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Nitric oxide (NO) has many beneficial actions on the vascular wall including suppression
of inflammation.The mechanism(s) by which NO antagonizes cytokine signaling are poorly
understood, but are thought to involve inhibition of the pro-inflammatory transcription
factor, NF-κB. NO represses nuclear translocation of NF-κB via the S-nitrosylation of its
subunits which decreases the expression of target genes including adhesion molecules.
In previous studies, we have shown that the intracellular location of endothelial nitric oxide
synthase (eNOS) can influence the amount of NO produced and that NO levels are para-
mount in regulating the S-nitrosylation of target proteins.The purpose of the current study
was to investigate the significance of subcellular eNOS to NF-κB signaling induced by pro-
inflammatory cytokines in human aortic endothelial cells (HAECs). We found that in HAECs
stimulated with TNFα, L-NAME did not influence the expression of intercellular adhesion
molecule 1 (ICAM-1) or vascular cell adhesion molecular 1 (VCAM-1). In eNOS “knock
down” HAECs reconstituted with either plasma membrane or Golgi restricted forms of
eNOS, there was no significant effect on the activation of the NF-κB pathway over different
times and concentrations of TNFα. Similarly, the endogenous production of NO did not
influence the phosphorylation of IκBα. In contrast, higher concentrations of NO derived
from the use of the exogenous NO donor, DETA NONOate, effectively suppressed the
expression of ICAM-1/VCAM-1 in response to TNFα and induced greater S-nitrosylation of
IKKβ and p65. Collectively these results suggest that neither endogenous eNOS nor eNOS
location is an important influence on inflammatory signaling via the NF-κB pathway and
that higher NO concentrations are required to suppress NF-κB in HAECs.
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INTRODUCTION
Nitric oxide (NO) is a short-lived, free radical, gaseous signal-
ing molecule which participates in a diverse range of biological
processes including the regulation of blood vessel and airway tone,
inflammation, neurotransmission, and apoptosis (Nathan and Xie,
1994). The sGC–cGMP pathway is arguably the best recognized
and best understood endpoint of NO signaling. The activation of
sGC and increased cGMP production occurs at low levels of NO
and has been shown to mediate numerous processes including,
but not limited to, vascular relaxation, modulation of ion chan-
nel patency, gastro intestinal peristalsis, and inhibition of platelet
aggregation (Moncada et al., 1991; Radomski et al., 1991; Archer
et al., 1994; Nathan and Xie, 1994). However, it is increasingly
recognized that there exists alternative pathways of NO signal-
ing. The most prominent of these involves the direct nitrosylation
of cysteine sulfhydryls of target proteins by NO (Stamler et al.,
2001). Independent of sGC–cGMP signaling, this pathway has
been shown to control the activity of a number of important bio-
logical processes including intracellular signaling (Gopalakrishna
et al., 1993), exocytosis (Matsushita et al., 2003), and inflammation
(Marshall et al., 2004). As S-nitrosylation requires higher concen-
trations of NO, important variables involved in the regulation of

target protein modification include the intracellular location of
NO synthesis and the amount of NO produced (Qian et al., 2010).

The acute loss of NO production in the blood vessel wall stimu-
lates inflammatory processes including the increased recruitment
of leukocytes to the vascular endothelium (Kubes et al., 1991; Ma
et al., 1993). Endothelial nitric oxide synthase (eNOS) is the pri-
mary isoform responsible for the production of NO within blood
vessels (Huang et al., 1995). The loss of eNOS in knockout mice
significantly increases the development of chronic inflammatory
disorders such as atherosclerosis and further suggests that NO is a
buffer against pro-inflammatory mechanisms (Chen et al., 2001).
How NO regulates vascular inflammation is poorly understood.
NO suppresses the expression of intercellular adhesion molecule
1 (ICAM-1) in the endothelium via a process independent of
sGC/cGMP signaling (Niu et al., 1994). One mechanism pro-
posed is through the inhibition of NF-κB (De Caterina et al.,
1995; Peng et al., 1995; Matthews et al., 1996). NF-κB is a tran-
scription factor that participates in the cellular response to cellular
stress including inflammation, cell survival, and proliferation (Li
and Verma, 2002). NF-κB activation is observed in response to
cytokines and promotes increased transcription of genes with
κB sites in their promoters which include ICAM-1 and vascular
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cell adhesion molecular 1 (VCAM-1; Janssen-Heininger et al.,
2000).

