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Abstract
Starting with sets of disorganized observations of spatially varying and temporally evolving systems, obtained at different (also disorganized) 
sets of parameters, we demonstrate the data-driven derivation of parameter dependent, evolutionary partial differential equation (PDE) 
models capable of generating the data. This tensor type of data is reminiscent of shuffled (multidimensional) puzzle tiles. The independent 
variables for the evolution equations (their “space” and “time”) as well as their effective parameters are all emergent, i.e. determined in a 
data-driven way from our disorganized observations of behavior in them. We use a diffusion map based questionnaire approach to build a 
smooth parametrization of our emergent space/time/parameter space for the data. This approach iteratively processes the data by 
successively observing them on the “space,” the “time” and the “parameter” axes of a tensor. Once the data become organized, we use 
machine learning (here, neural networks) to approximate the operators governing the evolution equations in this emergent space. Our 
illustrative examples are based (i) on a simple advection–diffusion model; (ii) on a previously developed vertex-plus-signaling model of 
Drosophila embryonic development; and (iii) on two complex dynamic network models (one neuronal and one coupled oscillator model) 
for which no obvious smooth embedding geometry is known a priori. This allows us to discuss features of the process like symmetry 
breaking, translational invariance, and autonomousness of the emergent PDE model, as well as its interpretability.
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Introduction
Data science and machine learning (ML) daily expand the set of 
data-driven tools in the mathematical modeler’s toolkit. This tool
kit enables, among other tasks, the extraction of data-driven dy
namic models capable of predicting the evolution of a system’s 
response as a function of initial/boundary conditions and (pos
sibly) external parameters. The input to this process is a (rich 
enough) set of time series (or image series, movies) of experimen
tal observations of the system we wish to model.

A simple illustration is seen in Fig. 1A:  a space–time plot depict
ing the evolution of a concentration field in a plug flow tube, gov
erned by a scalar, 1D advection–diffusion partial differential 

equation (PDE). Initially, there is no tracer anywhere in the tube; 
then, a step change in tracer concentration is introduced at the 
inlet.

Given this “movie” in the form of the space–time field u(x, t) we 
can obtain (at every x and every t) a set of measurements: 

u, ut, utt, ux, uxx, uxxx, etc. If we have some reason to believe that 

the dynamics can be modeled in the form of a PDE of the form 

ut = L(ux, uxx), then each point of the movie gives us a point in 

the ut, ux, uxx space. It is clear that, with these data, the operator 

L can be approximated (fitted) as a function of “just” ux and uxx, 

and any off-the-shelf neural network or Gaussian Process 

Regression software can be used to “learn the right-hand side of 
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the PDE.” Cautionary notes abound: notice, for example, how 
much we have already assumed, even without a formula: that it 
is a first-order PDE in time; that it is translationally invariant (its 
law does not explicitly depend on x) and autonomous (its law 
does not explicitly depend on t); that the right-hand side operator 
only depends on u and its second-order spatial derivatives; that no other 
variable is necessary to predict the evolution of u; that noise can 
be ignored…Yet the fact remains: in this data-driven sense, oper
ators can be approximated, and ODEs and PDEs can be “learned” 
from data through, say, neural networks; this has been known 
and practiced for decades (2–4) (and is experiencing an explosive 
rebirth in the current literature (5–11)). These learned models do 
not need to be completely “black box” agnostic: physical knowl
edge can be included in “hardwiring” parts of the operator that 
are assumed accurately known, or learning the “calibration” of 
parts of the operator that are assumed only partially/qualitatively 
known. The term “gray box identification” is used for such algo
rithms (12–14). The methods to “learn” PDEs also do not need to 
be neural network based (15, 16).

Figure 1C is a qualitatively similar computational space–time 
movie: it arises in modeling the evolution in time of a chemical sig
nal from a vertex-plus-chemistry model of Drosophila egg evolu
tion (proposed in Ref. (17)). It only records a particular 
observation of the evolution (along with a portion of the 1D “back
bone” of the equatorial slice of the egg). Without any of the myriad 
details, the point is that one could try and “learn” an evolution PDE 
for this spatiotemporal signal from the data.

Such a data-driven model can only be guaranteed, upon success
ful training, to be a compact summary of the data it was trained on: 
it can reproduce them (it can regenerate the data in the same way 
that a PDE solver can produce a solution for a well-posed problem). 
How well it can generalize (extrapolate at other initial conditions, 
other boundary conditions, other parameters) or whether it can as
sist physical understanding is, of course, another story that only 
starts after the small initial success of creating a compact “gener
ator” of the training data. We will take all this “compact data gener
ator” technology for granted, and use it in our work here.

