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Abstract

The hemagglutinin (HA) of influenza A viruses has been classified into sixteen distinct subtypes (H1–H16) to date. The HA
subtypes of influenza A viruses are principally defined as serotypes determined by neutralization or hemagglutination
inhibition tests using polyclonal antisera to the respective HA subtypes, which have little cross-reactivity to the other HA
subtypes. Thus, it is generally believed that the neutralizing antibodies are not broadly cross-reactive among HA subtypes.
In this study, we generated a novel monoclonal antibody (MAb) specific to HA, designated MAb S139/1, which showed
heterosubtypic cross-reactive neutralization and hemagglutination inhibition of influenza A viruses. This MAb was found to
have broad reactivity to many other viruses (H1, H2, H3, H5, H9, and H13 subtypes) in enzyme-linked immunosorbent
assays. We further found that MAb S139/1 showed neutralization and hemagglutination-inhibition activities against
particular strains of H1, H2, H3, and H13 subtypes of influenza A viruses. Mutant viruses that escaped neutralization by MAb
S139/1 were selected from the A/Aichi/2/68 (H3N2), A/Adachi/2/57 (H2N2), and A/WSN/33 (H1N1) strains, and sequence
analysis of the HA genes of these escape mutants revealed amino acid substitutions at positions 156, 158, and 193 (H3
numbering). A molecular modeling study showed that these amino acids were located on the globular head of the HA and
formed a novel conformational epitope adjacent to the receptor-binding domain of HA. Furthermore, passive immunization
of mice with MAb S139/1 provided heterosubtypic protection. These results demonstrate that MAb S139/1 binds to a
common antigenic site shared among a variety of HA subtypes and neutralizes viral infectivity in vitro and in vivo by
affecting viral attachment to cells. The present study supports the notion that cross-reactive antibodies play some roles in
heterosubtypic immunity against influenza A virus infection, and underscores the potential therapeutic utility of cross-
reactive antibodies against influenza.
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Introduction

Neutralizing antibodies play a critical role in protection from

influenza virus infection. Most neutralizing antibodies recognize

hemagglutinin (HA), which is the major surface glycoprotein of

influenza viruses. The HA of influenza A viruses has been

classified into sixteen antigenically distinct subtypes (H1–H16) that

are maintained in avian and mammalian species in nature [1,2].

HA is responsible for virus entry into target cells, virus binding

to the host receptor, internalization of the virus, and subsequent

membrane-fusion events. It is initially synthesized as a precursor

polypeptide, HA0, that requires proteolytic cleavage into disulfide-

linked HA1 and HA2 before it is functional and virus particles are

infectious. The major part of HA1 forms the ‘‘globular head’’

region, which contains the necessary structure for binding to the

sialic acid receptors. The ‘‘stem’’ region is mostly formed by HA2,

which contains the fusion peptide and membrane anchor domain.

It has been recognized that there is considerable amino acid

variability (antigenic difference) in the globular head region among

HA subtypes, whereas the structure of the stem region is relatively

conserved.

The HA antigenic structure of the H3 subtype has been well

characterized by using the sequence information on naturally

occurring and laboratory-selected antigenic variants [3,4,5,6]. Five

different antigenic sites have been identified and mapped mainly on

the HA1 globular head region in the three-dimensional structure of

the H3 HA molecule [3,4]. Antigenic sites of H1 [7] and H2 [8]

subtypes were then characterized by the identification of amino acid

substitutions found in the HA sequences of variants that escaped

from neutralization by antibodies. Recently, it was suggested that

the structures of antigenic sites of H5 [9,10] and H9 [11] subtypes

were different from those of the H1, H2, and H3 subtypes.
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In general, HA subtypes of influenza A viruses are principally

defined as serotypes determined by neutralization or hemagglu-

tination inhibition (HI) tests using polyclonal antisera to the

respective HA subtypes, which have little cross-reactivity to the

other HA subtypes. Furthermore, since the structures of HA

antigenic sites vary among not only different subtypes of viruses

but also the same subtype, it is generally believed that the

neutralizing antibodies are not broadly cross-reactive among HA

subtypes. Therefore, studies on cross-reactive HA-specific anti-

bodies to multiple HA subtypes have been limited [12,13,14].