NF-κB is a protein complex that is maintained in an inactive
form by sequestration in the cytosol via interaction with inhibitory
subunits (IκB). Activation of cytokine receptors and elevated ROS
promotes the phosphorylation of IκB, which leads to its ubiqui-
tination and degradation and translocation of the active complex
to the nucleus (Baud and Karin, 2001; Mohan et al., 2003). Mul-
tiple mechanisms have been proposed to account for the ability
of NO to inhibit NF-κB. These include the stabilization of IκB,
induction of IκBα mRNA, and reduced nuclear translocation of
NF-κB. Given the multiple mechanisms of inhibition, it is not sur-
prising that NO has been shown to S-nitrosylate multiple targets
within the NF-κB pathway including Cys62 of p50 which compro-
mises DNA binding (Matthews et al., 1996), Cys38 of p65 which
prevents heterodimer formation (Kelleher et al., 2007) and Cys-
179 of IKKβ which prevents IκB phosphorylation (Reynaert et al.,
2004).

Previously we have shown that the location of eNOS with the
endothelial cell is important for enzyme activity as well as the
ability to influence the S-nitrosylation of target proteins such as
NSF (Fulton et al., 2002; Zhang et al., 2006; Qian et al., 2010).
When targeted to the plasma membrane, eNOS produces more
NO than eNOS residing on endomembranes of the Golgi and
also greater S-nitrosylation of target proteins such as NSF. How-
ever, this difference in S-nitrosylation was negated when the
amount of NO produced was normalized through the use of
calcium-insensitive forms of eNOS and suggests that the amount
of NO has a greater influence on the S-nitrosylation of target
proteins versus the proximity of NO production. The major-
ity of studies investigating the role of NO in NF-κB activa-
tion have used NO donors or induced the high capacity NOS2
isoform. Comparatively little is known about whether endoge-
nously produced NO from eNOS can influence endothelial NF-
κB activation and whether the location of eNOS is important
for NF-κB activation. In the current study we addressed both
of these questions by investigating whether endogenously pro-
duced NO, the location of NO synthesis and the amount of
NO are important for the regulation of NF-κB signaling and
adhesion molecule expression in human aortic endothelial cells
(HAECs).

MATERIALS AND METHODS
CELLS AND REAGENTS
TNFα was purchased from Sigma. L-NAME and DETA NONOate
were purchased from Cayman. ICAM-1 antibody was purchased
from Santa Cruz. eNOS and GAPDH antibody were purchased
from BD. IκBα and phosphorylated IκBα antibody were pur-
chased from Cell Signaling. HAECs were purchased from Cascade
Biologics and grown in endothelial cell basal medium-2 (EBM-2,
Clonetics). eNOS knock down HAECs were generated as described
previously (Zhang et al., 2006). Adenoviruses encoding the control
viruses red fluorescent protein (RFP) and Golgi and PM targeted
eNOS were generated using the pAdDEST adenoviral expression
system (Invitrogen) as described (Zhang et al., 2006). Cells were
seeded at a density of 2.5 × 105 cells/12 well plate and transduced
the next day at a multiplicity of infection (MOI) of 20.

IMMUNOBLOTTING
Cells were washed twice with phosphate-buffered saline, lysed on
ice in 50 mM Tris–HCl, pH 6.8, 2% SDS, 30% glycerol, 6% β-
mercaptoethanol, and 0.02% bromphenol blue. After gently son-
ication, lysates were clarified at 14,000 rpm for 10 min at 4˚C and
size-fractionated by 10% SDS-polyacrylamide gel electrophoresis
and immunoblotted with corresponding antibodies.

