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Abstract

Slide-free digital pathology techniques, including nondestructive 3D microscopy, are gaining

interest as alternatives to traditional slide-based histology. In order to facilitate clinical adop-

tion of these fluorescence-based techniques, software methods have been developed to

convert grayscale fluorescence images into color images that mimic the appearance of stan-

dard absorptive chromogens such as hematoxylin and eosin (H&E). However, these false-

coloring algorithms often require manual and iterative adjustment of parameters, with results

that can be inconsistent in the presence of intensity nonuniformities within an image and/or

between specimens (intra- and inter-specimen variability). Here, we present an open-source

(Python-based) rapid intensity-leveling and digital-staining package that is specifically

designed to render two-channel fluorescence images (i.e. a fluorescent analog of H&E) to

the traditional H&E color space for 2D and 3D microscopy datasets. However, this method

can be easily tailored for other false-coloring needs. Our package offers (1) automated and

uniform false coloring in spite of uneven staining within a large thick specimen, (2) consistent

color-space representations that are robust to variations in staining and imaging conditions

between different specimens, and (3) GPU-accelerated data processing to allow these

methods to scale to large datasets. We demonstrate this platform by generating H&E-like

images from cleared tissues that are fluorescently imaged in 3D with open-top light-sheet

(OTLS) microscopy, and quantitatively characterizing the results in comparison to traditional

slide-based H&E histology.

Introduction

Modern microscopy methods enable life scientists and clinicians to visualize complex tissue

structures, where recent technological advancements have radically enhanced our understand-

ing of biological processes and disease pathologies. However, clinical diagnostic practices have

not taken full advantage of these modern microscopy techniques. In particular, the gold-
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standard diagnostic method of histology is based on centuries-old technologies, where tissues

are preserved in harsh fixatives, destructively sectioned onto glass slides, stained with simple

chromogens (most-commonly with hematoxylin and eosin, i.e. H&E), and manually imaged

with analog brightfield microscopes. In order to improve throughput, non-destructiveness,

sampling extent, and in some cases, to provide 3D information, several slide-free microscopy

techniques have recently been explored for use in clinical settings. For example, techniques

such as confocal microscopy [1, 2], multiphoton microscopy [3–6], microscopy with UV sur-

face excitation (MUSE) [7–9], and structured illumination microscopy (SIM) [10, 11] have

been explored as slide-free alternatives to frozen-section histology for rapid interoperative

guidance. Additionally, light-sheet microscopy technologies, such as open-top light-sheet

(OTLS) microscopy [12–14], when used in conjunction with tissue-clearing techniques [15],

have been explored for slide-free nondestructive 3D pathology. These techniques generally

rely on fluorescence collected with a sensitive monochrome detector. Since pathologists are

accustomed to certain color schemes generated by standard chromogens, such as the pink and

purple hues associated with H&E staining, the ability to render grayscale fluorescent images

with color palettes that mimic standard histology can play a major role on the ability of pathol-

ogists to interpret and adopt slide-free pathology methods in the future.

Several groups have published software methods to convert two-channel fluorescence

images into “virtual H&E” images. One such virtual H&E algorithm was published in 2009 by

Gareau [16]. Using an additive model, this method rendered the reflectance contrast generated

by collagen and cytoplasm, and the fluorescence generated by a hematoxylin analog, to mimic

H&E staining. Bini et al. in 2011 further refined this model by analyzing the transmitted spec-

tra of multiple slides that were independently stained with either hematoxylin or eosin [17]. A

limitation of the additive approach is that in standard H&E histology, the classic pink and pur-

ple hues are the result of spectral mixing of the two dyes present in the specimen, according to

a nonlinear absorption process (Beer-Lambert-law attenuation). Additive models rely on the

linear superposition of intensities, which is non-physical and does not reliably mimic the

appearance of conventional H&E histology.

To address these limitations, a false-coloring model based on the Beer-Lambert law of

absorption was developed by Giacomelli et al. in 2016 [18]. The Beer-Lambert model accounts

for the spectral mixing of chromogenic (absorption-based) dyes and their wavelength-depen-

dent nonlinear attenuation of light (i.e. exponential decay as a function of concentration). As a

result, this model can accommodate multiple fluorescent stains with overlapping spectra with-

out loss of contrast or non-physical results. Note that in addition to H&E, other chromogens

can be modeled, such as the DAB stain most-commonly used for immunohistochemistry

(IHC) [13].

