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Utilizing human intelligence in artificial intelligence for detecting 
glaucomatous fundus images using human‑in‑the‑loop machine learning

Prasanna Venkatesh Ramesh, Tamilselvan Subramaniam1, Prajnya Ray2, Aji Kunnath Devadas2,  
Shruthy Vaishali Ramesh3, Sheik Mohamed Ansar4, Meena Kumari Ramesh5, Ramesh Rajasekaran6,  

Sathyan Parthasarathi7

Access this article online
Website:  
www.ijo.in
DOI:  
10.4103/ijo.IJO_2583_21
PMID:  
*****

Quick Response Code:

Purpose: For diagnosing glaucomatous damage, we have employed a novel convolutional neural 
network  (CNN) from TrueColor confocal fundus images to conquer the black box dilemma in artificial 
intelligence  (AI). This neural network with CNN architecture with human‑in‑the‑loop  (HITL) data 
annotation helps not only in diagnosing glaucoma but also in predicting and locating detailed signs in the 
glaucomatous fundus, such as splinter hemorrhages, glaucomatous optic atrophy, vertical glaucomatous 
cupping, peripapillary atrophy, and retinal nerve fiber layer  (RNFL) defect. Methods: The training was 
done on a well‑curated private dataset of 1,400 high‑resolution confocal fundus images, out of which 1,120 
images (80%) were used exclusively for training and 280 images (20%) were used exclusively for testing. 
A custom trained You Only Look Once version 5 (YOLOv5)‑based object detection methodology was used 
to identify the underlying conditions precisely. Twenty‑six predefined medical conditions were annotated 
by a team of humans (comprising two glaucoma specialists and two optometrists) by using the Microsoft 
Visual Object Tagging Tool (VoTT) tool. The 280 testing images were split into three groups  (90,100, and 
90 images) for three test runs done once every 15 days. Results: Test results showed consistent increments 
in the accuracy, from 94.44% to 98.89%, in predicting the glaucoma diagnosis along with the detailed signs 
of the glaucomatous fundus. Conclusion: Utilizing human intelligence in AI for detecting glaucomatous 
fundus images by using HITL machine learning has never been reported in the literature before. This 
AI model not only has good sensitivity and specificity in accurate glaucoma predictions but is also an 
explainable AI, thus overcoming the black box dilemma.
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Artificial intelligence (AI) in the field of glaucoma diagnosis 
is getting increasingly popular, with the usage of a basic 
convolutional neural network  (CNN) for enhancing and 
upgrading patient care.[1‑6] A well‑trained CNN can identify 
various pathologies of the fundus.[7] However, the previously 
reported AI models with CNN were criticized by the 
ophthalmological community due to the black box dilemma. 
In the black box dilemma, the CNN‑based systems analyzed 
the data based upon their own self‑generated rules. The real 
rationale behind why and how the predictions were made in the 
first place was not clearly understood.[8] Any ophthalmologist 
would always expect the AI results to not only predict the 
diagnosis but also predict and locate detailed signs in the fundus 
images in a detailed manner, such as splinter hemorrhages, 
glaucomatous optic atrophy, vertical glaucomatous cupping, 

peripapillary atrophy, and retinal nerve fiber layer  (RNFL) 
defect. For any successful AI algorithm, the base starts with data 
annotation.[9] If there is no annotated data in the first place, then 
there is no machine learning algorithm to detect the image. This 
is where the human interface comes into play in the process of 
data annotation. Annotating data, also known as labeling data, 
is the first and most important step in creating a successful AI 
model.[9] One such image annotation tool that can be utilized by 
all for comprehensive and customized data labeling is Microsoft 
Visual Object Tagging Tool (VoTT).[10] Customized annotation 
of optic nerve head and retinal nerve fiber layer (RNFL) images 
can prove useful in not only identifying glaucomatous discs but 
also in predicting various segmentations of the glaucomatous 
cup, disc, peripapillary atrophy, and RNFL defect from the 
background fundus.[11] This methodology of annotations, 
though time‑consuming, can be utilized by all ophthalmologists 
to create their own human‑in‑the‑loop (HITL) AI model.
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images but also in predicting and locating detailed signs in the 
glaucomatous fundus images. The idea was to overcome the 
black box dilemma by creating an explainable AI with HITL 
machine learning.