NO RELEASE
Thirty-six hours post viral transduction, medium (200 μl) con-
taining nitrite and nitrate (primarily NO−

2 ) was precipitated
with ethanol (1:2) to remove proteins and refluxed in sodium
iodide/glacial acetic acid to convert NO−

2 to NO for measurement
of the basal NO. NO was measured via NO-specific chemilu-
minescence after reaction with ozone (Sievers NO analyzer; GE
Analytical Instruments, Boulder, CO, USA). Net NO−

2 from cells
transfected with eNOS or iNOS was calculated after subtract-
ing NO−

2 levels from cells lacking NOS activity (RFP transfected
group).

DETECTION OF S-NITROSYLATION
Human aortic endothelial cells were treated with L-NAME (1 mM)
or DETA NONOate (1 mM) for 6 h and cells were lysed and biotin
labeled using biotin switch assay with some modification (Jaffrey
and Snyder, 2001; Forrester et al., 2009). In brief, 48 h after trans-
fection, cells were washed two times with cold PBS, and lysates
prepared by incubation with HEN buffer containing 250 mM
HEPES, 1 mM EDTA, 0.1 mM neocuproine (pH 7.7), SDS (2.5%
final concentration), and methyl methanethiosulfonate (Sigma-
Aldrich) at 50˚C for 20 min and vortex every 4 min. Proteins were
precipitated with acetone, washed three times with 70% acetone,
and mixed with 0.2 mM biotin-HPDP (Pierce) with or without
50 mM ascorbate at ambient temperature for 1 h. Biotinylated
proteins were pulled down by using streptavidin–agarose beads
(Sigma-Aldrich), separated by SDS-PAGE, and detected by chemi-
luminescence with anti-p65 (Abcam) or IKKβ (Cell Signaling)
antibody.

CELL VIABILITY
Human aortic endothelial cells were plated into 96-well plate and
treated with DETA NONOate (1 mM), TNFα (1 ng/ml), and thap-
sigargin (10 μM) was used as a positive control. Cell viability was
determined after 24 h treatment by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. MTT reagent was
prepared by dissolving 5 mg/ml in PBS and then diluted with
complete media (1:10) in each well. MTT reagent was added to
each well (100 μl) and allowed to incubate for 3 h, after that the
MTT was removed and DMSO (100 μl) was added to each well
and shaken for 15 min. Viability was determined by recording
absorbance at λ = 570 nm. The effect was assessed as percent cell
viability where vehicle-treated cells (i.e., control) were taken as
100% viable.

STATISTICAL ANALYSIS
Data are expressed as mean ± SEM. Comparisons were made using
analysis of variance (ANOVA) with a post hoc test. Differences were
considered as significant at p < 0.05.
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RESULTS
Our first experimental goal was to determine whether endogenous
NO is capable of influencing the ability of TNFα to upregulate
the expression of ICAM-1 in HAECs. HAECs were treated with
TNFα (1 ng/ml) for 4, 8, 24 h, with or without pre-treatment
with the NOS inhibitor L-NAME (1 mM). ICAM-1 expression
was robustly upregulated at all time points in a time-dependent
manner. As shown in Figure 1A, L-NAME did not influence the
level of induction of ICAM-1. We next investigated where NO
influences the induction of ICAM-1 to lower concentrations of
TNFα and similar effects of L-NAME were observed (Figure 1B).
We next increased the concentration of L-NAME to 2 mM, but
again found no significant change in the expression of ICAM-1 in
response to TNFα (Figure 1C). To exclude the possibility that more
stable S-nitrosylation is not reversed with short term inhibition of
eNOS, we increased the L-NAME pre-treatment time from 30 min