The previous approaches described above, for false coloring fluorescent images to mimic

conventional chromogenic (absorption-based) stains, have a number of practical shortcom-

ings that prevent them from generating consistent results. In particular, three main points

motivate the work described in this article:

1. Significant variations in the appearance of slide-free digital pathology images can occur due

to uneven staining within a specimen (intra-specimen variability). In particular, thick

unsectioned tissues exhibit diffusion barriers that often lead to nonuniform staining. This is

more pronounced with large agents such as antibodies but also affects smaller agents. Addi-

tionally, when imaging optically cleared tissues, samples that are not fully cleared can

exhibit a scattering-induced loss of signal as a function of imaging depth.

2. The appearance of both standard histology and slide-free fluorescence images can vary

greatly between institutions, or even within an institution, due to day-to-day variations in
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sample preparation, staining protocols and imaging parameters (inter-specimen variability)

[19]. In the presence of these variabilities, simple false-coloring algorithms can fail unless

software parameters are manually tweaked, often by trial-and-error.

3. Finally, 3D slide-free digital pathology datasets are often hundreds of gigabytes to terabytes

in size, which is 3 to 4 orders of magnitude larger than standard 2D whole slide images. To

facilitate clinical translation, false-coloring algorithms must be able to process these large

3D datasets in an efficient and scalable manner.

It bears mentioning that several deep-learning methods have been developed to render

H&E-like images from unstained tissue sections imaged with label-free imaging modalities

such as brightfield and autofluorescence microscopy [20–22], multi-photon microscopy [23],

and quantitative phase-contrast imaging [24]. Similar machine-learning-based approaches

could be used to create H&E-like images from tissues labeled with exogenous fluorophores

(i.e. fluorescent analogs of H&E). However, these methods not only require large amounts of

training data but are also highly sensitive to pre-analytical variations such as staining proto-

cols, imaging parameters, and hardware settings. In contrast, the ability to use an explainable

physics-based approach for digital staining is likely attractive for many end users and regula-

tory agencies, allowing for easier error identification, debugging, and compatibility with differ-

ent imaging platforms [25].

In this manuscript we present FalseColor-Python, which enables rapid and robust digital

staining of fluorescence images to mimic the appearance of chromogenic stains using the

Beer-Lambert model. As a pre-processing step prior to false-coloring, an intensity-leveling

routine, analogous to flat fielding, is used to locally and globally normalize image intensities,

thereby mitigating the effects of both intra- and inter-sample variability. In particular, the code

presented here is specifically optimized to generate H&E-like images of tissues stained with a

two-channel fluorescent analog of H&E (i.e. a fluorescent nuclear stain that mimics hematoxy-

lin, along with the stromal stain, eosin, which is naturally fluorescent) and imaged with 3D

open-top light-sheet (OTLS) microscopy [12–14]. We show that FalseColor-Python enables

accurate and reproducible H&E false-coloring that qualitatively and quantitatively matches the

appearance of H&E whole slide images, but with less variability than is seen with standard his-

tology. GPU acceleration is used for efficient and scalable processing of large 3D datasets.

Note that while H&E false-coloring is demonstrated here, FalseColor-Python can be tai-

lored to accommodate other preferred fluorescent staining combinations and individual color

preferences. For example, FalseColor-Python can be adapted to false-color fluorescence images

to mimic other chromogens, such as DAB (used in standard immunohistochemistry [13]) or

other special stains (e.g. PAS, Masson’s Trichrome, Toluidine Blue). In addition, while False-

Color-Python is optimized for large 3D datasets, it can easily be applied to 2D images as well.

FalseColor-Python workflow

Fig 1 outlines the workflow for processing large two-channel 3D datasets using FalseColor-

Python. For our specific implementation of this code, input data is stored on disk in the Hier-

archical Data Format (HDF5), which is a common multi-resolution 3D image format (Fig

1A). The advantage of multi-resolution file formats like HDF5, or similar formats such as N5,

is that they contain multiple down-sampled versions of the imaging data. For our 3D micros-

copy data, we use a 16x down-sampled version of the data (low-resolution) to rapidly calculate

an approximate global background level for each channel. The background level is calculated

by first ignoring all pixels that are below a threshold value (i.e. black pixels), which we have

defined as 4 standard deviations above the detector noise floor. The intensity of the 20th
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percentile of the remaining pixels is defined as the background value, which is due to a combi-

nation of tissue autofluorescence and nonspecific staining. We have found that for all of the

3D datasets we have examined, this 20% threshold is effective. However, for tissues that are

very densely stained, in which there are few “background” pixels, this threshold may need to

be adjusted. Once calculated, this background level is uniformly subtracted from the datasets,

whether down-sampled as in Fig 1B or full-resolution as on the left side (numerator) of Fig 1F.

