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Purpose: For	 diagnosing	 glaucomatous	 damage,	 we	 have	 employed a	 novel	 convolutional	 neural	
network	 (CNN)	 from	TrueColor	 confocal	 fundus	 images	 to	 conquer	 the	 black	 box	dilemma	 in	 artificial	
intelligence	 (AI).	 This	 neural	 network	 with	 CNN	 architecture	 with	 human‑in‑the‑loop	 (HITL)	 data	
annotation	helps	not	only	in	diagnosing	glaucoma	but	also	in	predicting	and	locating	detailed	signs	in	the	
glaucomatous	fundus,	such	as	splinter	hemorrhages,	glaucomatous	optic	atrophy,	vertical	glaucomatous	
cupping,	 peripapillary	 atrophy,	 and	 retinal	 nerve	fiber	 layer	 (RNFL)	defect.	Methods: The training was 
done	on	a	well‑curated	private	dataset	of	1,400	high‑resolution	confocal	fundus	images,	out	of	which	1,120	
images	(80%)	were	used	exclusively	for	training	and	280	images	(20%)	were	used	exclusively	for	testing.	
A	custom	trained	You	Only	Look	Once	version	5	(YOLOv5)‑based	object	detection	methodology	was	used	
to	identify	the	underlying	conditions	precisely.	Twenty‑six	predefined	medical	conditions	were	annotated	
by	a	team	of	humans	(comprising	two	glaucoma	specialists	and	two	optometrists)	by	using	the	Microsoft	
Visual	Object	Tagging	Tool	(VoTT)	tool.	The	280	testing	images	were	split	into	three	groups		(90,100,	and	
90	images)	for	three	test	runs	done	once	every	15	days.	Results:	Test	results	showed	consistent	increments	
in	the	accuracy,	from	94.44%	to	98.89%,	in	predicting	the	glaucoma	diagnosis	along	with	the	detailed	signs	
of	 the	glaucomatous	fundus.	Conclusion:	Utilizing	human	intelligence	 in	AI	for	detecting	glaucomatous	
fundus	 images	 by	 using	HITL	machine	 learning	 has	 never	 been	 reported	 in	 the	 literature	 before.	 This	
AI	model	 not	 only	 has	 good	 sensitivity	 and	 specificity	 in	 accurate	 glaucoma	 predictions	 but	 is	 also	 an	
explainable	AI,	thus	overcoming	the	black	box	dilemma.
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Artificial	intelligence	(AI)	in	the	field	of	glaucoma	diagnosis	
is	 getting	 increasingly	 popular,	with	 the	 usage	 of	 a	 basic	
convolutional	 neural	 network	 (CNN)	 for	 enhancing	 and	
upgrading	patient	care.[1‑6]	A	well‑trained	CNN	can	 identify	
various pathologies of the fundus.[7]	However,	the	previously	
reported	AI	models	 with	 CNN	were	 criticized	 by	 the	
ophthalmological	community	due	to	the	black	box	dilemma.	
In	the	black	box	dilemma,	the	CNN‑based	systems	analyzed	
the	data	based	upon	their	own	self‑generated	rules.	The	real	
rationale	behind	why	and	how	the	predictions	were	made	in	the	
first	place	was	not	clearly	understood.[8] Any ophthalmologist 
would	always	expect	 the	AI	 results	 to	not	only	predict	 the	
diagnosis	but	also	predict	and	locate	detailed	signs	in	the	fundus	
images	 in	a	detailed	manner,	such	as	splinter	hemorrhages,	
glaucomatous	optic	atrophy,	vertical	glaucomatous	cupping,	

