107)

miR-16 Macrophage − 3′-UTR (109)

miR-17-5p Melanoma − 3′-UTR (110)

miR-18a Cervical cancer + PI3K/AKT

MEK/ERK

Wnt/β-catenin/STAT3

P53/miR-34a

(104)

miR-193a-3p MPM − 3′-UTR (107)

miR-195 DLBCL − 3′-UTR (111)

miR-197 OSCC − − (112)

miR-197 NSCLC − STAT3 (113)

miR-20b CRC + PTEN (99)

miR-200c HCC − 3′-UTR (114)

miR-200c AML − 3′-UTR (115)

miR-200c NSCLC − 3′-UTR (116)

miR-21 Macrophage − JAK2/STAT1 (117)

miR-21 CRC + PTEN (99)

miR-217 Laryngeal cancer − Translation (118)

miR-24 Macrophage, DC + − (105)

miR-30b Macrophage, DC + − (105)

miR-3127-5p NSCLC + STAT3 (97)

miR-33a LA − 3′-UTR (119)

miR-34 NSCLC − 3′-UTR (120)

miR-34a Glioma − 3′-UTR (121)

miR-34a AML − 3′-UTR (115, 122)

miR-340 Cervical cancer − 3′-UTR (104)

miR-375 HNSCC − JAK2/STAT1 (123)

miR-383 Cervical cancer − 3′-UTR (104)

miR-424(322) Ovarian − 3′-UTR (124)

miR-513 Cholangiocytes − 3′-UTR (125, 126)

miR-513a-5p Retinoblastoma − 3′-UTR (127)

miR-574-3p Chordoma − − (128)

miR-93 PDAC − − (101)

−, negative;+, positive; PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; DC, dendritic cell; MPM,malignant pleural mesothelioma;

HDLEC, human dermal lymphatic endothelial cell; DF, dermal fibroblasts; DLBCL, diffuse large B-cell lymphoma; OSCC, oral squamous cell carcinoma; HCC, hepatocellular carcinoma;

AML, acute myeloid leukemia; LA, lung adenocarcinoma; HNSCC, head and neck squamous cell carcinomas; PTEN, phosphatase and tensin homolog; TRIM16, tripartite-motif 16;

JAK, Janus kinase; STAT, signal transducer and activator of transcription; 3′-UTR, 3′ untranslated region; PI3K, phosphatidylinositol 3 kinase; AKT, protein kinase B;MEK, MAPK/ERK

kinase; ERK, extracellular regulated protein kinases; P53, protein 53.
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was recently revealed to promote PD-L1 expression by post-
translational modification. EMT transcriptionally upregulates N-
glycosyltransferase STT3 through β-catenin, and STT3 further
glycosylates and stabilizes PD-L1 (193). In the mouse model of
pancreatic islet transplantation, TGF-βwas found to be necessary
for the sustained expression of PD-L1 on CD8+ T cells via
autocrine (194). These findings highlight that the role of TGF-
β in the regulation of PD-L1 may possibly account for the link
between TGF-β and immune evasion.

In addition, TGF-β shapes the tumor microenvironment to
restrain antitumor immunity by restricting T cell infiltration
and attenuating the efficacy of PD-L1 blockade antibody. TGF-
β inhibitor and PD-L1 blockade together provoke vigorous
antitumor immune response and tumor regression (189, 190).
M7824, a novel bifunctional anti-PD-L1/TGF-β with a soluble
extracellular domain of TGF-β receptor II, elicits potent
and superior antitumor activity in preclinical and clinical
studies (195–197).

Hypoxia
Hypoxia, an inevitable outcome due to the abnormal vasculature
and a huge mass of tumor, is represented as a hallmark of a tumor
microenvironment. Under the hypoxic environment, tumor
cells survive themselves by reprogramming the gene expression
through activating a series of hypoxia-inducible factors (HIFs).
Among these HIFs, HIF-1α, and HIF-2α are the most important
transcript factors responsive to hypoxia, leading to the adaption
to the stress (198, 199). Hypoxia signaling represents an
important pathway in immune evasion (200–202). Hypoxia
markedly induces the expression of PD-L1 on the surface of
myeloid-derived suppressor cells (MDSCs), macrophages, DCs,
monocytes, and tumor cells (201, 203, 204). Exposure of human
or murine cancer cells to hypoxia leads to the upregulation of
PD-L1, which induces T cell apoptosis in a HIF-1α-dependent
manner. Furthermore, blocking the accumulation of HIF-1α in
hypoxic cells by glyceryl trinitrate prevents hypoxia-induced PD-
L1 expression (201). In another study, inhibiting HIF-1α through
gene knockdown or PX-478 treatment also strikingly attenuates
the elevation of PD-L1 induced by CoCl2 (a hypoxia-mimic
treatment) (205). Likewise, PD-L1 overexpression on monocytes
is induced both in vitro and in vivo models of intermittent
hypoxia, and by HIF-1α gene transfection (204). Moreover,
HIF-1α was demonstrated to translocate into the nucleus and
drive PD-L1 expression in human monocytes during endotoxin
tolerance (206). Direct binding of HIF-1α to the promoter of
PD-L1 via hypoxia response element (HRE) has been unveiled in
MDSCs by ChIP and luciferase reporter assay (203). Collectively,
PD-L1 expression is regulated by HIF-1α in monocytes and
tumor cells, including melanoma cells, breast cancer, prostate
cancer, and lung cancer cells (201, 203, 204, 207). However,
in clear cell renal cell carcinoma (ccRCC), cells with VHL (a
component of oxygen and iron sensing pathway that regulates the
HIF) mutation, HIF-2α, rather than HIF-1α, is specifically able to
induce PD-L1 expression (208). The association between HIF-2α
and PD-L1 was further verified in ccRCC by Messai et al. (209),
where a direct binding of HIF-2α to a transcriptionally active
HRE in human PD-L1 proximal promoter was revealed.