FIGURE 1 | (A) Human aortic endothelial cells were incubated with TNFα

(1 ng/ml) for 4, 8, and 24 h, in the presence and absence of L-NAME (1 mM,
30 min pre-treatment). Cell lysates were immunoblotted using an
anti-ICAM-1 antibody and GAPDH was used as a loading control. (B)

HAECs were pre-treated with L-NAME for 30 min, and stimulated with
different concentrations of TNFα (0.5, 0.1, 1 ng/ml) for 24 h. (C) HAECs
were treated with different concentrations of L-NAME (1 or 2 mM) for
30 min, and then exposed to TNFα (1 ng/ml) for another 24 h. (D) HAECs
were pre-treated with L-NAME (1 mM) for different times (30 min or 24 h)
prior to exposure to TNFα (1 ng/ml) for an additional 24 h. Cell lysates were
immunoblotted using an anti-ICAM-1 or anti-VCAM-1 antibody and GAPDH
was used as a loading control.

to 24 h. Despite the longer inhibition of NO synthesis, we did not
observe any effect on ICAM-1 upregulation or VCAM-1 induction
(Figure 1D).

We next determined whether the location of eNOS was impor-
tant in regulating the TNFα-dependent induction of adhesion
molecules. To do so, we utilized a strategy of knocking down
endogenous eNOS using a stably delivered shRNA and then re-
expressing novel forms of eNOS that contain silent mutations to
bypass the siRNA knockdown and are specifically targeted to the
Golgi (S17) or plasma membrane (CAAX; Zhang et al., 2006). As
shown in Figure 2 and consistent with our previous findings, we
did not detect any significant difference in ICAM-1 expression
between HAECs expressing the Golgi (S17) or PM (CAAX) eNOS
versus a control adenovirus (RFP).

As endogenous NO failed to inhibit TNFα-stimulated expres-
sion of adhesion molecule expression, we next looked at whether
exogenous NO could prove more effective. HAECs were treated
with vehicle or 1 mM DETA NONOate for 24 h and then chal-
lenged with TNFα in the presence and absence of L-NAME. As
shown in Figure 3A, DETA NONOate robustly inhibited TNFα

stimulated expression of VCAM-1 and also ICAM-1. Consistent
with previous results, L-NAME did not have any effect. To exclude
the possibility that reduced viability of cells may also lead to the
decrease in ICAM-1 or VCAM-1 expression, we perfomed the
MTT assay after 24 hr exposure to TNFα and DETA NONOate
(Figure 3B). There was no significant difference in viability in
cells exposed to DETA NONOate or the combination of TNFα

and DETA NONOate. Thapsigargin (10 μM) was used as positive
control and showed a robust decrease in cell viability. Therefore
the decreased expression of adhesion molecules we observed with
DETA NONOate was not due to reduced cell viability. To compare
the amount of NO produced from endogenous NO synthases ver-
sus that obtained from an exogenous source of NO, we measured
NO levels in the media using NO-specific chemiluminescence. As
shown in Figure 3C, we found that 100 μM DETA NONOate pro-
duced about threefold more NO than that produced by iNOS,
fivefold higher than a PM-restricted eNOS and 100-fold higher
than Golgi restricted eNOS. The 10-fold higher concentrations
of NO donor which are necessary to inhibit NF-κB signaling in
HAECs are thus much greater than that obtained from enzymatic
sources.

FIGURE 2 | “Endothelial nitric oxide synthase knockdown” HAECs

were transduced with adenovirus (MOI of 20) encoding either RFP

(control), S17-eNOS (Golgi targeted), or CAAX–eNOS (PM targeted).

