
1 September 2019 | Volume 10 | Article 883

REVIEW

doi: 10.3389/fgene.2019.00883
published: 23 September 2019

Frontiers in Genetics | www.frontiersin.org

A Case for Using Genomics and a 
Bioinformatics Pipeline to Develop 
Sensitive and Species-Specific 
PCR-Based Diagnostics for Soil-
Transmitted Helminths
Jessica R. Grant 1*, Nils Pilotte 1,2 and Steven A. Williams 1,2

1 Department of Biological Sciences, Smith College, Northampton, MA, United States, 2 Molecular and Cellular Biology 
Program, University of Massachusetts, Amherst, MA, United States

The balance of expense and ease of use vs. specificity and sensitivity in diagnostic assays 
for helminth disease is an important consideration, with expense and ease often winning 
out in endemic areas where funds and sophisticated equipment may be scarce. In this 
review, we argue that molecular diagnostics, specifically new assays that have been 
developed with the aid of next-generation sequence data and robust bioinformatic tools, 
more than make up for their expense with the benefit of a clear and precise assessment 
of the situation on the ground. Elimination efforts associated with the London Declaration 
and the World Health Organization (WHO) 2020 Roadmap have resulted in areas of low 
disease incidence and reduced infection burdens. An accurate assessment of infection 
levels is critical for determining where and when the programs can be successfully 
ended. Thus, more sensitive assays are needed in locations where elimination efforts are 
approaching a successful conclusion. Although microscopy or more general PCR targets 
have a role to play, they can mislead and cause study results to be confounded. Hyper-
specific qPCR assays enable a more definitive assessment of the situation in the field, as 
well as of shifting dynamics and emerging diseases.

Keywords: soil-transmitted helminth, molecular diagnostics, DNA diagnostics, polymerase chain reaction (PCR), 
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INTRODUCTION

Parasitic worms impact the health and economic well-being of billions of people worldwide. Soil-
transmitted helminths (STH) are a burden in the tropics and subtropics and contribute to an 
estimated 1.9 to 2.1 million disability-adjusted life years (DALYs) and US $7.5 billion to US $138.9 
billion in loss of productivity (Bartsch et al., 2016; Kyu et al., 2018). Efforts are underway to eliminate 
STH, with the ambitious goal of controlling morbidity by the year 2020 (Becker et al., 2018; Uniting 
to Combat NTDs). Mass drug administrations (MDA) and water, sanitation and hygiene (WASH) 
programs across endemic countries are making headway (Hicks et al., 2015; Truscott et al., 2016; 
Weatherhead et al., 2017; Truscott et al., 2019), but with 2020 fast approaching, there are still many 
challenges to reaching this goal. An important concern is where to enact and when to cease MDA. 
This depends on accurately mapping the current burden in communities (2018 Action Group 
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Meeting). Sensitive, species-specific diagnostics are critical to 
properly evaluating the success of these programs, as well as 
addressing where to focus efforts and when interventions can be 
ended (Weatherhead et al., 2017).

Diagnostic techniques need to be inexpensive, practical, 
and give consistent results across technicians and laboratories. 
Importantly, they must be accurate, sensitive, and easily 
interpreted. Microscopy has long been relied on as the standard 
for diagnosis of intestinal parasites, including soil transmitted 
helminths (Beaver and Martin, 1968). Several copromicroscopic 
methods are in use, including FLOTAC (Cringoli et al., 2010), 
MINI-FLOTAC (Maurelli et al., 2014), several modifications of 
the McMaster technique (Mines, 1977), and Kato-Katz (Katz 
et al., 1972) (KK). Of these, KK is the most commonly used for 
STH diagnosis because it is relatively easy to perform in the field 
and is generally more sensitive than other microscopic methods 
(Moser et al., 2018). With any of these tests, even highly trained 
microscopists can misidentify species or give inconsistent results 
(Krauth et al., 2012), and they are notoriously insensitive in 
regions with low infection rates (Nikolay et al., 2014; Buonfrate 
et al., 2015; Speich et al., 2015; Acosta Soto et al., 2017).