Recently, it has been shown that intranasal immunization with

inactivated viruses provided heterosubtypic protection in a mouse

model, suggesting a role for cross-reactive antibodies in the

heterosubtypic immunity against influenza viruses [15,16,17]. In

this study, we generated a novel cross-neutralizing monoclonal

antibody (MAb) that reacts with a variety of HA subtypes by

intranasal immunization of mice. This antibody recognizes a

common epitope on the globular head region of HA and inhibits

virus binding to the sialic acid receptors. The present study

suggests the further potential of antibodies in heterosubtypic

immunity against influenza A virus infection.

Results

Characterization of MAb S139/1 in vitro
MAb S139/1 (IgG2a) was originally produced as an H3 HA-

specific antibody. The cross-reactivity of MAb S139/1 to multiple

subtypes of influenza A virus HAs was then tested by enzyme-

linked immunosorbent assay (ELISA) using several H1, H2, H3,

H5, H9, and H13 subtypes (Fig. 1). We found that MAb S139/1

reacted with all influenza A virus but not B virus strains tested,

with higher binding activities to the A/WSN RG/33 (WSN) (H1),

A/Adachi/2/57 (Adachi) (H2), A/Aichi/2/68 (Aichi) (H3), and

A/gull/Maryland/704/77 (Maryland) (H13) strains than to the

other strains. We confirmed the specificity of MAb S139/1 by

Western blotting using purified viruses. MAb S139/1 bound to

HA molecules under non-reducing conditions, whereas it bound

very weakly to HA1 but not HA2 under reducing conditions (data

not shown), suggesting that MAb S139/1 recognized a confor-

mational epitope on the HA1 subunit of the HA molecule.

We next tested HI activity of MAb S139/1 to various influenza

virus strains (Table 1). MAb S139/1 exhibited high HI titers to a

particular H1 strain and most of the H3 strains tested, and

moderate activity to H2 and H13 strains, but not to H5 and H9 or

type B strains. Neutralizing activity of MAb S139/1 was then

determined in vitro by a plaque reduction assay using Madin-

Darby canine kidney (MDCK) cells (Fig. 2). Consistent with its

reactivity profile in HI tests and ELISA, MAb S139/1 neutralized

infectivity of WSN (H1), Adachi (H2), Aichi (H3), and Maryland

(H13) strains. Relative neutralizing activities of MAb139/1 were

also correlated with its reactivity to these viruses in the HI test and

ELISA (i.e., MAb S139/1 neutralized Aichi (H3), WSN (H1),

Adachi (H2), and Maryland (H13) in order of increasing activity).

These results indicated that MAb S139/1 had a novel potential to

neutralize the infectivity of multiple subtypes of influenza A viruses

by inhibiting HA binding to the sialic acid receptors.

Protective Potential of MAb S139/1 in vivo
We then investigated the potential of MAb S139/1 to protect

mice against influenza virus infection. Mice were passively

immunized by intraperitoneal injection of purified MAb S139/1

one day before or after intranasal challenge with Aichi (H3) or

WSN (H1). Control groups were given an irrelevant MAb

(ZGP12/1.1) [18] or PBS alone. Protective efficacy was evaluated

by titrating infectious virus in the lung tissues three days after

challenge (Fig. 3). Mice pre-immunized with MAb S139/1 were

almost completely protected from both Aichi (H3) and WSN (H1)

infection, while these viruses were recovered from all the control

mice at high titers (Fig. 3A). There was no significant difference

between two control groups. Post-immunization with MAb S139/

1 also significantly reduced both Aichi and WSN titers, as

compared with control group (p,0.05 and p,0.01, respectively)

(Fig. 3B). Importantly, virus was not detected from two of the five

MAb S139/1-immunized mice infected with Aichi. These results

indicate that passive immunization of mice with MAb S139/1

provided heterosubtypic protection against H1 and H3 viruses.

Amino Acid Substitutions of the Escape Mutants
To determine the epitope for MAb S139/1, escape mutants of

Aichi (H3), WSN (H1), and Adachi (H2) were selected in the

Figure 1. Reactivity of MAb S139/1 to various influenza virus
strains. Binding activity of MAb S139/1 at the concentrations of
100 mg/ml (grey), 10 mg/ml (white), and 1 mg/ml (black) to the indicated
virus strains was measured by ELISA as described in Materials and
Methods.
doi:10.1371/journal.ppat.1000350.g001