Angiogenesis in solid tumors is a multiple biological process
that is induced by the overexpression of pro-angiogenic factors
in the environment to support the tumor cell growth. However,
in contrast to the vasculature of normal tissues, tumor vessels
are usually twisted and disorganized accompanied with a
reduced blood perfusion and oxygenation. Normalization of
tumor vasculature with an appropriate dose of anti-angiogenic
treatment, primarily through disruption of the VEGF/VEGFR
axis, is able to reduce tissue hypoxia and reprogram the tumor
microenvironment from immunosuppressive to immunoactive
(210, 211). Remarkably, PD-L1 expression is positively correlated
with VEGF and microvessel density in patients with uniformly
treated cHL (212). Considering that hypoxia is capable of
inducing PD-L1 expression, addition of anti-angiogenic
reagent to PD-1/PD-L1 antibodies is likely to sensitize immune
checkpoint therapy. This conjecture has been verified in
both animals and human beings. For example, a preclinical
study showed that combined anti-VEGF/anti-PD-L1 targeted
therapy synergistically improves the treatment outcome,
compared to both anti-PD-L1 or anti-VEGF monotherapy
in an autochthonous mouse model of small cell lung cancer
(SCLC) (213). Similarly, preliminary results from a phase
III study (NCT02366143), which evaluated the efficacy of
bevacizumab (the first anti-angiogenic drug) plus atezolizumab
plus chemotherapy, bevacizumab plus chemotherapy, and
atezolizumab plus chemotherapy in non-squamous NSCLC,
has also revealed superior outcomes in patients receiving the
first treatment (214). Choueiri et al. (215) recently reported a
phase Ib trial based on avelumab plus axitinib, a VEGF receptor
inhibitor as first-line therapy in patients with advanced ccRCC
(NCT02493751). McDermott et al. (216) performed a phase II
study of atezolizumab alone or combined with bevacizumab
vs. sunitinib in treatment-naive metastatic RCC, and the
preliminary data on antitumor activity are encouraging. A
phase III trial assessing avelumab and axitinib compared with
sunitinib monotherapy for first-line treatment of advanced RCC
is ongoing (NCT02684006).

Previous Treatments
Radiation and conventional antineoplastics that are currently
used for cancer therapy, such as chemotherapeutic drugs and
epigenetic modifiers, may promote immunogenic cell death via
introducing DNA damage. Importantly, it is increasingly evident
that conventional radiotherapies and chemotherapies, as well
as novel epigenetic modifiers and targeted anticancer agents
cannot only induce tumor regression by triggering immunogenic
death of tumor cells, but also result in tumor progression by
dysregulating the immune system, including changes within
inhibitory molecules across a wide range of malignancies.
Radiation and a number of chemotherapy drugs induce PD-
L1 expression through different mechanisms, which are likely
responsible for the loss of antitumor immunity and acquired
resistance (217, 218). Remarkably, the PD-1/PD-L1 pathway
blockade reverses adaptive immune resistance and maintains
the antitumor immunity (219–221). Of note, although radiation
and most chemotherapies enhance PD-L1 expression upon most
occasions, inconsistent results were also obtained. The detailed
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information and involved signal pathways are listed in Table 3

(67, 78, 113, 122, 127, 193, 217, 220–255).
In addition to the genotoxicity therapy aforementioned, the

correlations between PD-L1 expression and target therapy, as
well as immunotherapy, were also documented. For example,
epidermal growth factor receptor (EGFR), a commonly mutated
oncogene in NSCLC, was reported to be associated with PD-
L1 upregulation (256). Treatment with EGFR tyrosine kinase
inhibitors (EGFR-TKIs) results in the downregulation of PD-
L1 (240, 256, 257). In parallel, application of BRAF and MEK
inhibitors is also associated with decreased PD-L1 expression
(258). Interestingly, PD-L1 expression is upregulated through
both JUN and STAT3 after acquiring resistance to BRAF
inhibition in the cells (258, 259), and hence, the expression level
of PD-L1 may serve as a biomarker for predicting the probability
of response to the inhibitors (260). Different from EGFR
and BRAF inhibitors, sorafenib, a multi-target antitumor drug,
increases PD-L1 expression through inducing tumor hypoxia
(261). Furthermore, several immunotherapies were found to
upregulate PD-L1 expression (262, 263). Rice et al. (262) revealed
an increase in PD-L1 expression on tumor cells during an HPV-
E6/E7 immunotherapy. While the increased expression of PD-
L1 is blunted and even reversed when combined with anti-
PD-1 antibody, as a reduction in tumor PD-L1 expression was
observed. These observations imply a role of anti-PD-1 therapy
for regulating PD-L1. What’s more, the dynamic change of PD-
L1 expression on circulating tumor cells in advanced solid tumor
patients undergoing PD-1 blockade therapy might serve as a
predictor to indicate the therapeutic response at an early time
(264). Collectively, these studies may open up new avenues
for developing rational combination of cancer therapeutics in
various solid tumors.

Intrinsic Control of PD-L1 Expression
Abnormal signal transductions induced by intrinsic oncogenic
activation or loss of tumor suppressor can both regulate PD-L1
expression at various levels.

Oncogenic Signaling
Apart from the reports described above, the intrinsic cellular
changes associated with PD-L1 expression have attracted much
attention because such explorations can not only expand the
investigation in regulatory mechanism of PD-L1, but also direct
the concomitant use of immune checkpoint therapies and target
therapies for optimizing clinical outcomes. Oncogenic signaling
stemming from aberrant transcription factors, effectors and
upstream receptors can regulate the expression of PD-L1.