Molecular diagnostics have been garnering more interest in 
the last few years, as their superior sensitivity has been proven 
and their acceptance by the research community has increased 
(Easton et al., 2016; Halfon et al., 2017; Holt et al., 2017). 
However, as with any advance, there are technical problems 
to overcome. For example, DNA extraction efficiency and 
preservation of samples prior to testing will affect diagnostic 
reliability (Andersen et al., 2013; Sarhan et al., 2015; Hidalgo 
et al., 2018; Papaiakovou et al., 2018). Notably, Trichuris 
trichiura eggs are notoriously difficult to break open, and this 
impacts the sensitivity of molecular assays, but techniques are 
being developed and improved to the point where consistently 
good results are achievable (Harmon et al., 2006; Nunes et al., 
2006; Kaisar et al., 2017). Although molecular diagnostics are 
not inexpensive, microscopy techniques are also expensive and 
can be difficult to scale up, whereas the costs of qPCR have the 
potential to decrease, as studies show that multiple technical 
replicates may not be crucial and other cost-cutting measures, 
such as cheaper, more effective sample preservation and pooling 
are explored (Easton et al., 2017; Papaiakovou et  al., 2018; 
Truscott et al., 2019). Until recently, most PCR-based assays 
have targeted well-characterized and conserved regions, such 
as ITS and 18S (Verweij and Stensvold, 2014; Hii et al., 2018), 
but increased availability of whole-genome sequence data is 
facilitating the discovery of more sensitive and species-specific 
genomic targets (Pilotte et al., 2016a; Papaiakovou et al., 2017).

Repetitive elements are essential parts of eukaryotic genomes 
that have structural and regulatory functions (Shapiro and 
Sternberg, 2005; López-Flores and Garrido-Ramos, 2012), and 
different types of repetitive DNA elements have been studied and 
classified (Charlesworth et al., 1994; Plohl et al., 2008; López-
Flores and Garrido-Ramos, 2012; Biscotti et al., 2015). Ribosomal 
DNA is found in repeat arrays (Lafontaine and Tollervey, 2001; 
Pruesse et al., 2007). These have traditionally been used for 
primer design and can give sensitive results depending on 
the size of the array (Verweij and Stensvold, 2014). However, 

the repeat is oftentimes conserved between species and even 
genera, and rDNA-based assays are often less specific than those 
designed from other repeat types (Pilotte et al., 2016; O’Connell 
et al., 2018).

Tandemly repeated DNA is classified by the size of the repeated 
monomer, resulting in microsatellites (< 9 bp), minisatellites (< 15 
bp in arrays of 0.5–30 kb), and satellites (satDNA, up to ~200 bp per 
monomer, in megabase-sized arrays) that are generally enriched 
within the centromeric, pericentromeric, and subtelomeric regions 
of the chromosome (López-Flores and Garrido-Ramos, 2012). 
Copy number can be quite variable in mini- and micro-satellites 
but larger satDNA monomers are more consistent within species 
(López-Flores and Garrido-Ramos, 2012). Microsatellites and 
minisatellites are not useful for assay design, as the repeats tend 
to be too short to allow for primer/probe design. Larger satDNA 
monomers, on the other hand, offer the best options for assay 
design, in that the repeat monomers are an optimal size for qPCR, 
they are extremely abundant, and the copy number is relatively 
stable within species (López-Flores and Garrido-Ramos, 2012).

Other types of repetitive DNA include transposons and 
retrotransposons, which are dispersed throughout the genome. 
These include short interspersed nuclear elements (SINEs) 
which are 100 to 500 bases long, and long interspersed nuclear 
elements (LINEs) which are larger—6,000 or 7,000 bases 
long. These may also be useful for repeat-based assay design 
(Funakoshi et al., 2017).