Next, the down-sampled dataset is partitioned into uniformly sized data cubes. In our case,

each data cubes corresponds to a 100 x 100 x 100 μm3 volume of tissue (where 100 μm corre-

sponds to 256 pixels in our raw datasets) (Fig 1C). We use this partitioned data to create a low-

resolution 3D “intensity-leveling map,” which will subsequently be used to remove global

intensity fluctuations from the original dataset (see Introduction). The 3D intensity-leveling

map is generated by calculating the median pixel value for every local data cube (Fig 1D).

Given the size of the full-resolution 3D image data, the subsequent steps are sequentially per-

formed on individual 2D image planes (i.e. different depths) within the full-resolution 3D

dataset. Each full-resolution 2D intensity-leveling map (Fig 1E) is generated from the down-

sampled 3D leveling map (Fig 1D) through linear interpolation. By using linear interpolation,

abrupt intensity differences between adjacent data cubes are smoothed out, preventing grid

artifacts in the final leveling map. All of the full-resolution 2D intensity-leveling maps are

scaled by an empirical weighting factor for each channel, α, which is held constant for the

entire 3D dataset. This weighting factor is used to control the relative intensity of each fluores-

cence channel, which can be tuned by users to generate a desired appearance for the final

false-colored RGB images (see below). Intensity leveling is achieved by taking a pixel-by-pixel

Fig 1. FalseColor-Python workflow for virtual H&E rendering of a two-channel fluorescent analog of H&E. The following operations are performed

on both channels, but only one is shown for simplicity. (A) 3D data (I) is loaded from disk. (B) A down-sampled version of the dataset (16x down-

sampled here) is extracted, and a background level is calculated for each channel, which is uniformly subtracted from both the down-sampled and full-

resolution original datasets. (C) The down-sampled data is further subdivided into cubes. (D) A preliminary down-sampled 3D leveling map is

generated by calculating the median pixel value for each data cube. (E) A full-resolution 2D leveling map at each depth, αM, is then generated by linear

interpolation. Here, α, is an empirically determined constant for each channel, applied to the entire 3D dataset, which allows users to tune the

appearance of the final false-colored RGB image. (F) To achieve intensity leveling, each 2D plane (i.e. different depth) from the full-resolution data, I, is

divided by its corresponding leveling map, αM. This evens out coarse non-uniformities within the image. (G) The leveled images, If for both channels

are input into the Beer-Lambert model to generate color (RGB) virtual H&E images, (H).

https://doi.org/10.1371/journal.pone.0233198.g001
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ratio of each full-resolution image plane (background-subtracted) and its corresponding inter-

polated intensity-leveling map (Fig 1F). The result is an image in which the median value of

every local region (i.e. data cube) is approximately equal (due to the ratioing step), in which

many of the large-scale (gradual) intensity irregularities are reduced (Fig 1G). Finally, the lev-

eled images from both fluorescence channels are passed into the Beer-Lambert false-coloring

algorithm, which generates a color (RGB) image (Fig 1H). The intensity-leveling and virtual

H&E routines are accelerated with a GPU using the CUDA framework from Python’s Numba

library [26]. A diagram illustrating the full workflow is shown in the methods section.

Note that the size of the data cubes (Fig 1C) that are used for generating an intensity-level-

ing map should be chosen based on the spatial scale of the intensity nonuniformities that one

wishes to correct. For images that exhibit very gradual or minimal intensity variations, larger

cube sizes can be used. Small cube sizes will remove finer-scale intensity fluctuations but may

also remove fluctuations/contrast that are due to real tissue structure rather than staining

artifacts.