Author Summary

Neutralizing antibodies play a critical role in protection
from influenza A virus infection. Most neutralizing
antibodies recognize hemagglutinin (HA), which is the
major surface glycoprotein of influenza viruses. The HA has
been classified into sixteen antigenically distinct subtypes.
Since HA subtypes of influenza A viruses are principally
defined as serotypes determined by neutralization or
hemagglutination inhibition tests using polyclonal antisera
to the respective HA subtypes, which have little cross-
reactivity to the other HA subtypes, it is generally believed
that the neutralizing antibodies are not broadly cross-
reactive among HA subtypes. Herein we present a novel
cross-neutralizing monoclonal antibody that reacts with a
variety of HA subtypes in vitro and provides heterosub-
typic protection against influenza A virus infections in
mice. We demonstrate that this antibody recognizes a
common epitope adjacent to the receptor binding region
of HA and inhibits virus binding to the cells. The present
study supports the notion that cross-reactive antibodies,
as well as cytotoxic T lymphocytes, play some roles in
heterosubtypic immunity against influenza A virus infec-
tion, and underscores the potential therapeutic utility of
cross-reactive monoclonal antibodies for multivalent
prophylaxis and treatment against infection with influenza
A viruses, including the hypothetical new pandemic
influenza viruses.

Antibody for Heterosubtypic Immunity to Influenza
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presence of this antibody as described in Materials and Methods.

We confirmed that hemagglutination activities of these escape

mutants were not inhibited by MAb S139/1 even at the

concentration of 50 mg/ml. The nucleotide sequences of the HA

genes of the parent strains and the escape mutants were

determined and deduced amino acid sequences were compared

among these viruses. We found amino acid substitutions at

position 156, 158, or 193 (H3 numbering here and throughout the

text) in these mutants (Table 2). Eleven and four escape mutants of

WSN (H1) and Adachi (H2), respectively, all acquired the

substitution at the same position, 193 (S193N and T193K,

respectively). The amino acid residue at position 193 is located on

the antigenic sites known as Sb and I-B of H1 [7] and H2 HAs [8],

respectively, which correspond to HA antigenic site B of H3 HA

[3]. On the other hand, the amino acid substitutions at position

156 (K156Q), 158 (G158E or G158R), or 193 (S193I or S193R)

were found in the sixteen escape mutants of Aichi (H3). All these

amino acid positions were involved in the conformation of HA

antigenic site B [3].

Comparison of HA Amino Acid Sequences among
Different HA Subtypes

We compared deduced amino acid sequences of the region

including the MAb S139/1 epitope among H1, H2, H3, H5, H9,

and H13 subtypes of HA (Fig. 4). Among these, WSN (H1),

Adachi (H2), Aichi (H3), and Maryland (H13), which were

neutralized by MAb S139/1, shared the amino acid sequence at

positions 156, 158, and 193 (K, G and S/T, respectively), with one

exception (N at position 158 in Maryland HA). By contrast, viruses

that were not neutralized by MAb S139/1 possessed different sets

of amino acids at positions 156, 158, and 193; A/PR/8/34 (PR8)

(H1) (E, E and N), A/Memphis/1/96 (Memphis) (H3) (K, D, and

T), A/Viet Nam/1194/2004 (VN1194) (H5) (K, N, and K), A/

swan/Hokkaido/67/96 (Hok67) (H5) (K, N, and K) and, A/duck/

Hong Kong/W213/97 (W213) (H9) (Q, N, and N), respectively.

Comparison of the Epitope Structure between Aichi and
Other Viruses

In three-dimensional structural analysis of the Aichi (H3) HA

molecule, positions of the amino acid substitutions found in the

escape mutants were mapped in the globular head of the HA

(Fig. 5A). We found that these three amino acids formed a

conformational epitope that was adjacent to the receptor-binding

site of the HA. We then compared the structure of this epitope

among Aichi (H3), WSN (H1), Adachi (H2), PR8 (H1), and

VN1194 (H5) HAs (Fig. 5). The epitopes formed by amino acid

residues at positions 156, 158, and 193 were similar among Aichi

(H3), WSN (H1), and Adachi (H2), whereas the structures of PR8

Figure 2. Neutralization activity of MAb S139/1 to various HA subtypes of influenza A virus strains. Viruses were mixed with indicated
concentrations of the purified MAb S139/1 (A) or control IgG2a (ZGP12/1.1) [18] (B). Neutralization activities were evaluated by plaque reduction
assays using MDCK cells.
doi:10.1371/journal.ppat.1000350.g002

Table 1. HI activity of MAb S139/1 with various influenza
virus strains.