Twenty-four hours later, cells were treated with L-NAME (1 mM) for 30 min,
and TNFα (1 ng/ml) was added for an additional 24 h. Cell lysates were
immunoblotted with anti-ICAM-1, anti-eNOS, and anti-GAPDH antibodies.
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FIGURE 3 | (A) Human aortic endothelial cells were treated with L-NAME
(1 mM) or DETA NONOate (1 mM) for 30 min, and then TNFα (1 ng/ml) was
added for 24 h. Activation of NF-κB was detected by anti-ICAM-1 or
anti-VCAM-1 antibodies. GAPDH was used as a loading control. (B) HAECs
were plated into 96-well plate and cells were treated with the same condition

as above, cell viability was detected by MTT assay 24 h after treatment. (C)

Nitric oxide release from cells expressing RFP, S17-eNOS, CAAX–eNOS, or
iNOS or from different concentrations (10, 30, 50, 100 μM) of DETA NONOate
over 24 h. Results are presented as mean ± SEM (n = 5). ∗p < 0.05 versus
control (RFP).

To further determine the underlying mechanism of NO inhi-
bition of adhesion molecules, we next monitored the activa-
tion of NF-κB by multiple approaches. NO has been reported
to inhibit NF-κB activation via the S-nitrosylation and inhi-
bition of IKKβ activity and a corresponding reduction in the
phosphorylation of its substrate IκBα. In HAECs, we found
that inhibition of endogenous NO with L-NAME did not
prevent the increase in IκBα phosphorylation in response to
TNFα (Figure 4A). Activation of NF-κB by TNFα was con-
firmed by an increase in phosphorylated IκBα and the degra-
dation of total IκBα (Figure 4A). To further determine if
higher amounts of NO, as generated by DETA NONOate, can
inhibit ICAM-1/VCAM-1 expression through the S-nitrosylation
of IKKβ (Reynaert et al., 2004) or p65 (Kelleher et al.,
2007) as previously reported, we treated HAEC cells with L-
NAME (1 mM) or DETA NONOate (1 mM) for 6 h and the
S-nitrosylation of both proteins was detected using the biotin

switch assay. Endogenous NO, inhibited with L-NAME, did not
alter the S-nitrosylation level of IKKβ or p65, while DETA
NONOate significantly increased the nitrosylation of both pro-
teins (Figures 4B,C).

DISCUSSION
In the current study, we investigated the ability of NO to regulate
NF-κB signaling and adhesion molecule expression in HAECs. We
found that endogenous NO was unable to influence NF-κB acti-
vation or the induction of ICAM-1 or VCAM-1 expression either
under basal conditions or in response to TNFα in both a time
and dose-dependent manner. Selective expression of eNOS at the
plasma membrane which results in greater NO release also failed to
suppress the induction of ICAM-1. Significantly higher amounts
of NO, greater than that produced endogenously, were necessary
to observe suppression of adhesion molecule expression in human
endothelium.
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FIGURE 4 | Human aortic endothelial cells were pre-treated with

L-NAME (1 mM) for 30 min and stimulated with (A) 1 ngTNFα for

30 min. Cells were lysed and the activation of NF-κB was detected by
immunoblotting using anti-phosphorylated IκBα and total IκBα antibodies.
(B,C) HAECs were treated with L-NAME (1 mM) or DETA NONOate (1 mM)
for 6 h, and cells were lysed for biotin switch assay, biotin labeled samples
were immunoblotted with anti-p65 and anti-IKKβ antibodies.

Previous studies have found that NF-κB is sensitive to both
oxidative and nitrosative stress (Marshall et al., 2000; Marshall and
Stamler, 2002). NO can suppresses NF-κB signaling via allosteric
modification of its subunits including p50, p65, and also IKKβ

(Matthews et al., 1996; Reynaert et al., 2004; Kelleher et al., 2007).
We found no change in the expression of NF-κB-dependent genes
and no change in the phosphorylation of IκBα suggesting that the
levels of endogenous NO produced from eNOS are insufficient
to influence these pathways. Indeed, the majority of studies that
have shown inhibition of NF-κB have relied on higher concentra-
tions of NO, either from an NO donor or from immune cells that
expresses high levels of iNOS (Reynaert et al., 2004; Kelleher et al.,
2007).