To demonstrate the utility of this method, a comparison of virtual H&E staining with and

without intensity-leveling is shown in Fig 2. Here a single plane from a 3D microscopy dataset

of an optically cleared lung specimen is shown. The specimen was stained with a fluorescent

nuclear stain TOPRO-3 Iodide (Cat: T3605, Thermo-Fisher) and was optically cleared with

Ethyl-Cinnamate (Cat: 112372, Sigma-Aldrich) [14]. The cleared tissue volume was then

imaged using OTLS microscopy [27]. The Beer-Lambert false-coloring algorithm was applied

to a single grayscale image without intensity leveling (Fig 2A). In this example, the exterior of

the tissue was stained more heavily than the interior. In Fig 2B, the intensity-leveling proce-

dure was incorporated into the false-coloring routine, such that the false-colored nuclei appear

much more uniform across the entire image.

Colorimetry to mimic standard histology

For the clinical adoption of slide-free digital pathology, virtual H&E algorithms must consis-

tently render virtual H&E images that qualitatively and quantitatively match the coloration of

standard histology. To ensure that FalseColor-Python’s virtual H&E algorithm mimics the

color palettes of standard histology, we measured the color properties of 65 publicly available

whole slide images (H&E) of prostate adenocarcinoma from the Cancer Digital Slide Archive

[28] (Fig 3A). 10 regions of interest (ROIs) were selected from each whole slide image at a

magnification of 200x (20x objective), (Fig 3B). Hematoxylin and eosin stains were segmented

from each region of interest using color deconvolution [29, 30]. The color deconvolution algo-

rithm generated a probability map for each dye, where pixel values represent the probability of

that pixel belonging to one of the top-two color components of the image (i.e. hematoxylin or

eosin), (Fig 3C & 3D). These probability maps were used to create binary masks for each struc-

ture using Otsu’s thresholding method [31]. The binary masks yielded segmented images of

the nuclei (hematoxylin stain) and stroma (eosin stain). This process was repeated for all ROIs

and the median color properties of each stain were quantified and plotted based on the hue,

saturation, value (HSV) color model (Fig 3E & 3F). We used these measured HSV values as a

target for our virtual H&E images. In other words, in FalseColor-Python, we have adjusted the

color parameters used in the Beer-Lambert false-coloring algorithm so that the median HSV

color properties of the virtual H&E images approximate that of standard whole slide images.

For the clinical adoption of slide-free pathology, virtual H&E images not only need to

mimic the color palette of standard H&E but must also be consistent and robust in the pres-

ence of variations between samples, for example due to differences in staining protocols or

imaging parameters. By incorporating intensity-leveling, our virtual H&E algorithm rendered
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Fig 2. False-coloring with and without intensity-leveling. Only one channel is shown for simplicity. (A) Images are shown of a thick

tissue specimen that is labeled (nonuniformly) with a fluorescent nuclear stain (TO-PRO-3), optically cleared, and then imaged with 3D

microscopy. The image is false colored to mimic hematoxylin without intensity-leveling applied. A line profile within the inset clearly

shows that nuclei in the inner region of the tissue (yellow arrow) are dimmer than nuclei on the exterior (blue arrow). When false

colored, the nuclei on the exterior appear much darker (bottom panel). (B) The same field of view is shown after intensity leveling is

applied. Nuclei across the field of view exhibit similar intensities, and when false colored, are much more uniform in appearance. Scale

bars: 100 μm.

https://doi.org/10.1371/journal.pone.0233198.g002
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images with similar appearance despite inter-sample intensity differences. As an example, fluo-

rescent images of two prostate tissue samples are shown in Fig 4A, in which significant differ-

ences in fluorescence intensities are seen (when imaged with the same device and settings).

The intensity levels for each fluorescence channel (TO-PRO-3 and eosin) are shown in the

accompanying histograms. Despite these differences in intensity, the resulting virtual H&E

images of each sample are qualitatively and quantitatively similar. On the right-most column

of Fig 4A, a histogram of the value (V) component of each virtual H&E image is plotted and is

comparable for both images after the intensity-leveled false-coloring routine is applied.