peripapillary	 atrophy,	 and	 retinal	nerve	fiber	 layer	 (RNFL)	
defect.	For	any	successful	AI	algorithm,	the	base	starts	with	data	
annotation.[9]	If	there	is	no	annotated	data	in	the	first	place,	then	
there	is	no	machine	learning	algorithm	to	detect	the	image.	This	
is	where	the	human	interface	comes	into	play	in	the	process	of	
data	annotation.	Annotating	data,	also	known	as	labeling	data,	
is	the	first	and	most	important	step	in	creating	a	successful	AI	
model.[9]	One	such	image	annotation	tool	that	can	be	utilized	by	
all	for	comprehensive	and	customized	data	labeling	is	Microsoft	
Visual	Object	Tagging	Tool	(VoTT).[10]	Customized	annotation	
of	optic	nerve	head	and	retinal	nerve	fiber	layer	(RNFL)	images	
can	prove	useful	in	not	only	identifying	glaucomatous	discs	but	
also	in	predicting	various	segmentations	of	the	glaucomatous	
cup,	disc,	peripapillary	atrophy,	and	RNFL	defect	 from	 the	
background	 fundus.[11]	 This	methodology	 of	 annotations,	
though	time‑consuming,	can	be	utilized	by	all	ophthalmologists	
to	create	their	own	human‑in‑the‑loop	(HITL)	AI	model.
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images	but	also	in	predicting	and	locating	detailed	signs	in	the	
glaucomatous	fundus	images.	The	idea	was	to	overcome	the	
black	box	dilemma	by	creating	an	explainable	AI	with	HITL	
machine	learning.

Methods
We	 used	 a	 well‑curated	 private	 dataset	 consisting	 of	
1,400	high‑quality	confocal	 fundus	 images	 in	 the	 interest	of	
building	an	efficient	AI	model	to	aid	the	ophthalmologists	in	
practice.	The	1,400	images	were	split	into	80%	(1,120	images)	
and	20%	(280	 images)	 for	 training	and	 testing,	 respectively.	
A	team	of	humans	(comprising	two	glaucoma	specialists	and	
two	optometrists)	 annotated	 the	1,120	 training	 images	with	
predefined	26	medical	conditions	pertaining	to	glaucoma	by	
using	Microsoft	VoTT	[Fig. 1].

Process of annotations
From	June	2021	to	July	2021 	on	a	daily	basis,	annotation	of	the	
existing	glaucoma	fundus	image	dataset	was	performed	with	
a	team	of	two	glaucoma	specialists	and	two	optometrists.	Only	
high‑resolution	TrueColor	 confocal	 images	were	utilized	 for	
annotations.	We	shortlisted	the	Sansten	AI	toolbox	that	supports	
the human‑in‑the‑loop annotation and human validation 
process	[Fig. 2].	The	annotation	team	created	a	predefined	list	
of	26	glaucomatous	fundus	signs	that	were	relevant	to	identify	
the	glaucomatous	damages	that	existed	in	the	fundus	image.

Based	on	their	clinical	schedule,	the	ophthalmology	AI	team	
of	Mahathma	Eye	Hospital	Private	Limited,	Trichy	conducted	
the	 annotation	 process	with	 approximately	 40–50	 image	
annotations per day. The annotation time varies from image to 
image	and	also	varies	according	to	the	shapes	of	annotations	
and	the	number	of	glaucomatous	findings.	It	includes	multiple	
bounding	boxes,	circular,	and	freestyle	shapes.	Few	sample	
source	images	with	multiple	glaucomatous	fundus	signs	and	
respective	annotated	images	are	shown	in	Fig.	1.	After	human	
annotations,	 the	dataset	was	sent	 for	 training.	The	primary	
expectation	during	training	was	to	employ	the	AI	model	with	
glaucomatous	damage	detection	from	the	fundus	images	by	
using	computer‑aided	object	detection	algorithms.[12]

This	study	involved	human	participants,	where	there	were	
no	direct	 interactions	with	humans,	 as	 their	 fundus	 images	
were	only	used	for	the	study.	Ethics	approval	for	this	study	was	
obtained	from	an	Independent	Ethics	Committee	(Institutional	
Review	Board),	 and	 the	 study	adhered	 to	 the	 tenets	of	 the	
Declaration	of	Helsinki.	Informed	written	consent	was	obtained	
from	all	the	study	participants.

Algorithm employed for training - You only look once 
version 5 (YOLOv5)
The	 computer‑aided	 object	 detection	 algorithm	used	here	
to	precisely	 identify	 the	underlying	 conditions	 is	YOLOv5.	
YOLOv5	 looks	at	 the	 fundus	as	numerous	 segments	 rather	
than	viewing	the	fundus	image	as	a	whole.	This	customized	
tool	was	able	to	identify	and	illustrate	customized	anchor	boxes	
over	multiple	areas	within	the	glaucomatous	fundus	images.