Methods
We used a well‑curated private dataset consisting of 
1,400 high‑quality confocal fundus images in the interest of 
building an efficient AI model to aid the ophthalmologists in 
practice. The 1,400 images were split into 80% (1,120 images) 
and 20% (280 images) for training and testing, respectively. 
A team of humans (comprising two glaucoma specialists and 
two optometrists) annotated the 1,120 training images with 
predefined 26 medical conditions pertaining to glaucoma by 
using Microsoft VoTT [Fig. 1].

Process of annotations
From June 2021 to July 2021  on a daily basis, annotation of the 
existing glaucoma fundus image dataset was performed with 
a team of two glaucoma specialists and two optometrists. Only 
high‑resolution TrueColor confocal images were utilized for 
annotations. We shortlisted the Sansten AI toolbox that supports 
the human‑in‑the‑loop annotation and human validation 
process [Fig. 2]. The annotation team created a predefined list 
of 26 glaucomatous fundus signs that were relevant to identify 
the glaucomatous damages that existed in the fundus image.

Based on their clinical schedule, the ophthalmology AI team 
of Mahathma Eye Hospital Private Limited, Trichy conducted 
the annotation process with approximately 40–50 image 
annotations per day. The annotation time varies from image to 
image and also varies according to the shapes of annotations 
and the number of glaucomatous findings. It includes multiple 
bounding boxes, circular, and freestyle shapes. Few sample 
source images with multiple glaucomatous fundus signs and 
respective annotated images are shown in Fig. 1. After human 
annotations, the dataset was sent for training. The primary 
expectation during training was to employ the AI model with 
glaucomatous damage detection from the fundus images by 
using computer‑aided object detection algorithms.[12]

This study involved human participants, where there were 
no direct interactions with humans, as their fundus images 
were only used for the study. Ethics approval for this study was 
obtained from an Independent Ethics Committee (Institutional 
Review Board), and the study adhered to the tenets of the 
Declaration of Helsinki. Informed written consent was obtained 
from all the study participants.

Algorithm employed for training ‑   You only look once 
version 5 (YOLOv5)
The computer‑aided object detection algorithm used here 
to precisely identify the underlying conditions is YOLOv5. 
YOLOv5 looks at the fundus as numerous segments rather 
than viewing the fundus image as a whole. This customized 
tool was able to identify and illustrate customized anchor boxes 
over multiple areas within the glaucomatous fundus images.

For performing the final detection part, we used the 
model head network algorithm (as shown in Table 1), which 
generates the final output vectors with objectness scores, class 
probabilities, and bounding boxes that apply the anchor boxes 
on glaucomatous fundus features [Fig. 3].

In this paper, we have employed a novel CNN approach in 
not only diagnosing glaucoma from TrueColor confocal fundus 

Figure 2: Image showing the methodology workflow of this study

Figure 1: (a) Sample fundus photograph of an eye with glaucomatous 
cupping and retinal nerve fiber layer defect utilized for annotating. 
(b) Customized labeling of the optic cup  (green‑dotted area). 
(c) Customized labeling of bayoneting signs  (red‑dotted area). 
(d) Customized labeling of superior notching  (blue‑dotted area). 
(e) Customized labeling of the optic disc  (pink‑dotted area). 
(f) Customized labeling of peripapillary atrophy  (gray‑dotted area). 
(g) Customized annotation of the retinal nerve fiber layer  (RNFL) 
defect (green‑dotted area). (h) Complete annotation of a fundus image 
with glaucomatous changes in the optic nerve head and RNFL region
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Statistics and Results of the Testing Images
The 1,400 images were split up into 80% and 20% for training 
and testing, respectively [Table 2]. The descriptive statistics of 
the 280 testing images [Table 3] in the form of frequencies and 
percentages were calculated. The collected MS‑Excel coded 
data were analyzed using SPSS (Statistical Package for Social 
Scientist; version 20, IBM USA), which is later calculated in 
the form of frequencies, and percentages. The 2D and 3D 
distributions of the annotation dataset are depicted in Fig. 4. 
The AI tool was evaluated with mean average precision (mAP), 
which was calculated by taking the average precision  (AP) 
over all classes and/or over all intersection over union (IoU) 

thresholds. The IoU thresholds were calculated by dividing 
the area of overlap with the area of union.

