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Abstract
Patients with primary antibody deficiency are at risk for severe and in many cases for prolonged COVID-19. Convalescent 
plasma treatment of immunocompromised individuals could be an option especially in countries with limited access to 
monoclonal antibody therapies. While studies in immunocompetent COVID19 patients have demonstrated only a limited 
benefit, evidence for the safety, timing, and effectiveness of this treatment in antibody-deficient patients is lacking. Here, we 
describe 16 cases with primary antibody deficiency treated with convalescent plasma in four medical centers. In our cohort, 
treatment was associated with a reduction in viral load and improvement of clinical symptoms, even when applied over a 
week after onset of infection. There were no relevant side effects besides a short-term fever reaction in one patient. Longitu-
dinal full-genome sequencing revealed the emergence of mutations in the viral genome, potentially conferring an antibody 
escape in one patient with persistent viral RNA shedding upon plasma treatment. However, he resolved the infection after a 
second course of plasma treatment. Thus, our data suggest a therapeutic benefit of convalescent plasma treatment in patients 
with primary antibody deficiency even months after infection. While it appears to be safe, PCR follow-up for SARS-CoV-2 
is advisable and early re-treatment might be considered in patients with persistent viral shedding.
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Introduction

Known risk factors for severe outcomes of COVID-19 in 
the general population include age, sex, diabetes mellitus, 
and underlying cardiovascular disease [1]. While primary 
immunodeficiency as a whole group did not seem to add 
by itself to the risk of a severe COVID-19 course, some 
specific immunodeficiencies were associated with an 
increased risk [2, 3]. This includes patients with deficien-
cies of the interferon response either genetically [4, 5] or 
due to their phenocopies by antibodies against interferon 
alpha and omega [6, 7] and patients with auto-antibodies 
neutralizing type I interferons due to autoimmune poly-
endocrine syndrome type-1 syndrome [8]. Single reports 
suggest an increased risk of severe COVID19 in patients 
with NFKB2 deficiency [9] and reports including a large 
number of patients with common variable immunode-
ficiency (CVID) suggested a higher fatality rate from 
SARS-CoV-2 infections among a subgroup [10, 11].

The effective immune response against COVID-19 
comprises the innate immune system including an inter-
feron response and the adaptive immune system includ-
ing an early CD8 T cell response with subsequent CD4 
and antibody response [12–15]. Interestingly, a delayed 
antibody response was associated with a worse outcome 
[16]. Given the poor humoral immune response in patients 
with antibody deficiencies, one obvious therapeutic option 
to treat COVID-19 is convalescent plasma, as its efficacy 
has been demonstrated for several other viral infections 
such as SARS-CoV, H5N1, or H1N1 [17–19]. In immu-
nocompetent individuals with mild COVID-19 but high 
risk for disease progression, administration of convales-
cent plasma less than 72 h after the onset of symptoms 
significantly reduced the progression to severe COVID-
19 [20]. However, administration of convalescent plasma 
to hospitalized patients with already-established severe 
COVID-19 pneumonia did not result in a clinical ben-
efit [21]. Similarly, a recent large randomized controlled 
trial of convalescent plasma in hospitalized patients with 
severe disease (receiving oxygen supplementation) up to 
12 days after symptomatic onset did not show a therapeutic 
benefit of convalescent plasma but participants receiving 
convalescent plasma experienced more adverse events 
depending on the plasma preparations [22]. Therefore, in 
immunocompetent individuals, treatment with convales-
cent plasma seems to be only beneficial in the early phase 
of infection and caution regarding the selection of plasma 
donors is warranted. For patients with underlying primary 
antibody deficiency like CVID, evidence on therapeutic 
management is restricted to single case reports [23–25]. 
More case reports and a few case series of patients with 
secondary immunodeficiency support the idea, that 