For	 performing	 the	 final	 detection	 part,	we	 used	 the	
model head network algorithm (as shown in Table	1),	which	
generates	the	final	output	vectors	with	objectness	scores,	class	
probabilities,	and	bounding	boxes	that	apply	the	anchor	boxes	
on	glaucomatous	fundus	features	[Fig. 3].

In	this	paper,	we	have	employed	a	novel	CNN	approach	in	
not	only	diagnosing	glaucoma	from	TrueColor	confocal	fundus	

Figure 2: Image showing the methodology workflow of this study

Figure 1: (a) Sample fundus photograph of an eye with glaucomatous 
cupping and retinal nerve fiber layer defect utilized for annotating. 
(b) Customized labeling of the optic cup (green‑dotted area). 
(c) Customized labeling of bayoneting signs (red‑dotted area). 
(d) Customized labeling of superior notching (blue‑dotted area). 
(e) Customized labeling of the optic disc (pink‑dotted area). 
(f) Customized labeling of peripapillary atrophy (gray‑dotted area). 
(g) Customized annotation of the retinal nerve fiber layer (RNFL) 
defect (green‑dotted area). (h) Complete annotation of a fundus image 
with glaucomatous changes in the optic nerve head and RNFL region
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Statistics and Results of the Testing Images
The	1,400	images	were	split	up	into	80%	and	20%	for	training	
and	testing,	respectively	[Table	2].	The	descriptive	statistics	of	
the 280 testing images [Table	3]	in	the	form	of	frequencies	and	
percentages	were	 calculated.	The	 collected	MS‑Excel	 coded	
data	were	analyzed	using	SPSS	(Statistical	Package	for	Social	
Scientist;	version	20,	 IBM	USA),	which	 is	 later	calculated	 in	
the	 form	of	 frequencies,	 and	percentages.	 The	 2D	 and	 3D	
distributions	of	the	annotation	dataset	are	depicted	in	Fig.	4. 
The	AI	tool	was	evaluated	with	mean	average	precision	(mAP),	
which	was	 calculated	by	 taking	 the	average	precision	 (AP)	
over	all	classes	and/or	over	all	intersection	over	union	(IoU)	

thresholds.	The	 IoU	thresholds	were	calculated	by	dividing	
the area of overlap with the area of union.

The initial training [Fig. 5a]	showed	the	mAP@0.5	to	be	
25%	or	below	and	mAP@0.95	to	be	10%	or	below,	and	the	
final	training	[Fig.	5b]	achieved	a	better	accuracy	of	mAP@0.5	
to	 be	 60%	 or	 below	 and	mAP@0.95	 to	 be	 27%	 or	 below,	
respectively.	The	280	images	used	for	testing	were	split	into	
90,	100,	and	90	for	three	test	runs	done	once	every	15	days.	
These	 tests	 showed	 consistent	 increments	 in	 the	 accuracy	
from	94.44%	to	98.89%	in	predicting	the	diagnosis,	severity,	
and	 detailed	 findings	 [Table	 3].	 Test	 1	 predictions	were	
performed	 following	 the	first	15	days	of	annotations.	Test	

Figure 3: A sample of the batch size of eight image predictions during training, consisting of class probabilities, objectness scores, and bounding 
boxes
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2	predictions	were	performed	following	the	next	15	days	of	
annotations.	Test	3	predictions	were	performed	following	the	
next	15	days	of	annotations.	From	test	1	to	test	3,	there	was	
an	increment	in	the	sensitivity	from	90.24%	to	100%	and	in	
the	specificity	from	97.96%	to	98.14%	(as	shown	in	Tables	4,	
5,	and	6,	respectively).

Discussion
Glaucoma,	 also	 called	 the	 silent	 thief	 of	 sight,	 is	 one	 of	
the	 leading	 causes	 of	 irreversible	 blindness	 in	developing	
countries	 like	 India.	 It	 typically	 increases	 the	 intraocular	
pressure	inside	the	eye	and	damages	the	optic	nerve	which	
results	 in	 blindness.	 In	 developing	 countries	 like	 India,	
diagnosis	of	glaucoma	is	still	a	challenge;	this	is	where	a	good	
explainable	AI	model	with	reliable	sensitivity	and	specificity	
will	aid	in	rapid	screening	and	detection.