To quantitatively compare the consistency of FalseColor-Python with standard H&E histol-

ogy, we measured the HSV color model parameters for 2100 virtual H&E images from 14 sam-

ples of prostate tissue imaged with 3D OTLS microscopy and then processed with FalseColor-

Fig 3. Measuring the color properties of histology images. (A) A whole slide image of prostate adenocarcinoma from the Cancer Digital Slide Archive,

cancer.digitalslidearchive.org. Scale bar: 2 mm (B) Magnified inset of (A). Scale bar: 75 μm (C, D) Process to segment the hematoxylin and eosin

components. Using color deconvolution, a probability map is generated for the top two components of each ROI from the whole slide image (right

panel). A binary mask is created for each of the two components by applying Otsu’s thresholding to the probability map (middle panel). This yields a

segmented image of the nuclei (hematoxylin stain) and cytoplasm (eosin stain) (left panel). Scale bar: 75 μm (E, F) After segmentation of all ROIs, the

median values of hue, saturation, and value (HSV color model) are quantified and plotted for both the hematoxylin-stained and eosin-stained tissue

components.

https://doi.org/10.1371/journal.pone.0233198.g003
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Fig 4. Inter-specimen consistency of virtual H&E images. (A) OTLS images of prostate tissue with different staining intensities. Despite significant

differences in intensity between example I and II, the virtual H&E images appear qualitatively and quantitatively similar. Histograms are shown of the

fluorescence intensities within each image, and the value (V) component of the virtual H&E images. (B) Distribution of median color properties for 650

standard H&E and 2100 virtual H&E images of prostate tissue. Whiskers on the box plots indicate the 10th and 90th percentiles for each distribution.

The distributions for standard H&E exhibit the high degree of color variation seen in conventional histology. The virtual H&E images rendered with

FalseColor-Python accurately mimic the coloration of standard H&E with significantly less variation in color parameters than conventional H&E.

Standard deviations for each distribution are listed below each plot.

https://doi.org/10.1371/journal.pone.0233198.g004
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Python. To measure the color properties of the virtual H&E images, we used the same color-

deconvolution method that was used to measure the color properties of whole slide images

from the Cancer Digital Slide Archive (described previously). It should be noted that while the

color parameters were adjusted to allow our virtual H&E images to match the color parameters

of standard H&E images, once these values were determined, all virtual H&E images used in

this analysis were processed in a fully automated fashion using the exact same parameters for

intensity-leveling and coloration. Our results show that the color properties of virtual H&E

data processed with FalseColor-Python match the measured values of standard H&E, as

expected (Fig 4B). Furthermore, the color properties of virtual H&E images processed with

FalseColor-Python are much more consistent (less standard deviation) than the color proper-

ties of standard H&E-stained whole slide images. Table 1 lists the median and standard devia-

tion of each color property for both standard and virtual H&E. Finally, an image atlas is shown

in Fig 5 to demonstrate that FalseColor-Python renders consistent virtual H&E images across

tissue types and to demonstrate that FalseColor-Python is easily adjusted to mimic other color

spaces in standard histology (DAB staining).

Discussion

We have developed FalseColor-Python, a rapid intensity-leveling and digital-staining package

for converting grayscale fluorescence images into color images that mimic conventional chro-

mogenic (absorption-based) stains. In particular, we demonstrate the rendering of virtual

H&E images from thick tissues stained with a fluorescent analog of H&E and imaged in 3D.

To improve the consistency of our false-coloring method in the presence of both inter-sample

and intra-sample variations in staining/intensity, we have developed and incorporated a 3D

intensity-leveling routine (Figs 1 & 2). We analyzed the color properties of standard H&E

images (Fig 3) and used this data to ensure that the virtual H&E images rendered by FalseCo-

lor-Python are representative of standard histology. Our results show that the virtual H&E

images rendered by FalseColor-Python are qualitatively and quantitatively similar to standard

H&E histology regardless of variations in intensity, as for example due to differences in sample

preparation, imaging device, and/or imaging parameters (Fig 4). In particular, we have shown

that FalseColor-Python renders virtual H&E images that not only quantitatively match the

appearance of standard H&E images, but with less variability in coloration than is seen with

standard histology (Fig 4B).

The ability to render quantitatively and qualitatively consistent virtual H&E images is of

critical importance for the adoption of fluorescence-based imaging methods in anatomic

pathology. Staining non-uniformities and depth-dependent intensity variations are common

data-quality issues in fluorescence imaging, particularly for nondestructive slide-free 3D imag-

ing modalities. In developing this intensity-leveling technique, we have taken advantage of the

multiple down-sampled versions of an imaging dataset that are stored in a multi-resolution

image format such as HDF5 (Fig 1A). However, down-sampling of imaging data is

Table 1. Measured median color properties of standard and virtual H&E images in HSV color space. Standard H&E properties are measured from 10 ROIs from each

of 65 whole slide images (prostate). Virtual H&E properties are measured from 2100 two-dimensional “optical sections” from 14 prostate specimens.