The amount of repetitive DNA in any eukaryotic species is 
variable and can make up quite a large percentage of the genome. 
A recent study of parasitic worms revealed that both genome 
size and repeat content of the genomes range widely, with repeat 
elements forming up to 37% of the genomes in STH of interest 
(Table 1). Repetitive elements make up even greater percentages 
in other eukaryotes (Brindley et al., 2003; Wickstead et al., 2003; 
Shapiro and Sternberg, 2005; Coghlan et al., 2019), up to an 
astonishing 97% in some plants (Flavell et al., 1974; Piednoël et 
al., 2012). These repetitive elements, because of their abundance 
in the genome, provide targets for molecular assays of exquisite 
sensitivity. In addition, since many appear unbound by selective 
pressure, they can be highly species-specific. This combination 
of improved sensitivity and species-specificity makes repetitive 
elements a prime target for molecular diagnostics. However, as 
mentioned above, some forms of repetitive DNA, such as simple 
short nucleotide repeats, will be unsuitable for assay design. 
Another potential stumbling block is sequence variation in the 
repeat itself as polymorphism in the primer and probe sites 
will decrease the sensitivity of the assay. However, although the 
repeats we have targeted have not been specifically investigated, 
maintenance of homogeneity in repetitive elements by concerted 
evolution has been discussed in relation to other repeats in 
other species (Ganley and Kobayashi, 2007; Teruel et al., 2014). 
Concerted evolution of repeats conserves the sequence within a 
species while allowing significant heterogeneity between species. 
There can, of course, be some variation within repeats (Onyabe 
and Conn, 1999; Lindner and Banik, 2011) which could lessen 
the sensitivity of repeat-based molecular assays. Copy number 
variation of repeats between individuals may also impact the 
sensitivity of these assays in some populations. Studies have 
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found population-level copy number variation in ribosomal 
repeats of different species (Bik et al., 2013; Schaap et al., 2013; 
Mascagni et al., 2018; Zhao and Gibbons, 2018), but there is a 
suggestion that there are both copy number variable-type repeats 
and constant-type repeats, whose copy number is consistent 
within species (Umemori et al., 2013). An understanding of copy 
number variation and its impact on assay sensitivity will likely 
need to be studied on an individual species-by-species basis.

The value of repeats as diagnostic tools has been understood 
for some time but these sequences were more difficult to find in 
the pre-genomics era (McReynolds et al., 1986; Meredith et al., 
1989; Chanteau et al., 1994; Nekrutenko et al., 2000; Hamburger 
et al., 2001; Rao et al., 2002; Demas et al., 2011; Lodh et al., 
2016). Now, abundant genomic data and robust bioinformatics 
tools are available to make these targets easier to identify and 
use in developing PCR-based assays. The pipeline leading from 
low coverage NGS data to hyper-sensitive and specific qPCR 
assay is not overly complicated or time-consuming, and the 
ability to repurpose low coverage NGS data from other studies 
makes this an attractive option for diagnostic development for 
helminthology and many other fields.

FINDINGS

Diagnostics give an estimate of the true prevalence of a disease, 
with the probability of correctly estimating the truth given by 
the sensitivity and species-specificity of the diagnostic. WHO 
guidelines for when to treat a community are informed by the 
prevalence of disease in that community, and are thus influenced 
by the sensitivity of the diagnostic used. A study modeling the 
probability of making the correct treatment decisions given 
WHO guidelines for treatment and varying the true prevalence 
and diagnostic sensitivity shows that there is a significant 
difference in outcome when more sensitive diagnostics are used 
(Medley et al., 2016). Medley et al. (Medley et al., 2016) found it 
especially true in areas of intermediate true prevalence (between 
30% and 50%). More sensitive tests allowed the correct treatment 
decision to be made more often in intermediate cases.

The aforementioned study measured outcome by looking at 
DALYs and found that these were not as influenced by diagnostic 
sensitivity in low or high prevalence areas. However, there are 
other reasons to prefer more sensitive tests in low prevalence areas. 

As the goals of the WHO elimination programs are reached, there 
will be pressure to reallocate the funds spent on MDA to other 
programs. A well-defined threshold under which recrudescence 
will not occur is critical to preventing the reoccurrence of disease 
after the completion of MDA. Restarting such programs would 
be extremely difficult and expensive once they have ended. 
Modeling has shown that the threshold must be based on true 
prevalence (Truscott et al., 2017; Ásbjörnsdóttir et al., 2017), 
which can only be accurately estimated with highly sensitive and 
species-specific diagnostics. Improved diagnostics are crucial to 
meet this need (Kongs et al., 2001; Andersen et al., 2013; Clarke 
et al., 2018; Hidalgo et al., 2018). Post-MDA surveillance is also 
necessary. With highly sensitive diagnostics, the reappearance of 
disease can be recognized and addressed before infection levels 
rise, increasing the probability of controlling the recrudescence 
(Farrell and Anderson, 2018). In addition to testing human 
populations for infection, vectors that transmit helminths (or 
other parasites) or intermediate hosts can be screened to track 
disease prevalence in the community without the need for taking 
human samples (Sanpool et al., 2012; Pilotte et al., 2016b; Ramírez 
et al., 2018; Zaky et al., 2018). Pooling of samples is a common 
way to decrease cost but diagnostic tests used for the screening 
of pooled samples need to be highly sensitive (Masny et al., 2016; 
Okorie and de Souza, 2016; Pilotte et al., 2017), especially when 
the infection level is low, so as not to miss positive results in 
dilute samples.