Review of Literature - What was previously known or 
reported
Akkara et al.[13]	explained	several	studies	and	their	importance	
pertaining	to	AI	and	machine	learning	(ML)	in	glaucoma	from	
color	fundus	photographs.	Li	et al.[1]	stated	that	they	achieved	

Table 1: The model head used to perform the final detection part
# parameters 
nc: 24 # number of classes 
depth_multiple: 0.67 # model depth multiple 
width_multiple: 0.75 # layer channel multiple 
 
# anchors 
anchors: 
 ‑ [10,13, 16,30, 33,23] # P3/8 
 ‑ [30,61, 62,45, 59,119] # P4/16 
 ‑ [116,90, 156,198, 373,326] # P5/32 
 
# custom backbone 
backbone: 
  # [from, number, module, args] 
 [[‑1, 1, Focus, [64, 3]], # 1‑P1/2 
  [‑1, 1, Conv, [128, 3, 2]], # 2‑P2/4 
  [‑1, 3, Bottleneck, [128]], 
  [‑1, 1, Conv, [256, 3, 2]], # 4‑P3/8 
  [‑1, 9, BottleneckCSP, [256]], 
  [‑1, 1, Conv, [512, 3, 2]], # 6‑P4/16 
  [‑1, 9, BottleneckCSP, [512]], 
  [‑1, 1, Conv, [1024, 3, 2]], # 8‑P5/32
[‑1, 1, SPP, [1024, [5, 9, 13]]], 
  [‑1, 6, BottleneckCSP, [1024]], # 10 
  ]

# custom head 
head: 
 [[‑1, 3, BottleneckCSP, [1024, False]], # 11 
  [‑1, 1, nn.Conv2d, [na * (nc+5), 1, 1, 0]], # 12 (P5/32‑large) 
 
  [‑2, 1, nn.Upsample, [None, 2, 'nearest']], 
  [[‑1, 6], 1, Concat, [1]], # cat backbone P4 
  [‑1, 1, Conv, [512, 1, 1]], 
  [‑1, 3, BottleneckCSP, [512, False]], 
  [‑1, 1, nn.Conv2d, [na * (nc+5), 1, 1, 0]], # 17 (P4/16‑medium) 
 
  [‑2, 1, nn.Upsample, [None, 2, 'nearest']], 
  [[‑1, 4], 1, Concat, [1]], # cat backbone P3 
  [‑1, 1, Conv, [256, 1, 1]], 
  [‑1, 3, BottleneckCSP, [256, False]], 
  [‑1, 1, nn.Conv2d, [na * (nc+5), 1, 1, 0]], # 22 (P3/8‑small) 
 
  [[], 1, Detect, [nc, anchors]], # Detect (P3, P4, P5)

Table 2: The private dataset of the high-resolution fundus 
images split-up into 80% and 20% for training and testing 
respectively

Training Images Testing Images

Count 1,120 280
Percentages 80% 20%

Figure 4: (a) 2D distribution graph showing the annotations which were repeatedly used depicted as spikes. (b and c) 3D distribution graph 
showing repeated annotations seen as warmer colors

cba
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high	 sensitivity	 (95.6%)	 and	 specificity	 (92%)	 in	detecting	
referable	 glaucomatous	 optic	 neuropathy	 from	 fundus	
photographs	by	utilizing	deep	learning	(DL)	algorithms.	They	
also	mentioned	 confounding	 factors	 and	 their	 influence	on	
the	 results,	 such	as	high	myopia	 led	 to	 false	negatives	and	
physiological	 cupping	 led	 to	 false	positives	 in	 their	 study.	
Al‑Aswad et al. 	assessed	Pegasus	(Visulytix	Ltd.,	London,	UK),	
a	DL	technology	 to	 identify	glaucomatous	optic	neuropathy	
from	color	fundus	photographs,	and	showed	that	it	outmatched	
5	out	of	6	ophthalmologists	who	participated	in	that	study.[2] 
Another	AI	that	identifies	glaucomatous	fundus	photographs	
was	stated	by	Netra.AI	(Leben	Care	Technologies	Pte.,	Ltd).[13]