The initial training [Fig. 5a] showed the mAP@0.5 to be 
25% or below and mAP@0.95 to be 10% or below, and the 
final training [Fig. 5b] achieved a better accuracy of mAP@0.5 
to be 60% or below and mAP@0.95 to be 27% or below, 
respectively. The 280 images used for testing were split into 
90, 100, and 90 for three test runs done once every 15 days. 
These tests showed consistent increments in the accuracy 
from 94.44% to 98.89% in predicting the diagnosis, severity, 
and detailed findings  [Table  3]. Test 1 predictions were 
performed following the first 15 days of annotations. Test 

Figure 3: A sample of the batch size of eight image predictions during training, consisting of class probabilities, objectness scores, and bounding 
boxes
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2 predictions were performed following the next 15 days of 
annotations. Test 3 predictions were performed following the 
next 15 days of annotations. From test 1 to test 3, there was 
an increment in the sensitivity from 90.24% to 100% and in 
the specificity from 97.96% to 98.14% (as shown in Tables 4, 
5, and 6, respectively).

Discussion
Glaucoma, also called the silent thief of sight, is one of 
the leading causes of irreversible blindness in developing 
countries like India. It typically increases the intraocular 
pressure inside the eye and damages the optic nerve which 
results in blindness. In developing countries like India, 
diagnosis of glaucoma is still a challenge; this is where a good 
explainable AI model with reliable sensitivity and specificity 
will aid in rapid screening and detection.

Review of Literature ‑   What was previously known or 
reported
Akkara et al.[13] explained several studies and their importance 
pertaining to AI and machine learning (ML) in glaucoma from 
color fundus photographs. Li et al.[1] stated that they achieved 

Table 1: The model head used to perform the final detection part
# parameters 
nc: 24 # number of classes 
depth_multiple: 0.67 # model depth multiple 
width_multiple: 0.75 # layer channel multiple 
 
# anchors 
anchors: 
 ‑ [10,13, 16,30, 33,23] # P3/8 
 ‑ [30,61, 62,45, 59,119] # P4/16 
 ‑ [116,90, 156,198, 373,326] # P5/32 
 
# custom backbone 
backbone: 
  # [from, number, module, args] 
 [[‑1, 1, Focus, [64, 3]], # 1‑P1/2 
  [‑1, 1, Conv, [128, 3, 2]], # 2‑P2/4 
  [‑1, 3, Bottleneck, [128]], 
  [‑1, 1, Conv, [256, 3, 2]], # 4‑P3/8 
  [‑1, 9, BottleneckCSP, [256]], 
  [‑1, 1, Conv, [512, 3, 2]], # 6‑P4/16 
  [‑1, 9, BottleneckCSP, [512]], 
  [‑1, 1, Conv, [1024, 3, 2]], # 8‑P5/32
[‑1, 1, SPP, [1024, [5, 9, 13]]], 
  [‑1, 6, BottleneckCSP, [1024]], # 10 
  ]

# custom head 
head: 
 [[‑1, 3, BottleneckCSP, [1024, False]], # 11 
  [‑1, 1, nn.Conv2d, [na * (nc+5), 1, 1, 0]], # 12 (P5/32‑large) 
 
  [‑2, 1, nn.Upsample, [None, 2, 'nearest']], 
  [[‑1, 6], 1, Concat, [1]], # cat backbone P4 
  [‑1, 1, Conv, [512, 1, 1]], 
  [‑1, 3, BottleneckCSP, [512, False]], 
  [‑1, 1, nn.Conv2d, [na * (nc+5), 1, 1, 0]], # 17 (P4/16‑medium) 
 
  [‑2, 1, nn.Upsample, [None, 2, 'nearest']], 
  [[‑1, 4], 1, Concat, [1]], # cat backbone P3 
  [‑1, 1, Conv, [256, 1, 1]], 
  [‑1, 3, BottleneckCSP, [256, False]], 
  [‑1, 1, nn.Conv2d, [na * (nc+5), 1, 1, 0]], # 22 (P3/8‑small) 
 
  [[], 1, Detect, [nc, anchors]], # Detect (P3, P4, P5)

Table 2: The private dataset of the high‑resolution fundus 
images split‑up into 80% and 20% for training and testing 
respectively