convalescent plasma therapy is beneficial [26–29]. How-
ever, single cases with fatal COVID-19 raised concerns 
that treatment with convalescent plasma during chronic 
infection may drive viral evolution and result in SARS-
CoV-2 variants with a decreased sensitivity to neutral-
izing antibodies [30–32]. Thus, given the lack of specific 
antibody responses and the important role of the humoral 
immune response in the timely control of the infection, 
treatment with convalescent plasma or monoclonal anti-
bodies against SARS-CoV-2, where it is available, seems 
to be a rational option, but may require monitoring for 
viral escape variants. Here, we describe the clinical out-
come of 16 patients with primary antibody deficiency from 
four centers after treatment with convalescent plasma.

Materials and Methods

Patient Cohort and Clinical Data

Physicians from four centers (Departments of Medicine and 
Pediatrics, Mount Sinai School of Medicine, New York, 
USA; Center for Chronic Immunodeficiency, University 
of Freiburg, Freiburg, Germany; Department of Molecular 
Medicine, Sapienza University of Rome, Rome, Italy and 
Thoraxklinik at the University Hospital Heidelberg, Hei-
delberg, Germany) were asked to retrospectively complete 
a questionnaire on their patients with chronic antibody 
deficiency and documented SARS-CoV-2 infection who 
received treatment with convalescent plasma. SARS-CoV-2 
infection had to be confirmed by qPCR. None of the patients 
was vaccinated before or during their SARS-CoV-2 infec-
tion. The anonymized questionnaire inquired demographic 
data, COVID-19 presentation, treatment details, and out-
comes. The study was approved by the Ethics Committee of 
the University Hospital of Freiburg (approval number FR 
354/19) and patients provided written consent at the respec-
tive Centre.

Classification of COVID‑19 Clinical Severity

We assessed clinical severity according to the World Health 
Organization (WHO) Clinical management Guideline of 
May 2020 (available at: https:// www. who. int/ publi catio ns/i/ 
item/ WHO- 2019- nCoV- clini cal- 2021-1).

Preparation of Convalescent Plasma

Convalescent plasma donors with a previous SARS-CoV-2 
infection were selected and the plasma products were pre-
pared according to local guidelines:
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Mount Sinai School of Medicine, New York, USA

As described before [33], convalescent plasma donors with 
total anti-spike IgG titers of ≥ 1:320 on the Mount Sinai 
Hospital-ELISA were referred for plasmapheresis at the 
New York Blood Center after standard screening for blood 
donors (e.g., testing for HIV, HAV, HBV, HCV, HEV, PB19). 
Each unit, approximately 250 ml in volume, was infused 
over 1–2 h. Convalescent plasma recipients were monitored 
every 15 min for signs of transfusion-related reactions and 
then followed for outcomes after the transfusion.

University Hospital Freiburg, Freiburg 
and University of Heidelberg, Translational Lung 
Research Center Heidelberg, Heidelberg, Germany

Convalescent plasma donors above 18 years of age with high 
anti-spike IgG titres (required ratio > 4, ratio ≥ 1.1: positive; 
semiquantitative SARS-CoV-2-S1 IgG Euroimmun ELISA 
calculating a ratio from the extinction of the sample and 
that of the calibrator) were referred for plasmaphereses at 
the Institute for Transfusion Medicine and Gene Therapy, 
University of Freiburg. Standard screening according to the 
German guideline for hemotherapy was performed (includ-
ing screening for infectious diseases (HIV, HAV, HBV, HCV, 
HEV, PB19) via serology and PCR at the time point of dona-
tion and 14 days after donation). Donors were accepted at 
least 42 days after the last positive SARS-CoV-2 PCR and at 
least 28 days after resolution of symptoms. Before donation, 
a current negative SARS-CoV-2 PCR from nasopharyngeal 
swab was required. Convalescent plasma units were infused 
over 1–2 h. Convalescent plasma recipients were monitored 
during and after transfusion according to the German guide-
lines for transfusion surveillance.