Several	other	studies	also	explained	several	techniques	to	
identify	glaucomatous	optic	neuropathy	from	optic	disc	fundus	
photographs.	Cerentini	 et al. used	GoogLeNet	 to	 develop	
an	 automatic	 classification	method	 to	detect	 glaucomatous	
changes	 in	 fundus	 images.[4] Haleem et al. used a novel 
technique	 for	 automatic	 boundary	detection	 of	 optic	 disc	
and	 cup	 to	 aid	automatic	glaucoma	diagnosis	 from	 fundus	
photos.[5] Thompson et al. used deep learning to measure the 
NRR	 loss	 from	optic	disc	photos.[6]	 Indian	 start‑up,	Kalpah	
Innovations	 (Vishakhapatnam,	 India)	 released	 the	Retinal	
Image	Analysis	 –	Glaucoma	 (RIA‑G)	 cloud‑based	 software	
in	2016	to	analyze	fundus	images	to	look	for	the	likelihood	of	
glaucoma.[14]

Figure 5: (a) Image showing the quality of training during the beginning of training with respect to GLoU, objectness. classification, precision, and 
recall. (b) Image showing the quality of improvement at the end of the training with respect to GLoU, objectness, classification, precision, and recall
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The new facts reported in this study
The	major	limitation	in	all	the	above	models	was	that	they	did	
not	overcome	the	black	box	dilemma.	Most	of	them	were	having	
good	performance,	but	they	were	less	explainable	in	terms	of	
how	 the	final	glaucoma	diagnosis	was	arrived	at.	We	have	
created	an	explainable	AI	model	with	good	 interpretability,	
which	helps	 to	 overcome	 the	black	box	dilemma.	 It	 learns	

continuously	with	 regular	 improvement	 in	 the	 accuracy	of	
predictions,	 in	not	 only	 identifying	 the	 condition	but	 also	
predicting	 all	 detailed	 signs	 in	 the	 glaucomatous	 fundus	
with	bounding	boxes.	 In	addition,	 this	AI	 toolbox	monitors	
the	accuracy	of	predictions	continuously	and	utilizes	human	
feedback	 [Fig.	 3]	 to	 calibrate	 the	models,	which	 help	 in	
identifying	the	conditions	and	eliminating	the	error	rate	over	
time.[8]	 Studies	 have	noted	 that	under	 the	 influence	 of	 the	
data	 quality,	 the	model’s	 performance	 is	 affected.[15]	 Thus,	
TrueColor	confocal	fundus	photographs	were	utilized	for	the	
research,	which	yields	good‑quality	high‑resolution	images,	
thus	improving	the	interpretability.

Human annotations - HITL
In	 this	 study,	 few	annotations	were	 repeatedly	used,	 such	
as	 notching,	 cupping,	 laminar	 dot	 sign,	 and	 bayonetting	
sign,	 along	with	 RNFL	 defects.	 In	 the	 2D	 graph,	 these	
annotations	were	 seen	 as	 spikes	 [Fig.	 4a],	 and	 in	 the	 3D	
graph,	 these	 repeated	 annotations	were	 seen	 as	warmer	
colors	 [Fig.	 4b&c].	 The	 distribution	 of	 the	 annotation	
bounding	boxes	reveals	that	the	smaller	bounding	boxes	were	
used	more	frequently	(depicted	by	the	warmer	colors).	The	
main	reason	for	that	in	this	study	is	that 	we	used	multiple	
human	 annotations	 and	many	 detailed	 small	 signs	 such	
as	 bayonetting	 signs,	 baring	 of	 circumlinear	 vessels	were	
annotated	separately	with	small	bounding	boxes.