Virus HI titer mg/ml a

A/PR/8/34 (H1N1) .50 b

A/WSN RG/33 (H1N1) 1.56

A/Adachi/2/57 (H2N2) 12.5

A/Singapore/1/57 (H2N2) 6.25

A/duck/Hong Kong/836/80 (H3N1) ,0.39

A/Aichi/2/68 (H3N2) 0.78

A/Memphis/1/96 (H3N2) .50

A/duck/Hokkaido/5/77 (H3N2) 12.5

A/chicken/Hong Kong/37/78 (H3N2) ,0.39

A/duck/Hokkaido/8/80 (H3N8) ,0.39

A/Hong Kong/483/97 (H5N1) .50

A/rgViet Nam/1194DHA/2004 (H5N1) .50

A/swan/Hokkaido/67/96 (H5N3) .50

A/swine/Hong Kong/10/98 (H9N2) .50

A/duck/Hong Kong/W213/97 (H9N2) .50

A/duck/Hokkaido/49/98 (H9N2) .50

A/gull/Maryland/704/77 (H13N6) 12.5

B/Lee/40 .50

aHI titers are expressed as the lowest concentrations of purified MAb S139/1
that completely inhibited hemagglutination.

bNo detectable hemagglutination inhibition at 50 mg/ml by MAb S139/1.
doi:10.1371/journal.ppat.1000350.t001

Antibody for Heterosubtypic Immunity to Influenza
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(H1) and VN1194 (H5) epitopes were distinct in the amino acid

properties or side-chain orientations at positions 156, 158, and

193. A significant difference of amino acid properties at positions

158 and 193 between PR8 (H1) and Aichi (H3) was that the

molecular sizes of amino acid residues E and N (PR8) were larger

than G and S (Aichi). In VN1194 (H5) HA, a significant difference

was found in side chain orientation, which was presumably

because of electrostatic repulsion between the positively charged

K156 and K193 side chains.

Neutralization of PR8 Mutants Possessing the Modified
Epitope for MAb S139/1

To confirm the importance of the amino acid residues at

positions 156, 158, and 193 for binding of MAb S139/1, we

generated recombinant PR8 (H1) mutant viruses with modified

epitopes whose amino acid sequences at these positions were

replaced with those of Aichi (H3), and tested neutralizing activities

of MAb S139/1 to the mutant viruses (Fig. 6). Of the seven

mutants generated, three had a single substitution (E156K,

E158G, or N193S), three had double substitutions (E156K/

E158G, E156K/N193S, or E158G/N193S), and one had triple

substitutions (E156K/E158G/N193S). We found that only the

triple mutant was neutralized by MAb S139/1 (Fig. 6). Accord-

ingly, MAb S139/1 bound to the triple mutant more efficiently

than to the other mutants and parent PR8 in ELISA (data not

shown). These results suggest that all three amino acids, K, G, and

S at positions 156, 158, and 193, respectively, are equally

important components to form this epitope (i.e., MAb S139/1

recognizes this conformational epitope through interaction with all

three of these amino acid residues).

Discussion

It has been generally known that hetrosubtypic immunity

can be provided by subtype cross-reactive cytotoxic T lymphocytes

that recognize conserved epitopes of viral internal proteins of

influenza A viruses such as nucleoprotein and matrix protein [19].

However, recent studies in mouse models suggest that humoral

immunity, B cells and antibodies, also contribute to heterosubtypic

protection [15,16,17,20]. In the present study, we obtained a

novel monoclonal antibody, MAb S139/1, which was broadly

cross-reactive to a variety of HA subtypes of influenza A viruses.

MAb S139/1 most likely neutralized the viral infectivity by

blocking receptor binding of the virus, since hemagglutination of

the viruses was also inhibited by this antibody. Influenza virus HA

subtypes are determined as serotypes based on their distinct

antigenicities, and thus there are a limited number of studies

reporting such heterosubtypic and cross-reactive MAb to HA

[12,13,14,21,22].

For example, MAb IVA1B10 [12,21] and MAb HA1-66

[13,22], both of which recognize the HA1 region, were shown

to react with H3, H4, H11, and H13 strains, but did not have HI

and neutralization activities. Some MAbs recognizing the HA2

region were also shown to be cross-reactive among influenza virus

strains of the same subtypes, and even among various subtypes

[12,21,22,23]. However, these antibodies neither prevented

hemagglutination nor neutralized infectivity of the viruses

Figure 3. Protective efficacy of passive immunization with MAb S139/1 in mice. Mice were passively immunized before (A) or after (B) virus
challenge with Aichi (H3) or WSN (H1). Control mice were given MAb ZGP12/1.1 or PBS. Virus titers of the lung were determined by a plaque assay.
The means and standard deviations are shown. For statistical purposes, samples with undetectable virus titers were given the value 2.0 log10PFU/g.
The data of pre-immunized mice were analyzed using the nonparametric Kruskal-Wallis ANOVA on ranks, followed by the Mann-Whitney U-test with
the Bonferroni correction for multiple comparisons. The data of post-immunized mice were analyzed using the Mann-Whitney U-test. Two-sided p
values less than 0.05 were considered statistically significant. Significant differences were indicated by asterisks (*** p,0.001, ** p,0.01, * p,0.05). All
statistical analyses were performed with the computer program R (version 2.8.1).
doi:10.1371/journal.ppat.1000350.g003