Training Images Testing Images

Count 1,120 280
Percentages 80% 20%

Figure 4: (a) 2D distribution graph showing the annotations which were repeatedly used depicted as spikes. (b and c) 3D distribution graph 
showing repeated annotations seen as warmer colors

cba
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high sensitivity  (95.6%) and specificity  (92%) in detecting 
referable glaucomatous optic neuropathy from fundus 
photographs by utilizing deep learning (DL) algorithms. They 
also mentioned confounding factors and their influence on 
the results, such as high myopia led to false negatives and 
physiological cupping led to false positives in their study. 
Al‑Aswad et al.  assessed Pegasus (Visulytix Ltd., London, UK), 
a DL technology to identify glaucomatous optic neuropathy 
from color fundus photographs, and showed that it outmatched 
5 out of 6 ophthalmologists who participated in that study.[2] 
Another AI that identifies glaucomatous fundus photographs 
was stated by Netra.AI (Leben Care Technologies Pte., Ltd).[13]

Several other studies also explained several techniques to 
identify glaucomatous optic neuropathy from optic disc fundus 
photographs. Cerentini et  al. used GoogLeNet to develop 
an automatic classification method to detect glaucomatous 
changes in fundus images.[4] Haleem et  al. used a novel 
technique for automatic boundary detection of optic disc 
and cup to aid automatic glaucoma diagnosis from fundus 
photos.[5] Thompson et al. used deep learning to measure the 
NRR loss from optic disc photos.[6] Indian start‑up, Kalpah 
Innovations  (Vishakhapatnam, India) released the Retinal 
Image Analysis  – Glaucoma  (RIA‑G) cloud‑based software 
in 2016 to analyze fundus images to look for the likelihood of 
glaucoma.[14]

Figure 5: (a) Image showing the quality of training during the beginning of training with respect to GLoU, objectness. classification, precision, and 
recall. (b) Image showing the quality of improvement at the end of the training with respect to GLoU, objectness, classification, precision, and recall
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The new facts reported in this study
The major limitation in all the above models was that they did 
not overcome the black box dilemma. Most of them were having 
good performance, but they were less explainable in terms of 
how the final glaucoma diagnosis was arrived at. We have 
created an explainable AI model with good interpretability, 
which helps to overcome the black box dilemma. It learns 

continuously with regular improvement in the accuracy of 
predictions, in not only identifying the condition but also 
predicting all detailed signs in the glaucomatous fundus 
with bounding boxes. In addition, this AI toolbox monitors 
the accuracy of predictions continuously and utilizes human 
feedback  [Fig.  3] to calibrate the models, which help in 
identifying the conditions and eliminating the error rate over 
time.[8] Studies have noted that under the influence of the 
data quality, the model’s performance is affected.[15] Thus, 
TrueColor confocal fundus photographs were utilized for the 
research, which yields good‑quality high‑resolution images, 
thus improving the interpretability.

Human annotations ‑ HITL
In this study, few annotations were repeatedly used, such 
as notching, cupping, laminar dot sign, and bayonetting 
sign, along with RNFL defects. In the 2D graph, these 
annotations were seen as spikes  [Fig.  4a], and in the 3D 
graph, these repeated annotations were seen as warmer 
colors  [Fig.  4b&c]. The distribution of the annotation 
bounding boxes reveals that the smaller bounding boxes were 
used more frequently (depicted by the warmer colors). The 
main reason for that in this study is that  we used multiple 
human annotations and many detailed small signs such 
as bayonetting signs, baring of circumlinear vessels were 
annotated separately with small bounding boxes.

This novel VoTT annotation tool employs human glaucoma 
specialists and optometrists to do the complex labeling of a 
glaucomatous fundus, where every aspect of the glaucomatous 
disc and background fundus is labeled by them. Though 
time‑consuming, there is a pairing of humans with the machine 
and not the supremacy of one over the other, thus catering to 
a team effort involving machines and humans. Customized 
human‑led data annotation process of labeling datasets can 
pave the path for AI training and predictions, where the pairing 
of humans and machines using HITL machine learning can 
yield good results. Thus, there is definitely a big role for HITL 
machine learning, especially in medical science, where it is 
unwise to have a black box problem. This will not only speed 
up machine learning but also make it more accurate, reliable, 
and trustworthy.[16]

You only look once version 5 ‑ Object detection methodology
We used a YOLOv5‑based object detection methodology to 
precisely train the underlying glaucomatous fundus images. 
YOLOv5 algorithm works accurately by drawing a bounding 
box around the fundus signs by using the bounding box 
regressor.[17] YOLOv5‑based object detection methodology 
helps to train and identify glaucomatous fundi in less than 
a second. In addition, with continuous training, there was 