S-nitrosylation, the formation of an S-nitrosothiol (S-NO) by
the covalent addition of a NO moiety to the SH-group of acces-
sible cysteine residues requires higher concentrations of NO than
does activation of sGC (Gow and Ischiropoulos, 2001). There are
several reasons for this including the requirement that NO must
first be converted to a nitrosating species such as N2O3 which may
not occur uniformly throughout the cell (Espey et al., 2001). Also
as NO is a rapidly diffusing gas, the proteins in closest proximity
to the source of NO have the best chance of S-nitrosylation versus

competition with other molecules such as superoxide or free thiols.
Recent studies have suggested that the location of inhibition of NF-
κB by NO can vary depending on the cell type studied. In A540
cells, NO operates at the nuclear level and inhibits the binding
of NF-κB to DNA through a reversible, redox-based modification
of the p50–p65 heterodimer (Kelleher et al., 2007). In Jurkat T
cells, NO functions in the cytoplasm by inhibiting IκBα degra-
dation, thus preventing the nuclear translocation of NF-κB. In
intact blood vessels and cultured endothelium, eNOS can be found
localized to either the perinuclear Golgi or the plasma membrane
(Zhang et al., 2006) and NO production and the S-nitrosylation
of target molecules can be found concentrated at sites of eNOS
localization (Iwakiri et al., 2006). We found that the restricted
expression of eNOS at the Golgi or plasma membrane of HAEC
had no significant effect on TNFα induced activation of NF-κB.
Even at the higher concentrations of NO afforded by the PM-
location of eNOS, which could compensate for the reduced basal
NO production secondary to the absence of hemodynamic stress
in culture conditions, there was no meaningful change in adhesion
molecule expression.

When targeted to the plasma membrane, eNOS releases
more NO, generates more cGMP in adjacent reporter cells and
produces more pronounced endothelium-dependent relaxations
when expressed in intact blood vessels from eNOS−/− mice.
Expression of eNOS at the plasma membrane also results in greater
S-nitrosylation of the redox sensitive fusogen N -ethylmaleimide-
sensitive factor (NSF) which functionally translates into a more
significant suppression of vWF release from endothelial cells. In
contrast to WT–eNOS, expression of calcium-insensitive forms
of eNOS at different intracellular locations results in equal pro-
duction of NO. The equalization of the amount of NO produced
by eNOS targeted to the Golgi and plasma membrane resulted
in similar increases in cGMP, S-nitrosylation of NSF, and equal
suppression of vWF exocytosis (Qian et al., 2010). These results
suggest that the amount of NO released is the most influential
factor in controlling cellular function via S-nitrosylation. This
concept is supported by the data in the current study showing that
higher concentrations of NO are necessary to effectively constrain
the NF-κB-dependent expression of cellular adhesion molecules.
While it is clear that there is significant variety in the sensitiv-
ity of substrate proteins to S-nitrosylation and also the sites of
S-nitrosylation within those proteins (Hess et al., 2005; Greco
et al., 2006), the variables involved are not well defined (Dou-
lias et al., 2010). Our results suggest that, at least in the context
of HAECs, the S-nitrosylation of NF-κB requires higher NO con-
centrations than other more susceptible proteins such as GAPDH
and NSF. This is supported by a number of studies mapping the S-
nitrosylation proteome which have failed to identify constituents
of the NF-κB pathway (Greco et al., 2006; Hao et al., 2006). The
reversal of protein S-nitrosylation is a poorly understood process
and the rate of reversal is known to vary significantly with the
substrate (Paige et al., 2008). Two enzymes have been discovered
that can accelerate the loss of S-NO from substrate proteins, S-
nitrosoglutathione reductase (GSNOR) or alcohol dehydrogenase
5 (ADH5) and Thioredoxin-1 (Trx1; Jensen et al., 1998; Benhar
et al., 2010). To exclude the possibility that in HAECs, NF-κB is a
low turnover or stable S-NO protein we preincubated cells with the
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NOS inhibitor for 0.5–24 h prior to stimulation with TNFα and
saw no difference in ICAM-1 induction. While the possibility exists
that this was not sufficient time to observe an effect, other reports
have shown effects of NO on NF-κB over a more acute time scale.
For example, the activity of IKKβ was markedly enhanced 4 h after
treatment with the NOS inhibitor, L-NMMA, and occurred con-
temporaneously with a decrease in IKKβ S-nitrosylation (Reynaert
et al., 2004).