A number of oncogenic transcription factors, such as MYC,
AP-1, STAT, IRF1, HIF, and NF-κB, were reported to individually
or cooperatively promote PD-L1 expression at the transcriptional
level. MYC, a transcription factor governing a large number of
gene expressions, plays a vital role in tumorigenesis through
its multiple effects on tumor cells, typically by controlling cell
proliferation and survival, and elevated expression of MYC
was found in approximately 70%of human cancers (265). A
recent study by Casey et al. (266) revealed a novel role of

MYC in cancer immunosurveillance. MYC binds to the PD-
L1 promoter transcriptionally regulating PD-L1 expression.
Similarly, transient transfection with MYC plasmids upregulates
PD-L1 in anaplastic large-cell lymphoma (ALCL) cells with
low endogenous PD-L1 (267). In line with these observations,
both pharmacological inhibition and geneticsilencing of MYC
reduce PD-L1 expression in tumor cells (266–268). Moreover,
a very recent study revealed a translational mechanism of
MYC-mediated PD-L1 upregulation by bypassing the repressive
effect of non-canonical upstream open reading frames in the
5′ untranslated region of PD-L1 on its translation (269). Of
note, the translational inhibitor, eFT508, possesses a potent
inhibitive effect on the cancer progression and metastasis by
targeting PD-L1 mRNA translation, disclosing a new strategy for
immunotherapy in PD-1/PD-L1 axis blocking.

AP-1 is a dimeric transcription factor comprised of Jun, Fos,
and ATF protein families (270). As the best-known member of
the AP-1 family, c-Jun is implicated in PD-L1 expression. An
increased expression of PD-L1 was found in BRAF inhibitor-
resistant melanoma cells. Knockdown of c-Jun results in a
reduction of PD-L1 expression (259). AP-1 binding sites were
identified in the first intron of PD-L1, and c-Jun and JUNB
have been shown to be recruited to the PD-L1 promoter
(138, 271). Co-activation of STAT3 with c-Jun further enhances
the transcriptional activity of PD-L1 (272, 273). Accordantly,
concurrent knockdown of STAT3 and c-Jun contributes to a
synergistic downregulation of PD-L1 (259). Not surprisingly,
activated STAT3 alone can also increase PD-L1 expression by
directly acting on the promoter of PD-L1 in HNSCC and
lymphoma cells (267, 274, 275), and STAT3 silencing leads to
the downregulation of PD-L1 in ALK-negative ALCL cells and
KRAS-mutant NSCLC cells (267, 271). As previously described,
STAT1 and IRF1/7, downstream effectors of STAT1, can also
induce PD-L1 expression (79, 169, 276). Similarly, HIF-1α and
HIF-2α transcriptionally facilitate PD-L1 expression by binding
to the HRE of its promoter (203, 209). Moreover, the interaction
between STAT3 and HIF-1 involves in the regulation of HIF
target genes. Inhibition of STAT3 decreases the expression of
HIF-1 target genes in MDA-MB-231 and RCC4 cells (277),
indicating a potentially cooperative effect for STAT3 andHIF-1 in
regulating PD-L1. Binding of the RELA/p65-MUC1-C complex
on the promoter of PD-L1 was observed in NSCLC (278),
suggesting that NF-κBmay directly regulate PD-L1 transcription.
Besides the above transcription factors, recent work have verified
nuclear factor E2-related transcription factor 2 (NRF2) as an
upstream transcriptional activator of PD-L1 in human primary
keratinocytes andmelanocytes after ultraviolet-B irradiation, and
depletion of NRF2 significantly increases T cells infiltration in the
tumors and suppresses melanoma progression (234).

Oncogenic signaling initiated by activating mutations or
amplification in receptor tyrosine kinases plays an important
role in regulating PD-L1. The MEK-ERK pathway is commonly
activated by mutations in RAS GTPase, BRAF, and EGFR
(279), and there are now abundant data suggesting that
MEK-ERK signaling upregulates PD-L1 expression. Coelho
et al. (280) revealed that RAS stabilizes PD-L1 mRNA and
upregulates cell-intrinsic PD-L1 expression via phosphorylation
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TABLE 3 | Alteration of PD-L1 expression by previous treatments.

Therapeutic Category/dose Tumor type PD-L1

expression

Targets References

IR 10Gy Breast cancer + − (222)

IR 10Gy Breast cancer + IFN-γ (223)

IR 12Gy Breast cancer + − (224)

IR 10Gy CRC + IFN-γ (223)

IR 4 Gy/8G y Glioma + − (225)

IR 5 Gy/10Gy Glioma + EGFR/JAK2 (226)

IR 45 Gy/60Gy HCC +

(sPD-L1)

− (227)

IR 2Gy HNSCC + AXL-PI3K (217)

IR 10Gy HNSCC + − (228)

IR + chemotherapy − HNSCC + IL-6/STAT3 (229)

IR 10Gy Lung cancer + ATM/ATR/Chk1

STAT1/STAT3-IRF-1

(230)

IR 6Gy × 1 − 6Gy × 4 NSCLC + IL-6-MEK/ERK (231)

IR 10Gy Melanoma + IFN-γ (223)

IR 10Gy Osteosarcoma + ATM/ATR/Chk1

STAT1/STAT3-IRF-1

(230)

IR − PDAC + JAK/STAT1 (232)

IR 10Gy Prostate cancer + ATM/ATR/Chk1

STAT1/STAT3-IRF-1

(230)

IR 50 - 50.4Gy Sarcoma + − (233)

UVR 100 J/m2 HPKs/HPMs + NRF2 (234)

Arsenic trioxide Undefined cytoxin AML + MiR-34a (122)

Azacytidine DNMTi NSCLC + − (78)

Carboplatin Alkylating agent Ovarian cancer + JAK/STAT, antiviral defense (235)

Carboplatin +

paclitaxel

Alkylating agent +

Antimicrotubule

Lung cancer NC − (236)

Cisplatin Alkylating agent Hepatoma + MAPK/ERK (237)

Cisplatin Alkylating agent HNSCC + IL-6/STAT3 (220)

Cisplatin Alkylating agent HNSCC + − (238)

Cisplatin Alkylating agent HNSCC + MAPK/ERK (239)

Cisplatin Alkylating agent Lung cancer NC − (240)

Cisplatin Alkylating agent NSCLC + FASN/TGF-β1 (241)

Cisplatin Alkylating agent NSCLC + Akt, NF-κB p65 (221)