Table 2. Amino acid substitutions found in HA of WSN,
Adachi, and Aichi escape mutants.

Virus Amino acid substitution

WSN (H1) S193N (11/11) a

Adachi (H2) T193K (4/4)

Aichi (H3) K156Q (1/16)

G158E (10/16)

G158R (1/16)

S193I (2/16)

S193R (2/16)

aTotal numbers of escape mutants obtained in 2 independent experiments are
shown (No. of variants/total escape mutants cloned.)

doi:10.1371/journal.ppat.1000350.t002

Antibody for Heterosubtypic Immunity to Influenza
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[12,21,22,23]. On the other hand, it was shown that cross-reactive

MAb C179, specific to both H1 and H2 subtypes, neutralized viral

infectivity [14], though this MAb did not show HI activity. It

recognizes a conformational epitope consisting of HA1 and HA2

in the middle of the stem region, a conserved antigenic site among

the subtypes, suggesting that inhibition of the low pH-induced

conformational change followed by membrane fusion is the

mechanism underlying the action of this antibody [14,24]. By

contrast, this study for the first time demonstrates that there is a

common epitope shared among multiple HA subtypes, which is

recognized by a neutralizing antibody that prevents receptor

binding of the virus.

Figure 4. Comparison of the amino acid sequences of different subtypes of influenza A virus HAs. Amino acids at positions from 145 to
204 are shown. Boxed residues indicate the positions 156 (blue), 158 (green), and 193 (red). Asterisks indicate conserved amino acid residues among
HA subtypes examined. Amino acid sequences for HAs, except Adachi (H2) and W213 (H9), were downloaded from the Influenza Virus Resource at
the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) [48]. The NCBI accession numbers
are CAA24272 (PR8), AAA43209 (WSN), AB432938 (Adachi), CAA24269 (Aichi), AAB63708 (Memphis), AAT7327 (VN1194), BAE48688 (Hok67),
AB432937 (W213), and BAF46906 (Maryland).
doi:10.1371/journal.ppat.1000350.g004

Figure 5. Structure of the MAb S139/1 epitope on the globular head of HA trimer models. Three-dimensional models of Aichi (H3) (A), PR8
(H1) (D), and VN1194 (H5) (E) HAs were constructed from the coordinates obtained from the Protein Data Bank (PDB codes: 1HGF, 1RVX, and 2IBX,
respectively). The structures of WSN (H1) (B) and Adachi (H2) (C) were constructed by homology modeling as described in Materials and Methods.
Images were prepared by using DS Visualizer (version 1.7, Accelrys, Inc.). Residue numbering is thoroughly on the basis of the H3 HA sequence.
doi:10.1371/journal.ppat.1000350.g005
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In the present study, we found that MAb S139/1 bound to all

the strains of H1, H2, H3, H5, H9, and H13 subtypes tested by

ELISA, whereas it showed neutralization and HI activities to some

particular strains tested. Since we assume that MAb S139/1

recognizes a single epitope on the HA molecules of all the

subtypes, it is likely that the different binding affinity of MAb

S139/1 to each HA subtype influences the neutralization and HI

activities. Indeed, our data demonstrated that there was an

appreciable correlation between its binding affinities tested by

ELISA and by HI or the neutralization test. Furthermore, our

sequence analyses and reverse genetics approaches revealed the

major contribution of the HA amino acid residues at positions 156,

158, and 193 to the binding capacity of MAb139/1.

We found three independent substitutions at positions 156, 158,

or 193 in the Aichi mutant viruses that escaped from neutraliza-

tion by MAb S139/1. Three-dimensional structural analyses

revealed a conformational epitope consisting of these amino acid

residues. Of these, the amino acid residue at position 193 of H3

HA was shown to interact with the host receptor molecule (i.e.,

sialic acid-linked oligosaccharide) [5,25,26,27,28], suggesting the

contribution of this residue to receptor binding of the HA.