It is difficult to extrapolate the quantity of NO made by eNOS
in cultured endothelial cells to that made in vivo. The anti-
inflammatory effect of eNOS-derived NO has been shown in vivo
following the genetic deletion of eNOS (Mashimo and Goyal,
1999). Thus the possibility exists that eNOS in cultured endothe-
lial cells may be less active than in the in vivo setting, although
the expression of an active form of eNOS did not have addi-
tional effects. Alternatively it might be that endogenous sources
of NO (i.e., eNOS) are important in modulating inflammatory
signaling but that this occurs under select pathophysiological con-
ditions that have a multitude of mediators such as tissue/cell injury
(e.g., I/R injury) versus the single inflammatory cytokine used in
the current study. The regulation of inflammatory signaling cas-
cades are complex and exhibit multiple redundant pathways so that
TNFα alone may not be sufficiently sensitive to endogenous NO
versus the multitude of signaling pathways and cell types involved
in vivo.

NF-κB signaling, leading to increased ICAM-1 expression, is
also sensitive to oxidative stress. Indeed, compounds such as
resveratrol, which have anti-oxidant properties and can also blunt
the effects of peroxynitrite, have been shown to inhibit TNFα-
mediated activation of NF-κB and ICAM-1 expression (Holthoff
et al., 2010). It is therefore possible that peroxynitrite may be
a more efficient regulator of NF-κB activation than NO. How-
ever, the pursuit of this hypothesis is beyond the scope of the
present study and would likely lend further support to our over-
all finding, that NO is a relatively weak modulator of NF-κB
signaling.

The promoter region for ICAM-1 contains binding sites for a
number of redox sensitive transcription factors including NF-κB,
EGR-1, Sp1, and AP1. Pharmacological or genetic inhibition of
NF-κB prevents upregulation of ICAM-1 andVCAM-1 in response
to TNFα and suggests an absolute dependence on NF-κB activity
(Ledebur and Parks, 1995; Pierce et al., 1997). However, other
cytokines such as IL-1β, can upregulate ICAM-1 expression in
endothelial cells via NO-mediated inhibition of Sp1 and AP1
(Berendji-Grun et al., 2001). A reasonable assumption of the cur-
rent study is that the upregulation of ICAM-1 in response to TNFα

is, at least in part, NF-κB-dependent; however, we would expect
that if Sp1 and AP1 were involved in this response, then they too
would be sensitive to NO inhibition. Recently, it was discovered
that TNFα stimulated ICAM-1 expression can also occur down-
stream of p38 MAPK signaling (Zerr et al., 2011). However, NO
has been shown to activate p38 MAPK signaling (Wang et al., 2006;
Kaddai et al., 2008) which is the opposite of its actions on NF-κB.
Although increased p38 MAPK activity could account for some of
the reduced NO-sensitivity of adhesion molecular upregulation,
it does not explain the lack of sensitivity of IκBα, IKKβ, and p65
to endogenous NO. The mechanism by which NO regulates p38
MAPK signaling and whether S-nitrosylation is involved remains
unclear.

Collectively, we have shown that the endogenous production
of NO in HAEC is not sufficient to inhibit the upregulation of
adhesion molecules in response to cytokine stimulation. Higher
concentrations of NO, in the pharmacological range, are required
to suppress the induction of ICAM-1 and VCAM-1. Our results
reinforce the concepts that NO concentration, susceptibility of
target proteins and the cell type are critical factors regulating the
control of cellular function by S-nitrosylation.
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