Table 3: The split‑up of the 280 testing images into three different testing groups (90+100+90). Test 1 predictions were 
performed after the first fifteen days of annotations. Test 2 predictions were performed after the next fifteen days of 
annotations. Test 3 predictions were performed after the final one month of annotation. With time there is a surge in the 
no. of correct predictions as the machine is learning with more data

Test Total 
Images

No. of images in which all the detailed 
findings were correctly predicted n (%)

No. of images in which all the detailed 
findings were wrongly predicted n (%)

Test 1 90 85 (94.44) 5 (5.56)

Test 2 100 98 (98) 2 (2)
Test 3 90 89 (98.89) 1 (1.11)

Table 4: This table shows the distribution of specificity 
and sensitivity of the 90 images in Test 1. TP ‑ True 
Positive; FN ‑ False Negative; TN ‑ True Negative; 
FP ‑ False Positive

Condition exists Condition does 
not exist

Total

Test Positive 37 (True Positive) 1 (False Positive) 38

Test Negative 4 (False Negative) 48 (True Negative) 52

Total 41 49 90

Sensitivity TP/TP + FN 37/(37+4) 90.24%
Specificity TN (TN + FP) 48/(48+1) 97.96%

Table 5: This table shows the distribution of specificity 
and sensitivity of the 100 images in Test 2. TP ‑ True 
Positive; FN ‑ False Negative; TN ‑ True Negative; 
FP ‑ False Positive

Condition 
exists

Condition 
does not exist

Total

Test Positive 28 1 29

Test Negative 1 70 71

Total 29 71 100

Sensitivity TP/TP + FN 28/(28+1) 96.55%
Specificity TN (TN + FP) 70/(70+1) 98.59%

Table 6: This table shows the distribution of specificity 
and sensitivity of the 90 images in Test 3. TP ‑ True 
Positive; FN ‑ False Negative; TN ‑ True Negative; 
FP ‑ False Positive

Condition exists Condition does 
not exist

Total

Test positive 36 (True Positive) 1 (False Positive) 37

Test negative 0 (False Negative) 53 (True Negative) 53

Total 36 54 90

Sensitivity TP/TP + FN 36/(36+0) 100%
Specificity TN (TN + FP) 53/(53+1) 98.14%
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an increase in the number of correct predictions, resulting 
in subsequent incremental machine learning. The system 
automatically identifies glaucomatous damage along with 
subtle details in the predicted images  [Fig.  6a-d], such as 
notching, cupping, laminar dot sign, and bayonetting sign, 
along with RNFL defects.

Incremental improvements from Test 1 To Test 3
The objectness loss  (i.e., objects marked wrongly by AI) 
was almost the same in test 1 and test 3 (3%). Similarly, the 
classification loss (i.e., classification marked wrongly by AI) 
was also the same in test 1 and test 3 (8.5%). The success of this 
study was that the precision increased from 22% in test 1 to 
45% in test 3. The recall increased from 35% in test 1 to 70% in 
test 3. The initial training showed that the mAP@0.5 was 25% 
or below and the mAP@0.95 to be 10% or below, and the final 
training module achieved a better accuracy of mAP@0.5 to be 
60% or below and mAP@0.95 to be 27% or below, respectively. 
Among the 280 testing images, from test 1 to test 3, the number 
of correct glaucomatous predictions that included all detailed 
signs increased from 94.44% to 98.89%. Moreover, the number 
of images in which some of the detailed signs were wrongly 
predicted decreased from 5.56% to 1.11%. Although objectness 
loss and classification loss remained the same in both the tests, 
all the other parameters, such as precision, recall, mAP, and 
the glaucomatous predictions were in favor of a good machine 
learning AI model.

In this study, the test data and training data were different 
and never integrated.

The same dataset could have been utilized for the 
subsequent tests, but we chose to run our tests with different 
independent datasets in all three instances to create a real‑time 
practical scenario. Just like the testing dataset, the training 
dataset was also split into three groups as 360, 400, and 360 

images. In total, 360 images were trained before carrying out 
test 1. Thus, by the time the second test was ready to be carried 
out, the training data (i.e., annotated images) had increased 
from 360 to 760 images. Similarly, by the time the third test was 
ready to be carried out, the training data had increased to 1,120. 
A similar number of epochs was run in all the tests. Over the 
course of three tests, it can be seen that the wrong predictions 
were decreasing and the correct predictions, including the 
detailed details (i.e., clinical glaucomatous fundus signs) were 
increasing.