In recent years, efforts to sequence nematode genomes 
by groups, such as the International Helminth Genomes 
Consortium, have made great strides in increasing the availability 
of helminth genomic sequence data (Howe et al., 2016). Although 
many of the genomes are in draft form, this is sufficient for 
probing the genome for species-specific repeats. Our method 
for recovering highly repetitive sequence from low depth, raw, 
short-read genome sequence data uses the Galaxy-based tool 
RepeatExplorer (Novák et al., 2010; Novák et al., 2013; Pilotte 
et al., 2016a). Originally used to investigate repeat sequences in 
plant genomes, RepeatExplorer takes as input short-read next-
generation sequence data and creates graph-based clusters based 
on the similarity of the sequences. In these graphs (see Figure 1), 
each read is represented by a node, and each sequence pair (by 
default defined as ≥90% identity over at least 55% of the read 
lengths) is represented by an edge. The density of the graph 
represents the number and similarity of reads in the cluster. In 

TABLE 1 | Genome size of representative helminth species and the amount/percent of genome masked as repetitive. Low complexity repeats and simple (for example 
di- or tri-nucleotide repeats) are not targets for molecular assays.

Species Assembly size 
(Mb)

Repeat-masked 
(Mb)

Repeat % % of assembly that 
is low complexity/

simple repeats

Ancylostoma ceylanicum (Hii et al., 2018) 349 128.6 36.8 0.5
Ancylostoma duodenale (Hii et al., 2018) 332.9 116.1 34.9 0.7
Ascaris lumbricoides germline (Okorie and de Souza, 2016) 334 n/a 16.8 n/a
Ascaris lumbricoides soma (Okorie and de Souza, 2016) 291 n/a 7 1.5
Necator americanus (Masny et al., 2016; Hii et al., 2018) 244.1 67.1 27.5 1.2
Strongyloides stercoralis (Pilotte et al., 2017; Hii et al., 2018) 42.7 4.4 10.3 4.2
Trichuris trichiura (Hii et al., 2018) 75.5 18.4 24.4 0.4
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FIGURE 1 | Description of RepeatExplorer cluster output. (A) Short tandem repeats, including many satellite sequences, form characteristic “star burst”-type 
clusters. Because they are tandem, and such repeats are of similar size or shorter than the length of an individual sequence read, a very high percentage of reads 
within the cluster meet the RepeatExplorer-defined criteria for pair formation. This results in each read successfully pairing with a very high percentage of the other 
reads assigned to the cluster. Because nearly all of the reads within the cluster are paired with nearly all of the other reads within this same cluster, a compact 
network of very short edges forms between reads. This in turn generates a very dense cluster with a core of paired reads possessing nearly identical sequences. If 
of sufficient length for assay design, the consensus sequences for these clusters make ideal diagnostic targets, as they contain the greatest number of repeats per 
read. (B) Long tandem repeats characteristically result in “doughnut”-like clusters. In such clusters, neighboring reads within the underlying scaffold meet the criteria 
for pair formation. However, because the length of the repeat monomers generating these clusters is longer, reads may be significantly shorter than the monomer 
itself. This results in many reads within the cluster that do not meet the criteria for pair formation as they map to different regions of the same monomer unit. Yet 
because they are tandemly arranged, reads spanning a repeat-repeat junction will meet the pair formation criteria, closing the sequence “loop” and resulting in a 
“doughnut”-shaped cluster. (C) Long interspersed repeats, such as transposable elements form characteristic “line”-type clusters. While reads neighboring each 
other in the underlying scaffold meet the criteria for pair formation, the extended length of a repeat monomer means that distant reads within a single monomer 
will not meet this threshold. This results in similar pairings to those seen in clusters generated from long tandem repeats. However, because these elements are 
interspersed, reads do not span repeat-repeat junctions, so a “loop” is not formed, and clusters attain a linear appearance.
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low-depth sequence data sets, low copy number sequences will not 
be well represented and will, therefore, graph as individual nodes 
or small clusters, whereas high copy number repetitive sequences 
will be found in dense clusters. The number of reads in a given 
cluster, combined with the structure and density of that cluster, 
can be used as a proxy for the representation of the number of 
repeats of that sequence in the genome. The copy number of the 
repeat will impact the sensitivity of the assay, since each copy in 
the genome will be an additional target for the assay. In addition, 
RepeatExplorer and its sister software TAREAN (Novák et al., 
2017) provide information on the count of individual nucleotides 
in the repeat contigs. These counts can be used to design assays 
to the most conserved regions, limiting the problems associated 
with intragenomic variation. We have developed, and made 
available here, custom Python scripts to parse the output from 
RepeatExplorer and return highly repetitive sequences (https://
github.com/JessicaGrant/RepeatTargetScripts). Primer/probe 
qPCR assays targeting sequences discovered using this technique 
have been shown to amplify as little as 20 ag of genomic DNA, 
or less than the amount of DNA found in a single egg (Pilotte 
et al., 2016a). Care is needed in choosing which repeat to select 
for use as a diagnostic target, as some may be found in closely 
related species (Williams et al., 2000; Rao et al., 2006); however, 
similar to what has been reported in the literature (Subirana and 
Messeguer, 2013; Subirana et al., 2015), we have found that many 
repetitive sequences are species-specific. There may be times 
when a more general assay—one that will amplify several species 
of the same genus, for example—may be desired (Rao et  al., 
2006). A careful search of RepeatExplorer output can often reveal 
both species- and genera-specific targets.