Hematoxylin Eosin
Standard Virtual Standard Virtual

Hue 0.811 ± 0.043 0.808 ± 0.009 0.910 ± 0.023 0.901 ± 0.010
Saturation 0.453 ± 0.095 0.457 ± 0.055 0.381 ± 0.119 0.310 ± 0.039
Value 0.494 ± 0.111 0.502 ± 0.048 0.788 ± 0.087 0.811 ± 0.025

https://doi.org/10.1371/journal.pone.0233198.t001
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straightforward and intensity-leveling maps can be generated from any 3D imaging data. For

our 3D microscopy data, optimal performance has been seen with data cubes of 100 x 100 x

100 μm3 however, users can make adjustments as needed to best suit their data. This tunability

is demonstrated in an example located on our GitHub repository. Finally, for certain images

with intensity nonuniformities, enhanced performance is seen using an implementation of

contrast-limited adaptive histogram equalization (CLAHE) as a pre-processing step before

intensity-leveling is performed. This is included as an optional method within FalseColor-

Python but was not used in the examples shown in this study. More specifically, CLAHE is

included as an optional method for use in cases where intensity changes within the sample are

large over small distances such that intensity leveling alone may be insufficient to yield qualita-

tively acceptable results. For example, thick tissues stained with large agents that have difficulty

diffusing into tissue interiors may see improved results by applying CLAHE before false color-

ing to enhance relative signal strength between high- and low-signal regions. However,

CLAHE should be used judiciously since it can also increase noise in the images.

In terms of limitations, our intensity-leveling method is best suited for images where stain-

ing is present throughout the entirety of the sample, but where the spatial variations in that sig-

nal are gradual compared with the high-resolution features of interest (e.g. Fig 2) In cases in

which large-scale (gradual) intensity variations are biologically real and informative to end

users (e.g. pathologists), there is the possibility that our intensity-leveling methods will mask

(i.e. flatten) such global-intensity variations. However, this could be mitigated by tuning the

size of the data-partitioning cubes as outlined in Fig 1.

A significant outcome of this study is that virtual H&E images rendered by FalseColor-

Python exhibit significantly less variability in color parameters than standard histology. This is

not surprising considering the obvious differences in appearance seen in histology images gen-

erated by independent labs, and even within individual labs at different times. The measured

median color-property values of our virtual H&E images were all well within one standard

deviation of the color properties of standard H&E images.

We recognize that the standard H&E data used in this analysis represents a subset of all pos-

sible color presentations found in histology. Further, we acknowledge that there is a high

degree of subjectivity and personal preference regarding the optimal coloration for standard

H&E images. Therefore, it is possible to tune the appearance of false-colored images if so

desired. For simplicity, RGB color parameters, which are easily measured from any image, are

included as arguments in FalseColor-Python’s Beer-Lambert false-coloring algorithm so that

users can make adjustments as needed. The leveling constant, α, is used to control the relative

intensity of each channel, which affects the appearance of the final virtual H&E image. For our

OTLS datasets, we found that α values of 1.5 and 3.7 were appropriate leveling constants for

the hematoxylin and eosin channels, respectively. These particular values allowed the color

properties of our virtual H&E data to consistently match the measured values derived from

standard H&E images (Fig 3). Lower values of α result in a darker/stronger staining appear-

ance. Further discussion of adjusting color settings is provided in an example on the online

repository (see GitHub link at the end of this article).

Note that all methods used for colorimetry analysis of standard and virtual H&E images

(e.g. Fig 3) are included in FalseColor-Python. As mentioned in the introduction, FalseColor-

Python is easily adapted for other fluorescence-to-chromogenic staining transformations, for

example to render images that mimic chromogenic immunohistochemistry (i.e. DAB stain)

(Fig 5C & 5F).