Cisplatin Alkylating agent NSCLC + PI3K/Akt (242)

Cisplatin Alkylating agent SCLC + DNMT1,KIT (243)

Cisplatin Alkylating agent NHL + ERK,GM-CSF (244)

Cisplatin Alkylating agent Ovarian cancer + − (245)

Cisplatin +

gemcitabine

Alkylatingagent +

Antimetabolite

Lung cancer − − (236)

Decitabine DNMTi Myelodysplastic

syndromes

+ − (67)

Doxorubicin Topoisomerase inhibitor Breast cancer
− (surface)

+ (nuclear)

PI3K/Akt (246)

Doxorubicin Topoisomerase inhibitor NHL + ERK,GM-CSF (244)

Epirubicin Topoisomerase inhibitor Breast cancer − − (247)

Etoposide Topoisomerase inhibitor Breast cancer + − (248)

Etoposide Topoisomerase inhibitor Breast cancer − EMT/β-catenin/STT3 (193)

Etoposide Topoisomerase inhibitor CSCs − EMT/β-catenin/STT3 (193)

Etopside Topoisomerase inhibitor NHL + ERK,GM-CSF (244)

Etoposide Topoisomerase inhibitor Retinoblastoma + MiR-513a-5p (127)

(Continued)
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TABLE 3 | Continued

Therapeutic Category/dose Tumor type PD-L1

expression

Targets References

Gemcitabine Antimetabolite Pancreatic cancer + JAK/STAT1 (232, 249)

Oxaliplatin Alkylating agent CRC + IFN-γ (250)

Oxaliplatin Alkylating agent NHL + ERK,GM-CSF (244)

Oxaliplatin Alkylating agent Prostate cancer + TGF-β (251)

Paclitaxel Antimicrotubule Breast cancer + − (247, 248)

Paclitaxel Antimicrotubule CRC + ERK1/2 (251)

Paclitaxel Antimicrotubule HCC + ERK1/2 (251)

Paclitaxel Antimicrotubule Ovarian cancer + NF-κB (252)

Paclitaxel Antimicrotubule Pancreatic cancer + JAK2/STAT1 (249)

Platinum Alkylating agent NSCLC + MiR-197/CKSIB/STAT3 (113)

Trabectedin Undefined cytoxin Ovarian cancer + IFN-γ (253)

Vincristine Alkaloid NHL + ERK,GM-CSF (244)

Vinorelbine tubulin

inhibitor

Antimicrotubule Lung cancer − EMT (240)

5-Fluorouracil Antimetabolite Breast cancer + − (248)

5-Fluorouracil Antimetabolite CRC + − (254)

5-Fluorouracil Antimetabolite Esophageal

adenocarcinoma

+ − (254)

5-fluorouracil Antimetabolite Pancreatic cancer + JAK2/STAT1 (249)

−, negative; +, positive; NC, not change; IR, irradiation; UVR, ultraviolet radiation; CRC, colorectal cancer; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell

carcinomas; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma; HPKs, human primary keratinocytes; HPMs, human primary melanocytes; AML, acute

myeloid leukemia; SCLC, small cell lung cancer; NHL, non-Hodgkin’s lymphoma; CSCs, cancer stem-like cells; sPD-L1, soluable programmed death ligand-1; IFN-γ, interferon-γ;

EGFR, epidermal growth factor receptor; JAK2, Janus kinase 2; AXL, tyrosine-protein kinase receptor UFO;IL-6, interleukin-6; STAT3, signal transducer and activator of transcription

3; ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; IRF-1, interferon-responsive factor 1; NRF2, nuclear factor E2-related transcription factor

2;MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; EMT, epithelial-mesenchymal transition; FASN, fatty acid synthase; TGFβ1, transforming growth

factor β1; Akt, protein kinase B; NF-κB, nuclear factor kappa B; PI3K, phosphatidylinositol 3 kinase; DNMT1, DNAmethyltransferase 1; KIT, receptor tyrosine kinase; GM-CSF, granulocyte

macrophage colony-stimulating factor; CKS1B, CDC28 protein kinase regulatory subunit 1B.

and inhibition of the adenylate-uridylate-rich element-binding
protein, tristetraprolin, in a p38 MAPK-dependent manner.
Furthermore, MAPK signaling is responsible for the increased
expression of PD-L1, since inhibition of MEK or ERK partially
offset the ectopic expression of PD-L1 in both mouse and
human KRAS-mutant lung cancer cells (271, 280, 281). However,
in contrast to the positive relationship between MEK-ERK
signaling and PD-L1 expression observed in most studies,
MEK inhibitors are unable to change the PD-L1 expression
in melanoma (282), and even increase the levels of PD-L1 in
breast cancer and NSCLC cells (283, 284). Similarly, in BRAF
mutation melanoma cells, which acquire resistance to BRAF
inhibition, constitutive PD-L1 is elevated through cooperative
activation of Jun (a primary target of MAPK signaling) and
STAT3 (259). Induction of PD-L1 is dependent on MAPK
activation in EGFR mutant NSCLC. Suppression of ERK1/2/c-
Jun results in reduced PD-L1 expression (285). Evidences
also imply the role of p65, AKT/STAT3, and JAK2/STAT1 as
mediators in the regulation PD-L1 expression by EGFR signaling
(168, 286, 287). Moreover, the increased PD-L1 expression upon
EGFR activation is also mediated by the AKT-mTOR pathway,
inhibition of which (with rapamycin) abolishes the increased
expression of PD-L1 upon EGFR activation through increasing
lysosomal protein degradation (174). Remarkably, although
EGFR activation was shown to increase PD-L1 expression

through multiple signal pathways, a controversial correlation
between EGFR activation mutations and PD-L1 expression was
observed in NSCLC patients (256, 288–290), which may be
attributed to the complicated regulation of PD-L1 expression
(inducible and constitutive) in vivo. Therefore, despite how
EGFRmutations upregulate the constitutive expression of PD-L1
in tumor cells, the concomitant shortage of activated tumor
infiltrating lymphocytes in EGFR-mutated NSCLC (291, 292)
may weaken the inducible PD-L1 expression. Recent studies have
shielded light on the divergent effect of various subtypes of EGFR
mutations on PD-L1 expression and the response to immune
checkpoint therapy (293, 294). Thus, the discrepancies in PD-L1
expression caused by EGFR mutations may also result from the
undistinguished subtypes of EGFR mutations.