Diagnostics based on targets discovered using this technique 
have proven useful in both past and ongoing field tests in Kenya 
(Pickering et al., 2019), Bangladesh (Benjamin-Chung et al., 
2019), Ethiopia, Uganda, Timor Leste (Papaiakovou et al., 2017), 
Thailand (O’Connell et al., 2018), Liberia (Fischer et al., 2018), 
Japan, Benin, Malawi, India, and the Southern US, and have been 
adopted for use by large operational research efforts, such as the 
DeWorm3 cluster randomized trials (Ásbjörnsdóttir et al., 2018). 
However, testing biological samples, whether for diagnosing 
individuals or getting an overview of the epidemiological 
environment of a region, involves a myriad of factors, such as 
unexpected or emerging parasites, zoonotic infections, and 
misleading material in the samples. Although most of the 
criticism of the KK technique has been on the lack of sensitivity 
and potential for missed infection, there is also the risk of false 
positives, for example, mistaking other material in stool as 
eggs (Speich et al., 2015). Some fecal elements may resemble 
parasite ova, depending on environmental or dietary factors. 
Confounding elements may include pollen grains, fungal spores, 
diatoms, or any number of items. An entire chapter in Ash and 
Orihel’s “Atlas of Human Parasitology” is dedicated to artifacts 
in fecal samples that can mislead copromicroscopic diagnostics 
(Cushion et al., 1990). Thus, this problem is more frequent than 
many researchers realize or acknowledge; what follows are some 
examples demonstrating the importance of this issue.

A field study comparing KK with repeat-based qPCR in 
Bangladesh (Benjamin-Chung et al., 2019) found that hookworm 

species and Trichuris trichiura prevalence, as measured by qPCR, 
was significantly higher than was measured by KK. This was 
expected, given the greater sensitivity of the qPCR assays and the 
results of many previous studies comparing KK and PCR (Pontes 
et al., 2003; Stensvold et al., 2006; Knopp et al., 2014; Pilotte et al., 
2016a; Easton et al., 2017; Ng-Nguyen et al., 2017). For Ascaris, 
however, prevalence as measured by KK was significantly higher 
than by qPCR. This surprising result was investigated further, 
both by qPCR targeting a different part of the Ascaris genome, 
and also by amplicon sequencing that targeted the 18S gene of all 
eukaryotes in several of the KK positive/qPCR negative samples. 
All of the samples that were positive by KK but negative by the 
initial qPCR assay were also negative using the second qPCR 
target. Additionally, the 18S amplicon sequencing revealed no 
Ascaris in these samples, but did find it in the control samples 
that were positive by both KK and qPCR. Not one organism 
was found in the amplicon sequencing that could explain all 
of the false-positive results. What material in the samples had 
confounded the microscopists is still unknown, but there was no 
evidence by any of the molecular assays that Ascaris was present 
in the samples. Had the study relied on copromicroscopic results 
alone, the conclusion would have been that MDA or WASH 
interventions were less effective as an Ascaris intervention than 
they likely were, since the true prevalence of the parasite was in 
fact much lower than was measured by KK.