A first sketch of the problem we want to solve is outlined in 
Fig. 1B: Fig. 1A has been turned into a “shredded and shuffled” puz
zle. Measurements (pixels, puzzle tiles) are obtained at Ns locations 
in space (si, i = 1, . . . , Ns); yet the instruments are placed at random 
space locations, so that while the ith instrument always measures 
at the same spatial location, we do not know where this location is 
in physical space. Figure 2 shows a plausible caricature of how such 
shuffled-in-space measurements may arise: consider a pipe (e.g. a 

reservoir) hidden under the surface of a table (e.g. a plain in 
Texas). We drill measurement wells on a regular grid on the plane, 
and number them based on the 2D plane geometry (1–16, Fig. 2B); 
yet the order of this numbering does not correspond to the true 
flow pattern under the surface, whose 1D geometry—parametrized 
by the pipe arclength, from I to XVI—is invisible to us. Time-series 
measurements of concentration (using the advection–diffusion 
equation (18)) ordered 1–16 with the observation geometry 
(Fig. 2C) gives us a violently varying (large Dirichlet energy) surface; 
yet if we reorder the labeling of these time series (“unshuffle” them) 
using space–time smoothness as our principle, we obtain a smooth 
surface (Fig. 2D) which visually coincides with the true space–time 
solution along the pipe length (Fig. 2E). Figure 2F compactly sum
marizes this geometry, while Fig. 2G shows “the same problem” in 
following flow down a human intestine: ordering sensor measure
ments based on physical, 3D space geometry is not faithful to the 
twists and turns of transport along the path of our effectively 1D di
gestive tract. Figure 2H shows 16 cells (after four divisions of an ini
tial embryonic cell (1)) along with their (schematic) connectivity 
pattern. The 2D space we plot them in is not “the right geometry” 
in which to study the exchange of signals between them; the right 
geometry for this is the graph idealized in Fig. 2H.

In the same spirit, the Ns instruments are triggered to record at 
the same Nt instances in time (tj, j = 1, . . . , Nt); yet the labels j of 
the temporal measurements are also random (not sequential 
with true physical time); so, all Ns spatial channels report at 
time instance j, but we do not know at what actual physical 
time these simultaneous measurements were taken. We thus 
have a list of “spatial channels” and a list of “temporal channels” 
that index our observational tiles (and in what follows, we will 
make the puzzle 3D: we will add “parameter channels,” perform
ing Np different experiments, also with disorganized labels 
k = 1, Np; this will turn our “tiles” into “voxels”).

So, we know what measurements were obtained simultaneous
ly in time (from their index j); which come from the same experi
ment (from their index k); and which come from the same spatial 
location (from their index i); but we do not know what the actual 
physical time corresponds to the index j, which particular space 
location corresponds to the index i, and for what parameter values 
the measurements at parameter index k were obtained; our tensor 
data are “triply disorganized”—what one might call a multipuzzle.a

We want to combine (i) organizing/reconstructing the (multi)
puzzles (finding a good way to embed our measurement locations 
and temporal instances in an “emergent space–time” domain, or 
an “emergent space–time–parameter” domain) with (ii) learning 

Fig. 1. An illustrative space–time caricature. A) Tracer concentration evolution during advection–diffusion in a pipe, following a step change in tracer 
concentration at the entrance of the pipe (see Supplementary material 1 for nondimensionalized equation, initial conditions, and boundary conditions). 
B) The same concentration data disorganized (shuffled) in space and in time. C) A space–time plot for chemical signal intensity data in a Drosophila 
embryonic development model (see Section 2 and Supplementary material 3). D) The same Drosophila data disorganized in space and time.
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a predictive model (an evolution equation) in this reconstructed, 
data-driven, “emergent space–time” with the ML-assisted techniques 
mentioned above.

While the literature of reconstructing dynamical systems from 
data (with known space-times!) is quite rich and fast growing (19, 
20), there is also extensive literature for the mathematics and 
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Fig. 2. A) A table covering a 1D serpentine pipe with liquid flow. B) Measurements are taken at 16 points in a regular grid, at the center of each square. 
Locations are initially indexed by the number in the upper left corner of the square but would be more usefully indexed by the Roman numerals following 
the pipe centerline. At time 0, we introduce a step change in the concentration of tracer particles at the pipe inlet. C) For our first (table-geometry) 
ordering, the data appears scrambled and cannot be readily interpolated. D) After data-driven rectification, the results are smooth and can be 
interpolated. E) Interpolation can produce the full space–time response. See Supplementary material 1 for additional details on this advection–diffusion 
example. F) Each square is colored by its measurement value at time t = 0 for both the original grid layout and the “data-revealed” sensor index. G) The 
curved 1D pipe example is qualitatively similar to revealing the geometry of human intestines, for example. H) Schematic caricature for a cell lineage tree 
in Drosophila germline (1).
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algorithms of (instantaneous!) puzzle reconstruction (21, 22). 
Our algorithm of choice here for “solving the puzzle” (i.e. for 
the reconstruction of a useful spatial–temporal–parameter em
bedding from observational “puzzle voxels”) will be the tensor 
decomposition “Questionnaires” algorithm of Ref. (23). This is il
lustrated, and mathematically summarized, in Supplementary 
Information 2; it was proposed in Ref. (23) and we have used it 
in the past to learn normal forms from dynamical system obser
vations in Refs. (24, 25) (see also Refs. (26, 27)). Our algorithm for 
subsequently learning a predictive model for the organized 
data—an evolution equation in the “emergent space–time– 
parameter” domain—will be deep neural networks (as proposed 
originally in Refs. (4, 12, 28–31) and used extensively recently, 
e.g. in Refs. (32–35)).