FalseColor-Python contains several methods that use GPU acceleration. For example,

CUDA-based implementations of the Beer-Lambert false-coloring algorithm are included in

FalseColor-Python as well as several preprocessing steps such as intensity-leveling, image
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sharpening, and background subtraction. For users without access to GPU hardware, equiva-

lent CPU-based processing methods are available as alternatives in FalseColor-Python. In a

simple speed comparison, we measured the average time to process 200 two-channel 16-bit

images (2048 x 2048 pixels each) with FalseColor-Python, using either GPU- or CPU-based

Beer-Lambert false-coloring algorithms and preprocessing steps (i.e background subtraction,

Fig 5. False-coloring image atlas. Thick tissues were stained with a fluorescent analog of H&E (A, B, D, E), or an

antibody targeting the high molecular weight keratin (HMWK), CK-8, along with the nuclear stain, TO-PRO-3 (C, F).

All tissues were optically cleared and imaged in 3D with an open-top light-sheet (OTLS) microscope. (A) Skin. (B)

Kidney. (C) Prostate. (D) Basal layer of the epidermis. (E) Kidney tubules. (F) Prostate glands (carcinoma). Virtual

H&E images were processed with identical code parameters in a fully automated fashion. Virtual IHC images were

processed with an identical code, but with coloring parameters changed to mimic the chromogen DAB (brown stain)

and hematoxylin (blue stain). These codes and parameters are provided in our GitHub repository (see provided link).

Scale bars: 500 μm for A-C, 50 μm for D-F.

https://doi.org/10.1371/journal.pone.0233198.g005
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intensity-leveling). The GPU-based process was faster by over a factor of 6 (116 +/- 17 ms per

image vs. 789 +/- 18 ms per image). There is room for further improvement by developing

objects and methods within FalseColor-Python that can process large 3D datasets in parallel.

For example, implementing multi-resolution file formats that allow for parallelized read opera-

tions (e.g. N5 instead of HDF5) will enable FalseColor-Python to process 3D datasets even

more efficiently. Parallelized processing in FalseColor-Python is discussed in an example on

the GitHub repository.

In summary, FalseColor-Python renders virtual H&E images that qualitatively and quanti-

tatively match the coloration of standard H&E images, as well as other chromogenic stains. A

key component of FalseColor-Python is the incorporation of an intensity-leveling method that

corrects for intensity non-uniformities commonly seen in 3D fluorescent datasets, both within

one sample and between different samples (i.e. intra- and inter-specimen variability). The

color settings in FalseColor-Python are customizable to suit user preferences, with interpret-

able parameters that facilitate error identification and troubleshooting. FalseColor-Python is

equipped with GPU-accelerated methods that allow it to process large 3D datasets efficiently.

Developers who are interested in contributing to FalseColor-Python should submit pull

requests via the GitHub repository.

Detailed methods

OTLS imaging

Tissue samples were stained with a fluorescent nuclear stain, TO-PRO-3 (Cat: T3605,

Thermo-Fisher) at a 1:2000 dilution and eosin (Cat: 3801615, Leica Biosystems) at a 1:2000

dilution for 4 hours at room temperature with light shaking. Samples were optically cleared

with ethyl-cinnamate (Cat: 112372, Sigma-Aldrich). Stained and cleared samples were imaged

on a custom OTLS system [14]. A 660-nm laser was used to excite the nuclear dye, TO-PRO3,

and a 561-nm laser was used to excite eosin. Each channel was imaged separately, in succes-

sion, with a 16-bit sCMOS camera. For more information on OTLS imaging see our previous

publications [12–14].

Image processing

Two channel OTLS datasets were stored on disk in the HDF5 format with metadata in an

XML file structured for analysis using BigStitcher [27]. A custom compression filter (B3D) was

used to provide 10x compression. The fine alignment of all OTLS data was performed in Big-

Stitcher and fused to disk as a separate HDF5 file. Before virtual H&E rendering (as described

in the manuscript), an optional sharpening routine was used on each image to enhance edges.

The full workflow is outlined in the diagram of Fig 6.

Intensity-leveling maps (Fig 1D) are generated by calculating the median intensity value

within a specified 3D image volume (data cube). For an input image I, with specified back-

ground threshold b, the pixel value M for the intensity leveling map is given by:

M ¼ medðIi;j;k > bÞ; if medðIi;j;kÞ > b ð1Þ

M ¼ A; if medðIi;j;kÞ < b ð2Þ

Here i, j, k indicates the index. The pixel value of the intensity leveling map is set to the

median value of the data cube above the background threshold, Eq (1). If the median value

within the data cube falls below the background threshold, the level is set to a constant value,

A, which is equal to the 95th percentile of I by default, Eq (2). This ensures that low-signal
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background regions appear black in the intensity-leveled image (Fig 1G) and that they appear

white in the false-colored (e.g. H&E mimicking) RGB image (Fig 1H).