The PI3K-AKT-mTOR signaling is another oncogenic
pathway involved in constitutive regulation of PD-L1, which
can both be activated by PIK3CA mutation and functional loss
of PTEN (a negative regulatory of PI3K-AKT signaling) (295).
In human glioma and CRC cells, loss of PTEN activates PI3K
signaling, which leads to an elevation of PD-L1 expression
(296, 297). A positive correlation between PIK3CA mutation
and PD-L1 expression in squamous cell lung carcinoma was
also revealed (298). Nevertheless, similar to the MEK inhibition,
the influence of PI3K/AKT inhibition on PD-L1 expression
varies in tumor cells and the mechanism is largely unknown
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(299). Phosphorylation activation of S6K1 or inhibition of
eIF4E-binding proteins (4E-BP, a negative regulator for eIF4E),
which serve as the downstream effect for the activation of
PI3K-AKT-mTOR pathway, are involved in the promotion
of protein synthesis. Overexpression of S6K1, but not eIF4E,
restores the translational efficiency of PD-L1, which is inhibited
by ectopic expression of PTEN in U87 cells (a glioma cell lines
with no PTEN expressed) through increased recruitment of
PD-L1 transcript to the polysome. In line with this finding,
rapamycin, an mTOR inhibitor, was shown to pose as an obstacle
for polysomal component recruitment in PD-L1 transcripts
(296). Interestingly, in a recent study carried out by Cerezo et al.
(299), inhibition of eIF4F complex (consisting eIF4A, eIF4E, and
eIF4G subunits) was shown to upregulate IFN-γ-induced PD-L1
expression by thwarting the translation of STAT1 mRNA in
melanoma, and the upstream regulator for the signaling remains
to be identified. Additionally, NPM-ALK or EML4-ALK fusion
protein constitutively activates ALK kinase and promotes PD-L1
expression via MEK-ERK and PI3K-AKT signaling pathways
(300, 301).

Yes-associated protein/WWdomain-containing transcription
regulator 1 (YAP/TAZ), the well-known effectors in the
Hippo pathway, are commonly dysregulated in cancers (302).
Overexpression of YAP/TAZ has been found in many cancers
due to abnormal amplification, loss of Hippo signaling by
mutation, and/or downregulation of the core Hippo component
(303). Recent publications supported the notion that YAP/TAZ
emerges as a pivotal player in tumor immunity by regulating PD-
L1 expression. YAP/TAZ interacting with the PD-L1 promoter
through the TEA domain transcription factor (TEAD) family of
transcription factors enhances PD-L1 at the transcriptional level
in human malignant pleural mesothelioma, melanoma, breast
and lung cancer cells (304–309). Furthermore, in tumor tissues
of NSCLC and melanoma, immunohistochemistry showed
significantly positive staining for YAP and PD-L1 (305, 307). The
role of the Hippo pathway in upregulating PD-L1 was further
confirmed in breast and lung cancer cells as mammalian STE20-
like kinase 1 and 2 (MST1/2) and large tumor suppressor 1 and 2
(LATS1/2), upstream kinases and inhibitors of canonical Hippo
pathway are shown to suppress PD-L1 expression (306).

The Role of Tumor Suppressors
In addition to the involvement of oncogenes in the regulation
of PD-L1, tumor suppressors also play a role in controlling
PD-L1 expression. Tp53, also known as p53, is a well-known
tumor suppressor and commonly mutated in cancer (310). As
a transcription factor, p53 regulates the expression of numerous
downstream target genes involved in cell cycle progression,
cell death, and metabolism (311, 312). Increasing evidence
for p53 in regulating immune responses made it intriguing
for researchers (313, 314). P53 regulates immune responses
by targeting immune checkpoints, including PD-L1. The effect
of p53 on PD-L1 expression is likely to be mediated by
several p53-regulated miRNAs. Cortez et al. (120) revealed
that p53 decreases PD-L1 expression via upregulating miR-34
in NSCLC. A recent study showed that the miR-200 family,
another miRNA cluster regulated by p53 (315), downregulates

PD-L1 by directly targeting 3′-UTR in HCC, AML and NSCLC
cells (114–116). In addition, p53 and PD-L1 expression are
inversely correlated in hepatocellular carcinoma and NSCLC
patients (120, 316). Coincidently, inactive mutation of p53 is
associated with elevated PD-L1 level in lung adenocarcinoma
and ovarian cancer (317–319). However, paradoxical results
were also found by researchers, indicating an ambivalent role
of p53 in PD-L1 regulation. MiR-18a increases PD-L1 levels
by targeting SOX6 (p53 pathway activator) to inhibit p53
signaling in cervical cancer (104), and nutlin-3a, a small molecule
activator of wild-type p53, enhances the expression of PD-
L1 in breast cancer (320). Moreover, a high rate of PD-L1
expression was observed in p53-positive primary pulmonary
lymphoepithelioma-like carcinoma patients, compared to the
p53-negative group (321).