This	novel	VoTT	annotation	tool	employs	human	glaucoma	
specialists	and	optometrists	 to	do	the	complex	 labeling	of	a	
glaucomatous	fundus,	where	every	aspect	of	the	glaucomatous	
disc	 and	 background	 fundus	 is	 labeled	 by	 them.	Though	
time‑consuming,	there	is	a	pairing	of	humans	with	the	machine	
and	not	the	supremacy	of	one	over	the	other,	thus	catering	to	
a	 team	effort	 involving	machines	and	humans.	Customized	
human‑led	data	annotation	process	of	 labeling	datasets	 can	
pave	the	path	for	AI	training	and	predictions,	where	the	pairing	
of	humans	and	machines	using	HITL	machine	 learning	can	
yield	good	results.	Thus,	there	is	definitely	a	big	role	for	HITL	
machine	 learning,	 especially	 in	medical	 science,	where	 it	 is	
unwise	to	have	a	black	box	problem.	This	will	not	only	speed	
up	machine	learning	but	also	make	it	more	accurate,	reliable,	
and trustworthy.[16]

You only look once version 5 - Object detection methodology
We	used	a	YOLOv5‑based	object	detection	methodology	 to	
precisely	train	the	underlying	glaucomatous	fundus	images.	
YOLOv5	algorithm	works	accurately	by	drawing	a	bounding	
box	 around	 the	 fundus	 signs	 by	using	 the	 bounding	 box	
regressor.[17]	 YOLOv5‑based	object	 detection	methodology	
helps	 to	 train	and	 identify	glaucomatous	 fundi	 in	 less	 than	
a	 second.	 In	 addition,	with	 continuous	 training,	 there	was	

Table 3: The split-up of the 280 testing images into three different testing groups (90+100+90). Test 1 predictions were 
performed after the first fifteen days of annotations. Test 2 predictions were performed after the next fifteen days of 
annotations. Test 3 predictions were performed after the final one month of annotation. With time there is a surge in the 
no. of correct predictions as the machine is learning with more data

Test Total 
Images

No. of images in which all the detailed 
findings were correctly predicted n (%)

No. of images in which all the detailed 
findings were wrongly predicted n (%)

Test 1 90 85 (94.44) 5 (5.56)

Test 2 100 98 (98) 2 (2)
Test 3 90 89 (98.89) 1 (1.11)

Table 4: This table shows the distribution of specificity 
and sensitivity of the 90 images in Test 1. TP - True 
Positive; FN - False Negative; TN - True Negative; 
FP - False Positive

Condition exists Condition does 
not exist

Total

Test Positive 37 (True Positive) 1 (False Positive) 38

Test Negative 4 (False Negative) 48 (True Negative) 52

Total 41 49 90

Sensitivity TP/TP + FN 37/(37+4) 90.24%
Specificity TN (TN + FP) 48/(48+1) 97.96%

Table 5: This table shows the distribution of specificity 
and sensitivity of the 100 images in Test 2. TP - True 
Positive; FN - False Negative; TN - True Negative; 
FP - False Positive

Condition 
exists

Condition 
does not exist

Total

Test Positive 28 1 29

Test Negative 1 70 71

Total 29 71 100

Sensitivity TP/TP + FN 28/(28+1) 96.55%
Specificity TN (TN + FP) 70/(70+1) 98.59%

Table 6: This table shows the distribution of specificity 
and sensitivity of the 90 images in Test 3. TP - True 
Positive; FN - False Negative; TN - True Negative; 
FP - False Positive

Condition exists Condition does 
not exist

Total

Test positive 36 (True Positive) 1 (False Positive) 37

Test negative 0 (False Negative) 53 (True Negative) 53

Total 36 54 90

Sensitivity TP/TP + FN 36/(36+0) 100%
Specificity TN (TN + FP) 53/(53+1) 98.14%
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an	 increase	 in	 the	number	of	 correct	predictions,	 resulting	
in	 subsequent	 incremental	machine	 learning.	 The	 system	
automatically	 identifies	 glaucomatous	damage	 along	with	
subtle	details	 in	 the	predicted	 images	 [Fig. 6a‑d],	 such	 as	
notching,	 cupping,	 laminar	dot	 sign,	 and	bayonetting	 sign,	
along	with	RNFL	defects.