In a similar case, higher than expected rates of hookworm 
were noted in a survey of children in rural Rwanda. Further 
investigation suggested these results may have been confounded 
by Caenorhabditis elegans eggs (Irisarri-Gutiérrez et al., 2016). 
Additional examples of misidentification of hookworm ova as 
other eggs (Ralph et al., 2006; Werneck et al., 2007; Yong et al., 
2007) show that such confusion may be a more common problem 
than previously thought. Thus, relying solely on microscopy may 
be misleading in some instances.

Discrepancies can occur between molecular assays as well, 
since some PCR targets are less species-specific than others. 
In developing our pipeline for repeat-based primer discovery, 
a previously published qPCR assay targeting the internal 
transcribed spacer region was compared against our newly 
developed assay targeting an Ancylostoma duodenale species-
specific repeat (Llewellyn et al., 2016; Pilotte et al., 2016a). 
Surprisingly, the repeat-based assay failed to detect any of the 
samples that were determined to be positive for A. duodenale 
by the ITS-based assay. A previously published semi-nested 
PCR assay (George et al., 2015; Chidambaram et al., 2017) and 
Sanger sequencing later determined that the discordant results 
were due to all of the infections being the zoonotic species 
Ancylostoma ceylanicum. The ITS of these two species is highly 
conserved in the region targeted by the original qPCR assay 
and so the ITS-based assay did not distinguish between these 
closely related species. Our repeat-based A. duodenale assay, on 
the other hand, only detects A. duodenale, and so all of the A. 
ceylanicum-containing samples were negative. We have since 
used our pipeline to develop a species-specific qPCR assay 
for A. ceylanicum (Papaiakovou et al., 2017), which is more 
sensitive and specific than the ITS-based assay and easier to use 
than semi-nested PCR.
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In a similar case, the same ITS-based primer set (Llewellyn 
et al., 2016) was used to investigate Ancylostoma duodenale in a 
field study of a refugee population in Thailand (O’Connell et al., 
2018). Since the most common human Ancylostoma parasite 
is A. duodenale, the results were initially believed to indicate 
A. duodenale infection. Again, however, a corroboratory 
qPCR targeting the highly specific A. duodenale repeat failed 
to detect any A. duodenale. Use of the A. ceylanicum-specific 
assay (Papaiakovou et al., 2017), as well as confirmation with 
semi-nested PCR and Sanger sequencing, revealed that all 
of these infections were, in fact, caused by A. ceylanicum and 
not A. duodenale. In this case, although the more general ITS-
based assay misdiagnosed the species causing the infection, the 
more specific assay for the expected parasite (A. duodenale) 
would have missed the infection. This highlights a risk of using 
extremely specific qPCR assays in the field if the precise parasite 
community is unknown. It also highlights that A. ceylanicum 
may be a much more common human pathogen than previously 
supposed. Here, the repeat-based, species-specific assays 
can be used to identify the true prevalence of various related 
parasite species.

The specificity of Trichuris trichiura (whipworm) detection 
by microscopy is assumed to be high, given the relatively distinct 
morphology of Trichuris eggs. However, there are several species 
of Trichuris, including some that infect companion or farm 
animals. Distinction between species of Trichuris relies on size 
differentiation, but there are overlaps in some species making 
misdiagnosis by microscopy possible. The most common species 
in humans is T. trichiura, but Trichuris suis, which commonly 
infects pigs, and Trichuris vulpis, usually found in dogs, have 
also been found infecting humans (Areekul et al., 2010; Mohd-
Shaharuddin et al., 2019). Microscopy and genera-specific 
qPCR assays may be confounded by these zoonotic species. 
Discordance between the ITS-based Trichuris qPCR assay and 
the repeat-based qPCR assay has been noted in one study where 
all but one of the discordant results were later shown to be 
Trichuris ovis, a species found in sheep and goats that has not 
been known to infect humans (Pilotte et al., 2016a). Whether 
this is evidence of human infection or merely false positives 
due to close contact with infected animals or ingesting food 
contaminated with animal feces is an open question. In these 
cases, qPCR targeting highly species-specific repetitive targets 
alone could easily miss the prevalence of zoonotic infection, 
leading to a misunderstanding of the health of the population. 
On the other hand, the use of the repeat-based, highly specific 
assays gives a true picture of the prevalence of various species.