Tumor suppressor gene PTEN is one of the most frequently
mutated genes in human cancers (322). PTEN acts as a
tumor suppressor through the action of its phosphatase
protein product, which catalytically dephosphorylates
phosphatidylinositol(3,4,5)-trisphosphate (PIP3) converted
to phosphatidylinositol(4,5)bisphosphate (PIP2) (323). The
enzymatic activity of PTEN further modulates PD-L1 expression
through the PI3K/AKT pathway (174, 296, 297, 324). In these
studies, loss or knockdown of PTEN leads to the activation of
the PI3K/AKT pathway, and hence, upregulation of PD-L1. In
glioma, loss of PTEN function upregulates PD-L1 expression
at the translational level through AKT-mTOR-S6K1 signal
axis (296). In CRC, miR-20b, miR-21, and miR-130b inhibit
PTEN, resulting in PD-L1 overexpression (99). A similar
effect of miR-18a was revealed in cervical cancer (104). In
contrast to the findings in CRC and cervical cancer, miR-142-5p
was reported to promote antitumor immunity in NSCLC by
suppressing PD-L1 protein expression via the PTEN pathway
(100). Loss of PTEN cytoplasmic expression is related to
lower PD-L1 expression in DLBCL with AKT hyperactivation
(325), suggesting that mechanisms unrelated to AKT may
also be involved in PD-L1 expression in cells with different
PTEN status.

Strikingly, concurrent TP53 and PTEN deletion facilitates
the formation of undifferentiated pleomorphic sarcomas, with
elevated PD-L1 expression, that induced immune tolerance in
C57BL/6J mice (326). Simultaneous loss of PTEN and LKB1 (a
tumor suppressor, also known as serine-threonine kinase 11)
contributes to the development of murine lung squamous cell
carcinoma with higher PD-L1 expression, while PD-L1 in the
tumor is not induced by individual deficiency of either PTEN
or LKB1 (327). Likewise, concomitant knockout of Kelch-like
ECH-associated protein 1 (KEAP1) and PTEN in the mouse
lung promotes the occurrence of adenocarcinoma with altered
immune microenvironment exhibiting increased expression of
PD-L1 (328). Tumor suppressor candidate 2 (TUSC2, also known
as FUS1) represents another suppressor in controlling PD-
L1 by recent work. TUSC2 overexpression was observed to
decrease PD-L1 expression and associate with an immunologic
response (329, 330). TUSC2 was shown to negate the kinase
activity of EGFR, AKT, and mTOR according to previous
studies (331, 332). Indeed, the reduction of PD-L1 expression
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in NSCLC cell lines by TUSC2 is likely due to reduced mTOR
activity (330).

The retinoblastoma protein (RB), a well-acknowledged
tumor suppressor, acts as a multifunctional protein to regulate
various aspects of cellular activities and tumor development
(333, 334). Transcription factor E2F1 is a major target for
RB to exhibit its tumor suppression efficacy, un- or hypo-
phosphorylated RB binds to E2F1, leading to the inhibited
expression of E2F1 target genes and arrested G1/S cell cycle
transition. However, during a normal cell cycle, RB transforms
into hyperphosphorylated status, mediated by cyclin/CDK
complexes such as CYCLIN D/CDK4/6 in the late G1 phase,
which contributes to the release of E2F1 and advance of the
cell cycle (335). Interestingly, an E2F1-independent tumor
suppression effect of phosphorylated RB has been unveiled by Jin
et al. (336), and it is said that CDK4/6 mediated phosphorylation
of RB at S249/T252 enhances its interaction with NF-κB p65
within nucleus and reduces the expression of NF-κB target
genes, including PD-L1. RL-S249/T252D, a small phospho-
mimetic peptide of RB, is able to inhibit tumor growth in
immune-proficient mice, and the regression of tumor may
be partly attributed to the blocked expression of PD-L1 by
RL-S249/T252D. Finally, mutations of the breast cancer type 1
and 2 susceptibility (BRCA1/2) genes, that are associated with
familial breast cancer and ovarian cancer, were documented to
be involved in immune dysfunction (337, 338).The observation
of increased expression of PD-L1 in BRCA1/2-mutated
ovarian cancer implies a possible role of BRCA1/2 for PD-L1
regulation, although the underlying mechanism remains to be
explored (319, 338, 339).

The Role of Post-translational
Modifications in PD-L1 Expression
PD-L1 protein can be phosphorylated, ubiquitinated, and
glycosylated after translation. These post-translational
modifications (PTMs) collaboratively or competitively regulate
the level of PD-L1 in cells.

The potential phosphorylation sites of PD-L1 have been
predicted using the PhosphoSite database (PhosphoSite Plus
Protein Page: Pd-L1 Human, 2018). However, in spite of this,
the phosphorylation of PD-L1 has been sparsely reported.
Horita et al. (340) identified atyrosine phosphorylation of PD-
L1 induced by EGF, through a set of high-affinity and high-
specificity post-translational modification enrichment tools, with
no specific mechanism or mediator described. Only very
recently, studies have started to shine light on the regulators
for phosphorylation modification of PD-L1. Glycogen synthase
kinase 3β (GSK3β) was shown to phosphorylate PD-L1 and
an evolutionarily conserved GSK3β phosphorylation motif
(S/TXXXS/T) at T180 and S184 was found in PD-L1 (173).
Another serine/threonine protein kinase AMP-activated protein
kinase (AMPK), a sensor of cellular energy, was latterly revealed
to directly phosphorylate PD-L1 at S195 (341). Both AMPK-
and GSK3β-mediated phosphorylation of PD-L1 reduce the
expression of PD-L1 via increasing its degradation, and disparate
mechanisms were exploited to this end. Phosphorylation