Currently, we have provided this AI glaucoma detection 
tool free of cost along with the confocal fundus scanner; 
moreover, its incorporation into the fundus scanner is 
underway. Thus, the prerequisites for using this tool would 
only be the possession of a confocal fundus scanner and can be 
used by any ophthalmologist in both private and institutional 
practice. The advantage of this glaucoma AI tool is that it can 
be used as a screening tool even in the absence of a glaucoma 
specialist. Scaling this novel system across the world will be 
more beneficial for developing countries and Pacific Island 
countries such as Cook Islands, Micronesia, Nauru, Niue, and 
Tuvalu where there are no ophthalmologists present.[18]

Limitation and suggestions
The quality of the fundus images obtained with lower‑resolution 
fundus cameras might find it challenging to achieve similar 
results with this AI model. Furthermore, multimodal clinical 
images, such as optical coherence tomography, visual fields, 
and non‑invasive angiography, along with fundus images, 
should be integrated to build a generalized and more reliable 
AI diagnostics system.

Conclusion
Utilizing human intelligence in AI for detecting glaucomatous 
fundus images using HITL machine learning has never been 
reported in the literature before. By employing HITL machine 
learning, we have created an explainable AI, which has 
overcome the black box dilemma. This study also shows that 
with constant human training the prediction accuracy can be 
increased via a feedback mechanism.
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Commentary: Is human supervision 
needed for artificial intelligence?

The role of artificial intelligence (AI) and machine learning (ML) 
in ophthalmology is well documented, with several studies on 
its role in diagnosing, treating, and prognosticating various 
eye diseases.[1] The rise of machines and AI is inevitable, 
and we must all be prepared for it. For every technological 
advancement, humans have always found ways to use their 
power for good and evil. The same is true for the fast‑growing 
technologies of AI and ML as well. The authors of the 
accompanying article[2] developed a novel AI algorithm for 
detecting glaucoma with human in the loop  (HITL) for 
annotation to supervise the learning of the algorithm. This is 
unlike several other ML studies that tried to identify glaucoma 
from fundus images by using deep learning techniques[3] that 
do not use HITL.

The black box problem
There is much confusion about the black box problem of 
AI.[4] Many AI algorithms are not explainable, even by the 
programmers who created them, as the code evolves over 
several virtual generations and ends up as a complex code 
whose working is opaque to us humans. We are unable to see 
the “rough work,” only the final answer. Thus, especially in 
the critical field of healthcare, there is a big doubt whether we 
can trust AI.[5]

Explainable artificial intelligence (XAI)
XAI is a set of processes and methods that allows humans to 
understand and trust the results and output created by ML 

algorithms. It describes the AI model, its expected impact, 
and potential biases. Especially in healthcare, AI‑powered 
decision‑making can be trusted only with open information 
about accuracy, fairness, transparency, and outcomes of the 
ML algorithms.[6] As the complexity of ML increases, there 
is a trade‑off between its accuracy and its ability to generate 
explainable and interpretable conclusions. There are now 
several approaches to avoid the black box problem and try to 
develop an XAI. One is to use integrated gradients explanation 
to display a heatmap over the image being interpreted.[7] This 
can be easily understood by a human and often helps to pick 
up details that may have been missed.

Interpretability and explainability
Doshi‑Velez and Kim defined interpretability as “the ability to 
explain or to present in understandable terms to a human.”[8] 
Another researcher named Miller defined interpretability 
as “the degree to which a human can understand the cause 
of a decision.”[9] Thus, interpretability relates to the ease of 
understanding the intuition behind the output of the ML 
algorithm. Meanwhile, explainability relates to the internal 
logic and mechanics of the ML model.

Human in the loop (HITL)
Fully automatic deep learning is what many researchers 
attempt to develop and is convenient. However, the unique 
challenges of medical image interpretation mean that 
human‑in‑the‑loop  (HITL)[10] ML may be a better option for 
safer, accurate results and to prevent gross mistakes. A human 
expert in the subject marking annotations and giving feedback 
for reinforcement learning would make the algorithm much 
better.
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