Sapienza University of Rome, Rome, Italy

Patients with documented COVID‐19, completely recovered 
by at least 14 days and two consecutive negative PCR tests, 
were considered convalescent plasma donors and screened 
according to the Italian rules to protect the health of apher-
esis donors. A positive SARS-CoV-2 serology was required. 
Convalescent plasma donors were screened for infectious 
diseases (according to the applying hemotherapy guidelines 
and additionally for hepatitis A and E viruses and parvovirus 
B19). The convalescent plasma product was processed with 
a pathogen reduction method.

Neutralization

Neutralization experiments with SARS-CoV-2 were 
performed under Biosafety Level 3 (BSL3) protocols 
at the Institute of Virology, Freiburg, approved by the 

Regierungspraesidium Tuebingen (No. 25–27/8973.10–18 
and UNI.FRK.05.16–29). To assess the neutralizing capacity 
of the plasma, serial plasma dilutions were incubated with 
100 plaque forming units (pfu) of the prototypic B.1 virus 
isolate (Muc-IMB-1) for 1 h. The mixture was dispersed on 
African green monkey kidney VeroE6 cells (ATCC CRL-
1586) in 12-well format and the cells were overlaid with 
0.6% Oxoid-agar for 48 h at 37 °C. The fixed cells were 
stained with Crystal violet. Number of plaques was com-
pared with an untreated control without serum.

Whole Genome Sequencing

cDNA was produced from extracted RNA of oropharyngeal 
swabs using random hexamer primers and Superscript III 
(ThermoFisher) followed by a PCR tiling the entire SARS-
CoV-2 genome (ARTIC V3 primer sets). The amplicons 
were cleaned with AMPure magnetic beads (Beckman Coul-
ter). Afterwards, the QIAseq FX DNA Library Kit (Qiagen) 
was used to prepare indexed paired end libraries for sequenc-
ing on a Illumina MiSeq instrument.

Bioinformatics

The de-multiplexed raw reads were subjected to a custom 
Galaxy pipeline, which is based on bioinformatics pipelines 
on usegalaxy.eu [34]. The raw reads were pre-processed 
with fastp (v.0.20.1) [35] and mapped to the SARS-CoV-2 
Wuhan-Hu-1 reference genome (Genbank: NC_045512) 
using BWA-MEM (v.0.7.17) [36]. Primer sequences 
were trimmed with ivar trim (v1.9) (https:// ander sen- lab. 
github. io/ ivar/ html/ manua lpage. html). Variants (SNPs and 
INDELs) were called with the ultrasensitive variant caller 
LoFreq (v2.1.5) [37]. Finally, consensus sequences were 
constructed by bcftools (v.1.1.0) [38]. Regions with low 
coverage > 20 × or variant frequencies between 30 and 70% 
were masked with Ns.

Phylogenetic and Variant Analysis

All available sequences from Germany deposited in 
GISAID (http:// gisaid. org/) between October and Novem-
ber 2020 were downloaded (as of the 22nd of April 2021) 
and 250 sequences randomly subsampled (Fig.  E1). 
For the phylogenetic analysis, the sequences were first 
aligned with MAFFT (v7.45) and a tree was constructed 
with IQ-Tree (v2.1.2). The best fitting substitution model 
was automatically determined and the tree was calcu-
lated with 1000 bootstrap replicates. Branch support was 
approximated using the Shimodaira–Hasegawa [SH]-aLRT 
method (1000 replicates). The tree was rooted to the ref-
erence sequence NC_045512. The clades were classified 
with the webservers of Nextclade (clades.nextstrain.org) 
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and Pangolin (pangolin.cog-uk.io). The phylogenetic was 
visualized with ggtree (v2.2.4) [39], treeio (v1.12.0) [40], 
and ggplot2 (v3.3.3) packages [41]. An in-house R script 
was also used to plot the variant frequencies that were 
detected by LoFreq as a heatmap (github.com/jonas-fuchs/
SARS-CoV-2-analyses).