of PD-L1 at S195 by AMPK activation induces abnormal
endoplasmic reticulum (ER) mannose trimming and produces
aberrant glycoprotein of PD-L1 with mannose-rich glycan
structures, which triggers the ER-associated degradation of
PD-L1 (341). In contrast, GSK3β-mediated phosphorylation
often facilitates ubiquitin E3 ligase recognition, which targets
proteins to proteasomal degradation (342, 343). Thus, GSK3β
phosphorylates non-glycosylated PD-L1 and further initiates the
interaction of PD-L1 with β-TrCP to form a complex, leading to
the poly-ubiquitination of PD-L1. Furthermore, enhanced PD-
L1 expression, induced by EGF stimulation, may be attributed
to its effect on inhibiting GSK3β-mediated phosphorylation
and poly-ubiquitination of non-glycosylated PD-L1 (173).
EGF is also involved in upregulating the ubiquitination of
glycosylated PD-L1, and the ubiquitination of glycosylated PD-
L1 is identified to be mono- and multi-ubiquitnation, but not
poly-ubiquination (340). In contrast to GSK3β induced poly-
ubiquitination of non-glycosylated PD-L1, that promotes its
degradation via the proteasome pathway, EGF-stimulated mono-
and multi-ubiquitination of glycosylated PD-L1 has yielded PD-
L1 overexpression, as blocking the enzyme activity of ubiquitin
E1 decreases PD-L1 mono- and multi-ubiquitination coupled
with reduced PD-L1 level (340). The cooperative regulation of
non-glycosylated and glycosylated PD-L1 induced by EGF may
collaboratively increase the level of PD-L1. In a recent study,
ubiqutin E3 Cbl-b/c-Cbl was revealed to be negatively correlated
with PD-L1 expression in EGFR wild-type NSCLC (344).
Similarly, in cervical and breast cancer cells, cyclin D1-CDK4
kinase was reported to destabilize PD-L1 and increase TILs via
phosphorylating cullin 3-speckle type POZ protein (CUL3SPOP)
E3 ligase, leading to the ubiquitination of PD-L1 (345, 346).
DCUN1D1, a regulator of ubiquitin E3 activity, was significantly
increased in NSCLC tumor tissues and positively associated
with PD-L1 expression, which leads to enhanced tumor
metastasis and poor prognosis of the patients (347). Moreover,
a ubiquitously expressed type-3 transmembrane protein, CKLF-
like MARVEL transmembrane domain containing protein 6
(CMTM6), was recently identified as a novel positive regulator
of PD-L1 via increasing its half-life, which is presumably due
to the reduction of ubiquitination and prevention of lysosome-
mediated degradation during protein recycling (348–350).
Notably, this function is shared by its closest family member,
CMTM4 (349). In CRC, huntingtin-interacting protein 1-related
protein (HIP1R), a newly discovered regulator of PD-L1, was
found to promote lysosome-mediated degradation of PD-L1 by
directly binding and transporting it to lysosome via the lysosomal
sorting motif of HIP1R (351). Finally, in addition to the
transcriptional regulation of PD-L1, TNF-α-mediated nuclear
translocation and downstream transactivation of p65 increase
PD-L1 expression by transcriptionally upregulating CSN5, which
functionally hydrolyzes the ubiquitin chain from ubiquitin-PD-
L1 and further enhances the PD-L1 stabilization in breast cancer
cells (167, 186).

PD-L1 is a∼33 kDa type-1 transmembrane protein. However,
detection of PD-L1 by immunoblotting revealed heterogeneous
expression patterns on SDS-PAGE, and the high molecular
weight of PD-L1 displays ∼15-kDa molecular weight shift
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down by glycosylation inhibitors, suggesting that PD-L1 is
highly glycosylated in human tumor tissues and cancer cell
lines. Further studies identified that the type of glycosylation
is primarily N-glycosylation rather than O-glycosylation since
glycosylation of PD-L1 was completely inhibited by N-linked
glycosylation inhibitor tunicamycin (TM) but not O-glycosidase
(173). N-glycosylation occurred on the asparagine residue of
an Asn-X-Ser/Thr motif (X is any amino acid except proline)
in protein and is catalyzed by oligosaccharyltransferase, acting
as a biosynthetic secretory pathway in ER and Golgi apparatus
(352, 353). Amino-acid sequence comparation across different
species identifies four evolutionarily conserved NXT motifs (N
refers to Asn) in PD-L1 extracelluar domain and exclusive
N-glycosylation of PD-L1 at N35, N192, N200, and N219 is
further demonstrated by mass spectrometry and mutagenesis
assays. Furthermore, N-glycosylations on the N192, N200, and
N219 of PD-L1 cause a spatial hindrance for its interplay

with GSK3β and competitively antagonize the GSK3β-mediated
phosphorylation of PD-L1, and thus contribute to PD-L1 protein
stability. Additionally, glycosylation of PD-L1 appears to affect
its interaction with PD-1 and T-cell-mediated cytolysis (173,
354). Increasing in the affinity for PD-1 to glycosylated PD-
L1 was also corroborated in another study (355). FKBP51s, a
spliced isoform of 51 KDa FK506-binding protein (FKBP51),
which is a cochaperone and plays a role in immunoregulation
and basic cellular processes involved in protein folding and
trafficking, was shown to physically interact with the naïve PD-
L1 in the ER and catalyze PD-L1 folding, thus contribute to the
glycosylation of PD-L1 in glioma as proposed by D’Arrigo et al.
(225). Consistently, silencing of FKBP51s significantly reduces
the level of glycosylated PD-L1 (225). Latterly, an emerging
report by Maher et al. (356) demonstrated a physical association
between multifunctional chaperone/scaffolding protein sigma1
and early formed glycosylated PD-L1 in the ER in triple-negative

FIGURE 1 | Sketch diagram for regulatory mechanisms in PD-L1 expression. Multiple factors are involved in the regulation of PD-L1 at different levels. The intrinsic

and extrinsic signals implicating the regulation of PD-L1 are presented.
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breast cancer (TNBC) and prostate cancer cells. The co-
occurrence of reduced PD-L1 expression in both the intracellular
membrane and plasma membrane induced by sigma1 inhibition
indicates that both protein stability and trafficking are involved
in the regulation of PD-L1 by sigma1 (356). Collectively,
stabilization of PD-L1 by FKBP51s and sigma1 are both
related to the glycosylation process in the ER (225, 356).
Besides, dysregulation of PD-L1 glycosylation in the ER
induced by AMPK activation decreases the stability of PD-L1
and triggers its ER-associated degradation (341). Furthermore,
evidence has also been obtained for a possible link of EMT
to PD-L1 stabilization through glycosylation regulation. EMT
transcriptionally upregulates the N-glycosyltransferase STT3
through β-catenin, and subsequently induces STT3-dependent
PD-L1 N-glycosylation (193). Strikingly, the latest results
have proven that glycosylated PD-L1 could serve as valuable
therapeutic target for cancer (341, 354, 357). Eradication
of triple-negative breast cancer cells can be achieved by
treatment with STM108-MMAE, a drug-conjugated antibody
specifically targeted to glycosylated PD-L1, via promoting PD-
L1 internalization and lysosomal degradation (354, 357). Owing
to the aberrant glycosylation of PD-L1 in the ER, mediated
by metformin, the combination of anti-CTLA4 antibody and
metformin successfully invigorates a potent anti-cancer effect
and enhances tumor elimination compared to the monotherapy
in a syngeneic mouse model of melanoma, breast, and colon
cancer (341).