Incremental improvements from Test 1 To Test 3
The	 objectness	 loss	 (i.e.,	 objects	marked	wrongly	 by	AI)	
was	almost	the	same	in	test	1	and	test	3	(3%).	Similarly,	the	
classification	loss	(i.e.,	classification	marked	wrongly	by	AI)	
was	also	the	same	in	test	1	and	test	3	(8.5%).	The	success	of	this	
study	was	that	the	precision	increased	from	22%	in	test	1	to	
45%	in	test	3.	The	recall	increased	from	35%	in	test	1	to	70%	in	
test 3. The initial training showed that the mAP@0.5 was 25% 
or	below	and	the	mAP@0.95	to	be	10%	or	below,	and	the	final	
training	module	achieved	a	better	accuracy	of	mAP@0.5	to	be	
60%	or	below	and	mAP@0.95	to	be	27%	or	below,	respectively.	
Among	the	280	testing	images,	from	test	1	to	test	3,	the	number	
of	correct	glaucomatous	predictions	that	included	all	detailed	
signs	increased	from	94.44%	to	98.89%.	Moreover,	the	number	
of	images	in	which	some	of	the	detailed	signs	were	wrongly	
predicted	decreased	from	5.56%	to	1.11%.	Although	objectness	
loss	and	classification	loss	remained	the	same	in	both	the	tests,	
all	the	other	parameters,	such	as	precision,	recall,	mAP,	and	
the	glaucomatous	predictions	were	in	favor	of	a	good	machine	
learning AI model.

In	this	study,	the	test	data	and	training	data	were	different	
and never integrated.

The	 same	 dataset	 could	 have	 been	 utilized	 for	 the	
subsequent	tests,	but	we	chose	to	run	our	tests	with	different	
independent	datasets	in	all	three	instances	to	create	a	real‑time	
practical	 scenario.	 Just	 like	 the	 testing	dataset,	 the	 training	
dataset	was	also	split	into	three	groups	as	360,	400,	and	360	

images.	In	total,	360	images	were	trained	before	carrying	out	
test	1.	Thus,	by	the	time	the	second	test	was	ready	to	be	carried	
out,	 the	training	data	(i.e.,	annotated	images)	had	increased	
from	360	to	760	images.	Similarly,	by	the	time	the	third	test	was	
ready	to	be	carried	out,	the	training	data	had	increased	to	1,120.	
A	similar	number	of	epochs	was	run	in	all	the	tests.	Over	the	
course	of	three	tests,	it	can	be	seen	that	the	wrong	predictions	
were	decreasing	 and	 the	 correct	predictions,	 including	 the	
detailed	details	(i.e.,	clinical	glaucomatous	fundus	signs)	were	
increasing.

Currently,	we	have	provided	this	AI	glaucoma	detection	
tool	 free	 of	 cost	 along	with	 the	 confocal	 fundus	 scanner;	
moreover,	 its	 incorporation	 into	 the	 fundus	 scanner	 is	
underway.	Thus,	the	prerequisites	for	using	this	tool	would	
only	be	the	possession	of	a	confocal	fundus	scanner	and	can	be	
used	by	any	ophthalmologist	in	both	private	and	institutional	
practice.	The	advantage	of	this	glaucoma	AI	tool	is	that	it	can	
be	used	as	a	screening	tool	even	in	the	absence	of	a	glaucoma	
specialist.	Scaling	this	novel	system	across	the	world	will	be	
more	beneficial	 for	developing	 countries	 and	Pacific	 Island	
countries	such	as	Cook	Islands,	Micronesia,	Nauru,	Niue,	and	
Tuvalu where there are no ophthalmologists present.[18]

Limitation and suggestions
The	quality	of	the	fundus	images	obtained	with	lower‑resolution	
fundus	cameras	might	find	it	challenging	to	achieve	similar	
results	with	this	AI	model.	Furthermore,	multimodal	clinical	
images,	such	as	optical	coherence	tomography,	visual	fields,	
and	non‑invasive	 angiography,	 along	with	 fundus	 images,	
should	be	integrated	to	build	a	generalized	and	more	reliable	
AI	diagnostics	system.