Results

Characterization of Patient Cohort

A total of 16 patients (7 female and 9 male; age ranged 
from 11 to 71 years) with primary antibody deficiency 
were included in the analysis (Table 1). Most patients were 
diagnosed with CVID (10/16 patients, one of whom due to 
NFKB2 deficiency), four patients with X-linked agamma-
globulinemia (XLA), one patient with immunodeficiency 
due to Kabuki syndrome and one with Hyper-IgM syndrome 
of unknown origin. At the time of SARS-CoV-2 infection, 
all patients received immunoglobulin substitution as stand-
ard therapy for the underlying antibody deficiency and for 
all but three IgG levels were documented within the ther-
apeutic range. General risk factors for severe COVID-19 
which also apply to patients with primary immunodeficiency 
[10] comprised arterial hypertension in two, cardiac, renal, 
and chronic obstructive pulmonary disease in one each and 
chronic interstitial lung disease as part of the underlying 
immunodeficiency in six patients of our cohort. The latter 
manifestation had previously been associated with increased 
COVID-19-related mortality in CVID in the UK [11]. One 
patient with NFKB2 deficiency was treated because of her 
progressive disease and of critical COVID-19 previously 
reported in young patients with this genetic disorder [9, 10].

The most common symptoms of COVID-19 in our patient 
cohort were fever (14/16 patients), cough (11/16 patients), 
and dyspnoea (10/16 patients). Seven patients received a 
monotherapy with convalescent plasma, three additionally 
Remdesivir, one dexamethasone, and five the combination 
of both (Table 2). Clinical severity of COVID-19 before 
therapy with convalescent plasma was rated according to the 
World Health Organization COVID-19 Clinical management 
guidance [42] (Fig. 1A). One patient presented with mild 
disease (no evidence for viral pneumonia, but new onset of 
ataxia). Nine patients were classified with moderate disease 
(evidence for viral pneumonia, oxygen saturation > 90% on 
room air) and six patients had severe COVID-19 (viral pneu-
monia, oxygen saturation < 90% on room air or increased 
respiratory rate > 30/min). No patient showed critical symp-
toms (acute respiratory distress syndrome or sepsis). Patients 
with severe disease were more likely to receive additional 
COVID-specific therapy.

Tolerability and Clinical Response to Treatment 
with Convalescent Plasma

Convalescent plasma was administered to eight patients 
within the first 2 weeks after symptomatic onset of COVID-
19 because of high risk for disease progression and to the 
other eight patients between 17 and 132 days because of a 
long-term SARS-CoV-2 infection (Table 2). Nine patients 
from New York received a single dose while all others 
received two doses on subsequent days. One patient required 
a second treatment course. In our cohort, the treatment was 
without side effects except for a short febrile period in 
patient 3. Clinical symptoms improved in all patients after 
therapy and 15 were asymptomatic at last follow-up (Fig. 1B 
and Table 2). Five patients with close follow-up reported that 
the clinical response occurred within 7 days of treatment. 
Of these five patients, three (patient 2, patient 5, and patient 
1 s course) were treated because they showed a long-term 
SARS-CoV-2 infection.

Antiviral Response After Treatment 
with Convalescent Plasma

For five patients from Freiburg (Germany), SARS-CoV-2 
serology (SARS-CoV-2 S1 IgG, Euroimmun ELISA) and 
SARS-CoV-2 qPCR from nasopharyngeal swab were avail-
able within 1 week before and after convalescent plasma 
therapy (Fig. 1C, D). All were seronegative before treat-
ment. The detection of SARS-CoV-2 antibody titers after 
plasma treatment was associated with an increase of the 
cycle threshold (ct) values for SARS-CoV-2 qPCR in all 
patients (Fig. 1C, D). The antiviral effect of the treatment 
regimen was independent of the time point of treatment with 
convalescent plasma (8–133 days after symptomatic onset) 
(Table 2).