Accordingly, Aichi escape mutants with a substitution at position

193 (S193I and S193R) formed significantly smaller plaques than

the Aichi parent virus (data not shown), which might have resulted

from the reduced HA function of these mutants.

Three-dimensional structural analyses based on HA molecules

cocrystallized with a sialylated glycan receptor analogue (penta-

saccharide) suggest that molecular contacts between HA and the

sialylated glycan receptor are divided into base and extension

regions which include contacts with the terminal sialylgalactose

moiety and the subsequent sugar rings, respectively [29,30], and

that the sialylated glycan molecules bind to H1 and H3 HAs in

different conformations (i.e., the H1 HA glycan binding site in the

extension region form different conformation from that of H3 HA)

[27,29,30,31,32,33]. Since the amino acid residue at position 193

of H3 HA seems to directly interact with a specific sugar ring in

the extension region [27,31,33], mutation at this position of the

H3 HA likely influence its receptor binding properties. Consistent

with this hypothesis, an Aichi (H3) escape mutant (S193I) had

reduced ability to grow in cell culture and in mice (data not

shown). On the other hand, it has been suggested that the amino

acid residues not only at position 193 but also at position 190 of

H1 HA play a key role in interaction with the glycan in the

extension region [27,29,31,32]. Since the amino acid substitution

at position 190 of H1 HA is believed to be responsible for the

alteration of receptor binding properties [29,31], a single mutation

at position 193 found in WSN (H1) escape mutants might have a

limited effect on the overall receptor binding capacity of the HA.

It is well-known that HAs of avian and human influenza viruses

bind preferentially to a2-3 and a2-6 sialylated (SA) glycan

receptors, respectively. Although it has been generally believed

that amino acid substitutions at positions 226 and 228 are

primarily responsible for the differences in the receptor specificity

between avian and human H3 viruses, several studies have

reported that the mutation at position 193 of H3 HA might also

alter the receptor binding properties [5,31,33,34]. For example,

S193R substitution on prototype H3 human virus HA altered

binding specificity by acquiring the ability to agglutinate

erythrocytes containing SAa2-3Gal linkage [5], while a single

S193R substitution of H3 HA in a recent human virus enhanced

SAa2-6Gal but not SAa2-3Gal recognition [34]. Thus, it is

conceivable that H3 escape mutants that are naturally selected by

an antibody recognizing the S139 epitope may have reduced

receptor binding capacity and/or altered receptor specificity.

Moreover, amino acid positions 155, 159, 190, and 225 (H3

numbering) of H1 HA, most of which cluster around this epitope,

have also been demonstrated to influence receptor specificity [31].

Thus, it might be of interest to clarify whether the reactivity of

MAb S139/1 to multiple HA suptypes is affected by changes of

HA receptor recognition associated with substitutions around this

epitope.

Recently, passive transfer of MAbs specific to viral proteins has

been tested in clinical studies, providing models for the use of

MAbs for prophylaxis or treatment of infectious diseases. In fact, a

humanized MAb specific to RSV F protein is already approved by

the US Food and Drug Administration and used in clinical cases.

It has been experimentally shown that this approach is effective for

influenza virus infection in mice [24,35,36,37]. The present study

further indicated that the MAb S139/1 provided heterosubtypic

protection of mice from H1 and H3 influenza A virus infection. It

may be one of the options in the event of pandemic influenza [36].

Although MAb S139/1 neutralizes only particular strains of H1,

H2, H3, and H13 subtypes, this antibody has binding capacity to

other virus strains of different subtypes (Fig. 1). Since in vitro

neutralization activity was not necessarily linked to the protective

potential in vivo (e.g., non-neutralizing MAbs such as anti-HA2

MAbs [22,37] and anti-M2 MAbs [38,39,40] protected mice from

lethal influenza A virus infection), it may be interesting to estimate

the broader heterosubtypic protective efficacy of passive transfer of

MAb S139/1 in animal models.

Together with previous studies by others [22,24,36,37,

38,39,40], the present study supports the notion that cross-reactive

antibodies, as well as cytotoxic T lymphocytes, play some roles in

heterosubtypic immunity against influenza A virus infection, and

underscores the potential therapeutic utility of cross-reactive

MAbs for multivalent prophylaxis and treatment against infection

with influenza A viruses, including the hypothetical new pandemic

influenza viruses.