Despite the distinct morphology of Trichuris, the potential of 
misidentifying unexpected infection with zoonotic species is not 
the only risk when relying solely on microscopy for investigating 
whipworm. A study of STH in two regions in Liberia that used 
both microscopy and qPCR found discordance between the tests 
for T. trichiura in one of the regions (Fischer et al., 2018), with 25 
of 27 putatively positive samples for T. trichiura, as determined by 
KK, being negative by qPCR. In the second region, the agreement 
between the two tests was high. In this case, the discrepancies 
were investigated further, and the eggs were determined to be 
a species of Capillaria, a human parasite that is associated with 

eating raw fish and was not expected to be found in this region. 
Reinvestigation by microscopy in this case elucidated subtle 
differences in the eggs found in the KK-positive, qPCR-negative 
samples. A microscopist, highly trained and expecting to have to 
differentiate between two extremely similar egg morphologies, 
could have noticed the difference and provided a correct result. 
However, since Capillaria had not previously been reported 
in Liberia, the eggs that looked like Trichuris were reported as 
such. Without the complementary qPCR, this mistake would 
not have been discovered. This study also found discrepancies 
between the microscopy and qPCR measuring the prevalence 
of Ascaris lumbricoides in the same region where Capillaria was 
discovered. Surprisingly, these samples were also determined 
to be confounded by the presence of Capillaria, which can 
appear rounder and have more subtle polar plugs, leading to its 
misidentification as the eggs of A. lumbricoides. These examples 
highlight the tendency for microscopists to sometimes see what 
they are looking for. In this case, the unexpected presence of 
Capillaria eggs misled the microscopists and would have resulted 
in significant misinterpretation of the distribution of STH species 
in the study region.

CONCLUSION

The elimination of STH is a worthy goal, given the distress and 
disability they cause to a large portion of the global population. 
The goal is attainable, but will not be easily reached. Monitoring 
and evaluation of progress is critical and depends on highly 
accurate reporting. Species-specific repeat-based target discovery 
and qPCR assays deliver this accuracy. Microscopy and genera-
specific molecular assays have a place in this effort, especially 
in surveys where full mapping of parasite diversity has not 
occurred. These tools, used in conjunction with highly sensitive 
and specific molecular assays targeting repetitive elements, can 
give a clear and accurate assessment where one tool alone could 
yield misleading results.

New target development is fairly easy, since the web-based 
bioinformatics tool RepeatExplorer provides output in a manner 
that makes finding repeat-based qPCR targets straightforward. 
Only a skim of the genome is necessary, so the data needed to 
develop new assays is already available for many species and is 
fairly inexpensive to produce for a species whose genome has 
not yet been sequenced. We have used this technique to explore 
new diagnostics for other nematode and protist parasites, and 
we think that the pipeline for assay development has potential 
for improving diagnostic sensitivity for many other classes of 
infectious agents.

Correct identification of species is of interest if one wants to 
understand evolution, biogeography, and emerging disease. The 
treatment for infection with one species of helminth is often the 
same as for another; however, we would argue that lumping all 
species of a genus together is careless. It is not clear that different 
species respond the same way under the same drug treatment, 
and misidentification of species in the past might be confounding 
the results of studies of resistance or drug response based on 
microscopy alone. Different species within a genus may also vary 
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in their capacity for animal infection, resulting in some parasites 
having animal reservoirs while others remain obligate human 
pathogens. A more detailed understanding of the underlying 
community structure will offer crucial insight into subjects, such 
as antihelminthic resistance, emerging or zoonotic diseases, and 
optimal threshold levels for elimination of disease.
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