Evidence for SARS‑CoV‑2 Evolution After Treatment 
with Convalescent Plasma

To test for intra-host evolution of SARS-CoV-2, full-length 
SARS-CoV-2 genomes were analyzed from available oro-
pharyngeal swabs of patients 1, 2, and 3. Phylogenetic analy-
sis clustered all three patients into the clade 20B (Nextclade 
nomenclature) (Fig. 2) which was prevalent in Germany at 
the time of the initial infection (October to November). Lon-
gitudinal data after plasma treatment were only available for 
patients 1 and 3. Patient 3 acquired one mutation (T1890I 
in the ORF1ab) 5 days post plasma treatment but cleared 
the infection shortly thereafter (data not shown). For patient 
1, we observed the emergence of a stable viral subpopula-
tion 17 days after plasma treatment. Due to an increasing 
SARS-CoV-2 load (Fig. 3A), he was treated with a second 
course of convalescent plasma on day 62/63, resulting again 
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in an immediate increase in nucleoprotein and spike specific 
antibodies (Fig. 3B) and finally viral clearance 13 days after 
the second treatment. Neutralization assays confirmed a high 
neutralization capacity of all convalescent plasma samples 
against a prototypic SARS-CoV-2 virus in vitro (Fig. 3C). 
The re-emerging virus carried a fixed in-frame deletion in 
viral spike gene (21,601–21,612) (Fig. 3D) resulting in the 
deletion of four surface exposed amino acids (del14-17) in 
the N-terminal domain (NTD) (Fig. 3E). This deletion is 
part of a N-terminal Domain supersite primarily targeted 
by neutralizing antibodies, and residues 14 to 17 have been 
shown to be epitope residues for multiple potently neutral-
izing NTD-directed antibodies [43, 44].Therefore, del14-
17 might weaken antigen–antibody interactions or affect 
the conformation of this subdomain potentially conferring 
an antibody escape. The emergence of a potential escape 

mutation shortly after the first plasma treatment argues for a 
therapy-mediated immune pressure, which was absent before 
the immunological intervention.

Discussion

In our case series of patients with primary antibody defi-
ciency and COVID-19, convalescent plasma treatment was 
associated with a reduction in viral load and improvement 
of symptoms with the temporary appearance of SARS-CoV-
2-specific antibodies. Importantly, this effect was not limited 
to treating high-risk patients early during infection, but also 
patients with persistent SARS-CoV-2 infection improved 
clinically, even when treated months after the first positive 
PCR result. This response is clearly distinct from the notion 
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reported of immunocompetent patients [20–22] and is most 
likely due to the absence of an intrinsic humoral response in 
antibody-deficient patients a week after onset of symptoms 
when most immunocompetent patients with a severe disease 
have developed already a strong IgG response [45], suggest-
ing a much wider window of therapeutic opportunity for 
antibody-based therapies in these patients [46]. This notion 
also confirms the effective role of neutralizing antibodies in 
the defense against persistent SARS-CoV2 infection sug-
gested previously in other viral infections and mouse models 
propagated by Hangartner et al. [47]. In our study cohort, 
convalescent plasma treatment was safe and without serious 
side effects. Recently, a large cohort study in immunocompe-
tent individuals raised concerns of possible side effects and 
different therapeutic efficacy of convalescent plasma prod-
ucts depending on distinct antibody profiles [22]. The con-
valescent plasma which we were able to test in our patient 

cohort had high antibody titers with detectable neutralizing 
capacity contributing to high therapeutic efficacy and low 
risk for side effects. We did not observe clinical signs of 
antibody-dependent enhancement (ADE) or enhanced res-
piratory disease (ERD) in any of our patients after plasma 
treatment [48] considered a risk especially in preparations 
with low titers of neutralizing antibodies. Another hypoth-
esis is that antibody-deficient patients might tolerate con-
valescent plasma treatment better than immunocompetent 
patients. This idea is supported by case reports from patients 
with primary antibody deficiency and case series of patients 
with secondary antibody deficiency that tolerated convales-
cent plasma therapy well [23, 26, 27, 29, 46, 49]. However, 
underlying pathophysiological mechanisms remain unclear 
and further studies need to clarify this issue and the risk 
of ADE. Previous reports had suggested the risk of emerg-
ing escape variants secondary to plasma treatment [30–32]. 