Materials and Methods

Viruses and Cells
Influenza virus strains, A/PR/8/34 (PR8) (H1N1), A/WSN

RG/33 (WSN) (H1N1), A/Adachi/2/57 (Adachi) (H2N2), A/

Singapore/1/57 (H2N2), A/duck/Hong Kong/836/80 (H3N1),

A/Aichi/2/68 (Aichi) (H3N2), A/Memphis/1/96 (Memphis)

(H3N2), A/duck/Hokkaido/5/77 (H3N2), A/chicken/Hong

Kong/37/78 (H3N2), A/duck/Hokkaido/8/80 (H3N8), A/Hong

Kong/483/97 (H5N1), A/rgViet Nam/1194DHA/2004 (rgVNDHA)

Figure 6. Neutralizing activity of MAb S139/1 to PR8 mutants
with altered epitopes. Amino acids at positions 156, 158, and/or 193
of PR8 HA were substituted for by those at corresponding positions of
the Aichi HA sequence. Other experimental conditions were described
in Materials and Methods.
doi:10.1371/journal.ppat.1000350.g006
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(H5N1), A/swan/Hokkaido/67/96 (Hok67) (H5N3), A/swine/

Hong Kong/10/98 (HK10) (H9N2), A/duck/Hong Kong/W213/

97 (W213) (H9N2), A/duck/Hokkaido/49/98 (H9N2), A/gull/

Maryland/704/77 (Maryland) (H13N6), and B/Lee/40 were used

(Table 1). rgVNDHA (H5N1) is a reassortant virus that has the

modified H5 HA gene derived from A/Viet Nam/1194/2004

(VN1194) (H5N1) and all other genes from PR8. In this modified

H5 HA, the original amino acid sequences at the cleavage site

(PQRERRRKKRG) were replaced with those of A/teal/Hong

Kong/W312/97 (H6N1) (PQIETRG). All infectious materials

were handled in a biosafety level 2 or 3 facility under approved

protocols in accord with guidelines of Hokkaido University. These

viruses, except a highly pathogenic virus, A/Hong Kong/483/97,

were propagated in the allantoic cavities of 10-day-old embryonated

chicken eggs at 35uC for 48 h (A/Hong Kong/483/97 was

incubated in eggs for 36 hours). Some of these viruses were

concentrated and purified by high-speed centrifugation of in-

fected allantoic fluid passed through a 10 to 50% sucrose density

gradient [16]. The purified viruses were resuspended in phosphate-

buffered saline (PBS) and stored at 280uC until use. Madin-Darby

canine kidney (MDCK) cells were maintained in Eagle’s minimal

essential medium (MEM) supplemented with 10% calf serum.

Human embryonic kidney 293T cells were maintained in

Dulbecco’s modified Eagle’s medium supplemented with 10% fetal

calf serum.

Monoclonal Antibodies (MAbs)
Six-week-old female BALB/c mice, were intranasally immu-

nized twice at 2-week intervals with 100 mg of formalin (0.2%)-

inactivated purified Aichi together with cholera toxin B (Sigma).

Two weeks after the second immunization, the mice were

intranasally boosted with inactivated virus alone. Three days

later, the spleen cells from the mice and mouse myeloma Sp2/0

cells were fused and maintained according to a standard procedure

[41]. Hybridomas were screened for secretion of anti-influenza-

virus specific MAbs by enzyme-linked immunosorbent assay

(ELISA), and then HA-specific MAbs were identified by Western

blotting and immunostaining of 293T cells transfected with

plasmids expressing Aichi HA. We further screened for cross-

reactivity of the antibodies to other HA subtypes by ELISA, and

obtained cross-reactive MAb S139/1 (IgG2a). The hybridoma

producing MAb S139/1 (IgG2a) was cloned twice by limiting

dilution of the cells. MAb S139/1 was purified from mouse ascites

using protein A agarose columns (Bio-Rad).

Antibody Assays
ELISA was performed essentially as previously described [41].