Besides the post-translational modifications mentioned
above, protein lipidations, such as prenylation, myristylation,
and palmitoylation, are another prevalent type of post-
translational modification. Among them, palmitoylation (also
known as S-acylation) is quite different due to its reversible
feature and may serve as a therapeutic target for diseases,
including tumor (358). Palmitoylation is proven to play a pivotal
role in regulating protein traffic, membrane localization, and
interaction (359). Palmitoylated proteins also display altered
protein stability and signal transduction (358–360). Since the
discovery of palmitoylation modification of proteins, it has
been revealed that nearly 1,000 proteins can be palmitoylated in
human beings (361). Intriguingly, a single palmitoylation site at
Cys272 of PD-L1, which is located in cytosolic domain, has been
unveiled based on online prediction (csspalm.biocuckoo.org)
and further verified by acyl-biotin exchange assays combined
with mutation (362). Palmitoylation of PD-L1 in tumor cells
contributes to its increased stability and avoidance of immune
surveillance. It is believed that palmitoylation can spontaneously
occur in vitro, and in vivo, it is usually catalyzed by protein
acyltransferases (PATs). Although palmitoylation has been
discovered for a long time, related PATs were identified much
later (363, 364). Most PATs that mediated protein palmitoylation
belong to the zinc finger protein family and possess a conserved
Asp-His-His-Cys (DHHC) domain (364). In the study by Yang
et al. (362), palmitoyltransferase ZDHHC9 was demonstrated to
be responsible for the palmitoylation of PD-L1. The interaction
between ZDHHC9 and PD-L1 is affirmed, knockdown of
ZDHHC9 in cancer cells induces a significant reduction
of PD-L1 palmitoylation and sensitizes T-cell-mediated

killing, hence inhibiting tumor growth. This study raises
a possible approach for targeting PD-L1 palmitoylation to
restore the immune surveillance and cytolytic activity of T
cells for cancer treatment. This was further demonstrated
by Yao et al. recently (365). In contrast to the findings in
breast cancer, Yao et al. have identified palmitoyltransferase
ZDHHC3 (DHHC3) as the main acyltransferase required for the
palmitoylation of PD-L1 in CRC cells, inhibition of which by
2-bromopalmitate and a synthetic peptide successfully decreases
PD-L1 expression and enhances T-cell immunity against
the tumors.

PTMs may affect the conformation, activity, and interactions
of proteins. Although the PTMs, e.g., glycosylation,
phosphorylation, ubiquitination, and palmitoylation of PD-
L1, have been reported to influence its expression, the possible
effects of these PTMs on the conformation and molecular
interactions of PD-L1/PD-1 remain rather limited. PD-L1
can also be acetylated and SUMOylated in response to EGF
(340). Thus, to fully understand the role of PTMs in PD-L1
regulation, more studies are needed to (1) characterize the
types of PTMs of PD-L1, (2) decode the modification sites
and the functional consequences of PTMs, (3) clarify the
interactions among these PTMs, (4) evaluate the availability
of PD-L1 PTMs as potential targets in PD-1/PD-L1 axis for
cancer treatment.

Collectively, the expression of PD-L1 is controlled by
both intrinsic and extrinsic signaling, which may share
similar molecular mechanisms. Crosstalk among these signaling
pathways also plays a role in PD-L1 expression (184, 366). In
summary, the level of PD-L1 in a tumor can be modulated by
the genomic aberrances, epigenetic alterations, and extracellular
stimuli in a very complex way, which may mechanistically
work through transcriptional control, mRNA stability, oncogenic
signaling pathway, and protein stability (Figure 1).

SUMMARY

Despite considerable improvement of cancer therapy, which has
been achieved through PD-1/PD-L1 blockade, the knowledge
regarding the biology of these regulators in cancer immune
surveillance is still relatively limited. Many mechanisms
have been revealed to regulate the expression of PD-L1
including genetic alterations, epigenetic modifiers, extracellular
stimulations, signaling pathways, transcriptional factors, and
post-transcriptional modulators. Generally, PD-L1 on tumor
cells is regulated with two patterns: inducible and constitutive
expression. Inducible expression of PD-L1 by the inflamed
microenvironment within a tumor or by previous treatments
may portend a better response to anti-PD-1/PD-L1 therapies
and provide an opportunity for overcoming acquired resistance
to prior treatments. Uncovering the mechanisms of constitutive
PD-L1 expression driven by oncogenic signaling is valuable
for developing new strategies for cancer therapy through
directly targeting PD-L1 (269, 299). Similarly, synthetic peptides
that either target PD-L1 degradation or post-translational
modifications have shown a strong efficiency in animal studies,
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which may serve as a novel therapy for cancer treatment
(351, 365). Notably, this kind of therapy that directly targets
PD-L1 is of great significance and may be more effective as
compared with blockade of PD-1/PD-L1 axis due to PD-1-
independent functions of PD-L1 in the promotion of malignant
phenotypes and drug resistance (367, 368). Altogether, an
extensive understanding of the mechanisms by which PD-L1
is governed will help us to reach a comprehensive evaluation
of PD-1/PD-L1 targeting therapy, and further potentiate the
efficacy and expand the usage of this kind of cancer therapy
via patient selection and rational combination with other
antineoplastic agents, as well as develop new effective strategies
for cancer immunotherapy.
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