Fig. 2  SARS-CoV-2 sequences 
obtained from oropharyngeal 
swabs of patients 1–3 were 
aligned to a set of randomly 
sampled SARS-CoV-2 genome 
sequences from Freiburg 
between October and Novem-
ber 2020 (deposited in the 
GISAID data bank (Fig. E1). 
The circularized maximum-
likelihood phylogenetic tree 
was constructed with IQ-Tree 
(GTR + F + I) and rooted on 
the Wuhan-Hu-1 reference 
sequence (NC_045512), tree 
branches were colored accord-
ing to their Nextclade clas-
sification. The scale represents 
nucleotide substitutions per site
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Moreover, immunological considerations suspected that 
patients with persistent SARS-CoV-2 infection might enable 
viral evolution and represent a reservoir for newly emerging 
SARS-CoV-2 variants. Notably, we observed an increase 
in viral load, associated with the emergence of a possible 
antibody escape mutation in the SARS-CoV-2 genome after 
convalescent plasma treatment in one patient, indicating a 
selection pressure due to treatment. Interestingly, a persistent 
infection in patient 2 was not associated with the emergence 
of known escape variants 47 days after symptomatic onset. 
This is a case series and therefore only limited conclusions 
can be drawn about generalizability. Still, our data corrobo-
rate the idea of immunological, especially antibody driven 
selection pressure for the evolution of the specific variants 
in the RBD region that is lacking in immunocompromised 
hosts with persistent infection. Therefore, antibody-deficient 
patients with chronic infection might not generally represent 
a reservoir for evolution of new viral escape mutations; how-
ever, after treatment with convalescent plasma or monoclo-
nal antibodies, regular follow-up with SARS-CoV-2 PCR 

becomes advisable in these patients. Reproducible increas-
ing viral load after an initial decrease might be used as a hint 
for possible treatment failure and viral evolution.

Clear limitations of our case series are the small num-
ber of cases, combined therapies in some of the patients, 
and lack of close follow-up in the majority of patients. 
Therefore, it is not possible to draw definitive conclusions 
based on the reported cases. However, given the current 
lack of evidence on therapeutic management of patients 
with primary antibody deficiency and COVID-19, which 
according to our and other findings differs from immuno-
competent patients, our observations are helpful informa-
tion for physicians treating patients with primary antibody 
deficiency in this global pandemic. Where available, a 
standardized treatment with anti-SARS-CoV-2 monoclo-
nal antibody cocktails should be considered as it showed 
promising results in early studies [50] and is not associ-
ated with the known adverse effects of plasma therapy 
including the potential transmission of anti-IFNalpha and 
IFNomega antibodies in plasma derived from convalescent 
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patients [7]. However, the strength of convalescent plasma 
is the local access and cost-effectiveness of treatment, 
making it a valuable option in countries with limited 
access to monoclonal antibody therapies.

In summary, our data suggests sufficient safety and 
a beneficial effect of convalescent plasma therapy for 
patients with primary antibody deficiency due to severe 
COVID-19 or existing risk factors and even in persist-
ing disease of more than 2 weeks. Plasma donors need to 
be carefully selected according to antibody profiles and 
treated patients need regular follow-up using SARS-CoV 
qPCR to identify a relapse in viral replication in time to 
avoid a time-dependent evolution of escape mutants. In the 
near future, prospective studies are needed to corroborate 
the findings of our case series.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10875- 021- 01193-2.
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