Virtual H&E rendering of two-channel fluorescence images was achieved using the Beer-

Lambert false-coloring algorithm [18]. Grayscale intensities are converted into RGB images

Fig 6. Diagrammatic flow. Processes occur for each channel consecutively. Operations that act on 3D image data are

highlighted in green and 2D operations are highlighted in blue. Input arguments such as file path, image planes to

process (identified with HDF5 z-index), and desired intensity-leveling constants are parsed for processing. Low-

resolution data is read into memory and the initial intensity-leveling map is generated. Background levels are

computed from the low-resolution data. Full-resolution images are read into memory for processing. Full-resolution

data undergoes background subtraction and image sharpening as preprocessing steps. The full-sized intensity-leveling

map is generated via linear interpolation. Intensity leveling is applied to each image. The intensity-leveled images

undergo the Beer-Lambert false-coloring process, and the resulting RGB image is saved to disk. Writing to disk occurs

in a separate thread for efficiency, indicated by the dashed box.

https://doi.org/10.1371/journal.pone.0233198.g006
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via:

I H;Eð Þ ¼ exp �
jnH
aHMH

� �

� exp �
knE
aEME

� �

ð3Þ

where H, E are fluorescent images, MH,E is the 2D image leveling map for each channel, α is

the intensity-leveling constant for each channel, jn, kn are the color settings for hematoxylin

and eosin respectively and n = R, G, B. Based on the colorimetry measurements described in

the manuscript (Fig 3), we adjusted FalseColor-Python’s hematoxylin and eosin color parame-

ters until the measured color properties of virtual H&E images consistently matched those of

standard H&E. After this calibration no further adjustments were necessary. Table 2 lists the

RGB color settings used for processing OTLS images. For leveling our OTLS images, αH = 1.5

and αE = 3.7 were chosen as scaling constants for the majority of our datasets.

GPU acceleration for image processing was done using the cuda.jit decorator from the

Numba library [26]. Implementation of GPU acceleration is done in such a way that the user

needs no experience with the CUDA framework to accelerate their code (see examples on the

GitHub repository). To achieve GPU acceleration, users only require a virtual environment

equipped with the Anaconda’s cudatoolkit [32] and a CUDA capable GPU. GPU processing

was done with a Nvidia Quadro P4000. A script containing the workflow as described in Fig 1

can be found on the GitHub repository.

Histology data collection

To quantify the HSV color space of traditional histopathology, 65 whole slide images of pros-

tate adenocarcinoma biopsies from the Cancer Genome Atlas, cancer.digitalslidearchive.org
[28] were examined, 10 equally sized fields of view from each whole slide image were taken at

20x magnification.

Color-Space quantification

To accurately analyze the color space of histology and OTLS images, the hematoxylin and

eosin channels were separated from one another via a binary mask generated by color decon-

volution from the scikit-image.color python package [30]. This color deconvolution-based seg-

mentation was used for both standard and virtual H&E images. A binary mask was generated

for each structure by first applying a median filter to the result of the color deconvolution, and

then applying Otsu’s thresholding method [31]. Small objects were removed from the initial

mask using an area threshold. A binary opening with a structuring element of a disk, r = 3, was

applied to the resulting image. The input RGB image was converted to HSV space and then

each mask was applied to generate the final segmented image for each structure. This process

was repeated across 650 regions of interest taken from publicly available prostate adenocarci-

noma whole slide images and 2100 OTLS virtual H&E images from 14 prostate samples. Once

each structure was segmented, the median value for each color property (HSV) was recorded

Table 2. Reference jn, kn values for virtual H&E coloration in RGB space.

Hematoxylin Eosin
R 0.17 0.05

G 0.27 1.00

B 0.105 0.54

https://doi.org/10.1371/journal.pone.0233198.t002
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from each segmented image. Zero valued areas, which resulted from the application of the

binary mask, were ignored.

Code availability

The full FalseColor-python code, example data, and colorimetry analysis methods, are publicly

available at https://github.com/serrob23/falsecolor. The repository includes instructions for

installation and annotated examples.

Programming language

Python 3.6+ is used in FalseColor-Python. Some features may be unavailable on older versions.

A full list of dependencies and requirements is available on GitHub.
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