Briefly, purified viruses were disrupted with 50 mM Tris–HCl

(pH 7.8) containing 0.5% Triton X-100 and 0.6 M KCl, diluted

by PBS, and used for antigen coating (20 mg protein/ml in PBS,

50 ml/well), followed by blocking with BSA. Binding of MAb

S139/1 was detected by using peroxidase-conjugated goat anti-

mouse IgG (H+L) (Jackson) and o-phenylendiamine dihydrochlo-

ride (Sigma). HI activity of the purified MAb was tested by the

standard method using 0.5% chicken erythrocytes. Neutralizing

activity of the MAb was measured by a plaque reduction assay

using MDCK cells. Ten-fold dilutions of MAb were mixed with

100–200 plaque forming unit (PFU) of viruses and incubated for

1 h at room temperature. The confluent monolayers of MDCK

cells on 12-well plates were inoculated with the mixture. After 1 h

adsorption, the virus inoculums were removed and the cells were

overlaid with MEM containing 1% Bact-agar and trypsin (5 mg/

ml). The plaques were enumerated after incubation at 35uC, 5%

CO2 for 2 days. Western blotting was performed as follows. Virus

proteins were separated by 10% SDS-polyacrylamide gel electro-

phoresis under reducing or non-reducing conditions, and trans-

ferred to PVDF membranes (Millipore). The membranes were

blocked with 3% skim-milk (SM) in PBS containing 0.05% Tween-

20 (PBST) and exposed to MAb S139/1 (1 mg/ml) in 1% SM-

PBST, and then probed with horseradish peroxidase-conjugated

goat anti-mouse IgG (H+L) (Jackson), and the reacted bands were

visualized by Immunostaining HRP-1000 (Konica Minolta).

Passive Immunization and Protection Tests
The experimental protocols were reviewed and approved by the

Hokkaido University Animal Care and Use Committee (08-0234).

Six-week-old female BALB/c mice were passively immunized by

intraperitoneal injection with 200 mg of purified MAb S139/1 or

ZGP12/1.1 (IgG2a) [18] in 0.5 ml of PBS. Twenty four hours

before or after immunization, mice were challenged intranasally

with 50 ml of 10650% mouse infectious dose of Aichi (H3) or

WSN (H1) under anesthesia with isoflurane. Three days after the

challenge, mice were euthanized to obtain the lung tissue samples.

The lung homogenates (10% w/v) prepared in MEM were

disrupted and centrifuged at 3,0006g for 10 min, and then the

supernatants were examined for virus infectivity. Virus titers were

measured by a plaque assay using MDCK cells.

Sequence Analysis of the HA Genes
Viral RNA was extracted using a QIAamp Viral RNA Mini Kit

(Qiagen). After reverse transcription with M-MLV reverse

transcriptase (Invitrogen) using Uni12 primer (59-AGCAAAAG-

CAGG), HA genes were amplified by PCR using gene-specific

primer sets [42]. PCR products were purified with a QIAQuick

PCR purification kit (Qiagen) and nucleotide sequences were

analyzed using a dye-terminator cycle sequencing system with an

ABI sequencer (Perkin-Elmer, Applied Biosystems).

Selection of Escape Mutants
Escape mutants were selected by culturing WSN (H1), Adachi

(H2), and Aichi (H3) strains in MDCK cells in the presence of

MAb S139/1. Viruses were incubated with purified MAb S139/1

(final concentration of 10 mg/ml) for 1 h, and then the mixtures

were inoculated into confluent MDCK cells in 6-well tissue culture

plates. After 1 h adsorption, the cells were overlaid with MEM

containing 1% Bacto-Agar (Difco) and MAb S139/1 ascites (final

dilution of 1:200) and trypsin (5 mg/ml), and then incubated for 2

days at 35uC. Escape mutants were purified from single isolated

plaques, and propagated in MDCK cells with serum-free MEM

containing trypsin. The nucleotide sequences of the HA genes of

the parent strains and the escape mutants were determined and

deduced amino acid sequences were compared among these

viruses.

Generation of Recombinant Mutant Viruses by Reverse
Genetics

The plasmid pWH194-HA [37] expressing PR8 HA was

modified using a QuickChange II Site-Directed Mutagenesis kit

(Stratagene). HA mutant viruses were generated by the reverse

genetics method as described previously [43]. Briefly, 293T and

MDCK cells were cocultured on 6-well plate and transfected with

a set of eight influenza virus plasmids allowing the rescue of the

recombinant PR8 (H1N1) for generating all HA mutants. The

recombinant viruses produced from transfection were amplified in

MDCK cells, and stored at 280uC. The HA genes of the

recombinant viruses were sequenced to verify the presence of the

desired mutations and the absence of other changes.
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Molecular Modeling
The HA structures of WSN (H1) and Adachi (H2) were

constructed using Modeller 8v2 [44] based on the crystal

structures of H1 (PDB code: 1RU7) and H5 (PDB code: 2FK0)

HA molecules, respectively. After one hundred models of the HA

trimer were generated, we selected the model with the best

probability distribution function (PDF) score. The HA model was

evaluated by using PROCHECK [45], WHATCHECK [46], and

VERIFY-3D [47].
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