Conclusion
Utilizing	human	intelligence	in	AI	for	detecting	glaucomatous	
fundus	images	using	HITL	machine	learning	has	never	been	
reported	in	the	literature	before.	By	employing	HITL	machine	
learning,	we	 have	 created	 an	 explainable	AI,	which	 has	
overcome	the	black	box	dilemma.	This	study	also	shows	that	
with	constant	human	training	the	prediction	accuracy	can	be	
increased	via	a	feedback	mechanism.
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Commentary: Is human supervision 
needed for artificial intelligence?

The	role	of	artificial	intelligence	(AI)	and	machine	learning	(ML)	
in	ophthalmology	is	well	documented,	with	several	studies	on	
its	 role	 in	diagnosing,	 treating,	and	prognosticating	various	
eye diseases.[1]	 The	 rise	 of	machines	 and	AI	 is	 inevitable,	
and	we	must	all	be	prepared	 for	 it.	For	every	 technological	
advancement,	humans	have	always	found	ways	to	use	their	
power for good and evil. The same is true for the fast‑growing 
technologies	 of	AI	 and	ML	 as	well.	 The	 authors	 of	 the	
accompanying	article[2] developed a novel AI algorithm for 
detecting	 glaucoma	with	 human	 in	 the	 loop	 (HITL)	 for	
annotation to supervise the learning of the algorithm. This is 
unlike	several	other	ML	studies	that	tried	to	identify	glaucoma	
from	fundus	images	by	using	deep	learning	techniques[3] that 
do not use HITL.

The black box problem
There	 is	much	 confusion	 about	 the	 black	 box	problem	of	
AI.[4]	Many	AI	 algorithms	are	not	 explainable,	 even	by	 the	
programmers	who	 created	 them,	 as	 the	 code	 evolves	 over	
several	virtual	generations	 and	ends	up	as	 a	 complex	 code	
whose	working	is	opaque	to	us	humans.	We	are	unable	to	see	
the	“rough	work,”	only	the	final	answer.	Thus,	especially	in	
the	critical	field	of	healthcare,	there	is	a	big	doubt	whether	we	
can	trust	AI.[5]

Explainable artificial intelligence (XAI)
XAI	is	a	set	of	processes	and	methods	that	allows	humans	to	
understand	and	trust	 the	results	and	output	created	by	ML	

algorithms.	 It	describes	 the	AI	model,	 its	 expected	 impact,	
and	potential	 biases.	Especially	 in	healthcare,	AI‑powered	
decision‑making	can	be	trusted	only	with	open	information	
about	accuracy,	fairness,	 transparency,	and	outcomes	of	the	
ML algorithms.[6]	As	 the	 complexity	of	ML	 increases,	 there	
is	a	trade‑off	between	its	accuracy	and	its	ability	to	generate	
explainable	 and	 interpretable	 conclusions.	 There	 are	 now	
several	approaches	to	avoid	the	black	box	problem	and	try	to	
develop	an	XAI.	One	is	to	use	integrated	gradients	explanation	
to	display	a	heatmap	over	the	image	being	interpreted.[7] This 
can	be	easily	understood	by	a	human	and	often	helps	to	pick	
up	details	that	may	have	been	missed.

Interpretability and explainability
Doshi‑Velez	and	Kim	defined	interpretability	as	“the	ability	to	
explain	or	to	present	in	understandable	terms	to	a	human.”[8] 
Another	 researcher	 named	Miller	 defined	 interpretability	
as	“the	degree	to	which	a	human	can	understand	the	cause	
of	 a	decision.”[9]	Thus,	 interpretability	 relates	 to	 the	 ease	of	
understanding	 the	 intuition	 behind	 the	 output	 of	 the	ML	
algorithm.	Meanwhile,	 explainability	 relates	 to	 the	 internal	
logic	and	mechanics	of	the	ML	model.

Human in the loop (HITL)
Fully	 automatic	 deep	 learning	 is	what	many	 researchers	
attempt	to	develop	and	is	convenient.	However,	 the	unique	
challenges	 of	medical	 image	 interpretation	mean	 that	
human‑in‑the‑loop	 (HITL)[10]	ML	may	be	a	better	option	 for	
safer,	accurate	results	and	to	prevent	gross	mistakes.	A	human	
expert	in	the	subject	marking	annotations	and	giving	feedback	
for	reinforcement	learning	would	make	the	algorithm	much	
better.
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