The article is organized as follows: We will start with a very 
brief description of Diffusion Maps, and their use as part of 
the Questionnaires algorithm (detailed and illustrated in 
Supplementary material 2). We will then briefly introduce the 
data we will use, which come from a previously proposed/studied 
vertex-plus-signaling model of Drosophila embryonic develop
ment, described in detail in Supplementary material 3. Finally, 
we will describe and illustrate “learning the PDE” in the emergent 
domain. When a problem is even mildly nontrivial, interesting 
twists arise in treating it; here, these twists include (i) slight break
ing of a left/right symmetry and (ii) the fact that we know that the 
problem is not spatially translationally invariant: it includes a 
physically motivated, spatially localized, temporally varying for
cing term (the source of the signaling). How these two “twists” 
arise and are dealt with in our data-based scheme is, we believe, 
of some interest.

We conclude with a few of the (myriad) caveats and shortcom
ings of the approach. Even with those, we argue that the combin
ation of puzzle-solving with nonlinear distributed system 
identification, and the ability to create “intelligent” emergent do
mains in which to learn smooth models, is an important pursuit, 
extending the tools of modern data-driven modeling. We empha
size that it is the integration of the two techniques (unsupervised 
and supervised learning) that we hope to demonstrate with this 
work, rather than the details or the exact choice of the individual 
components (whose exact formulation can be replaced with what 
is appropriate for the problem at hand).

A final note before starting: why scramble a space–time you al
ready know? The answer is that we first validate the approach on 
problems where we know the solution, before it can be applied to 
data with hidden space-times (think of segments of broken fossils 
in different earth strata at different locations, or measurements 
more easily labeled by device name—e.g. sample point A301— 
rather than space location) as well as data where no obvious 
physical space–time exists (e.g. dynamics of networks, power 
networks, or physical neural networks), but which can be usefully 
visualized in data-driven space-times (e.g. Refs. (36, 37)). We present 
two additional examples in Supplementary material 5, both illus
trating systems lacking an obvious spatial dimension a priori, but 
where an effective spatial parameterization emerges through this 
approach. These examples include a model of the pre-Bötzinger 
complex, a neuronal network in the brainstem, and the Stuart– 
Landau oscillators, an agent-based system of coupled ODEs. In 
both cases, a meaningful spatial parameterization is uncovered 
using the questionnaire metric. In this work, we intentionally 
scramble the known space and time data in our Drosophila model, 
not only to validate our approach but also to demonstrate its 
capability to reconstruct meaningful patterns from disordered, 
high-dimensional tensors.

Methods for data analysis
This section briefly introduces the data organization tool: the 
questionnaire informed metric that iteratively synthesizes and or
ganizes information viewed along different axes of the data ten
sor. Since it builds upon the Diffusion Maps manifold learning 
technique, we first provide a brief overview of diffusion maps.

Manifold learning: diffusion maps
The goal of manifold learning is to discover underlying lower- 
dimensional intrinsic nonlinear structure in high-dimensional 
data. Diffusion maps (38, 39) accomplishes this by constructing 
a discrete approximation of the Laplacian operator on the data. 
When the data are sampled from a low-dimensional manifold, 
the discrete operator converges to the continuous Laplace– 
Beltrami operator on the manifold in the limit of infinite sample 
points. The discrete operator is constructed by defining a weighted 
graph on some N sampled data points, where the weight between 
points i and j is given by

wi,j = exp −
d(yi, yj)

2

ϵ2

􏼠 􏼡

; (1) 

d(†, †) represents a chosen distance metric (e.g. Euclidean in the 
ambient space) and ϵ represents a distance scale below which 
samples are considered similar. A weight of 1 indicates that two 
samples are identical, while a weight close to 0 indicates that 
two samples are very dissimilar. After some normalization, the 
leading nonharmonic eigenvectors {ϕk} of the kernel matrix, 
weighted by the corresponding eigenvalues {λk}, provide a new co
ordinate system for embedding/describing the data. Distances in 
this coordinate system are referred to as diffusion distances. 
Eigenvectors which do not contribute to this distance (due to 
low eigenvalues) can be truncated, and the reduced set of eigen
vectors can serve as a proxy for the intrinsic manifold coordinates. 
More details can be found in Refs. (38, 39). Recent years have 
brought significant advancements in diffusion maps, including 
theoretical developments (40, 41) and practical advancements 
(42, 43). One such advancement, the questionnaire-informed metric, 
is the focus of the following section.

Iteratively informed geometry and the 
questionnaire metric
One of the key choices in the implementation of diffusion maps is 
that of the metric used to compare data points. In many cases, the 
standard Euclidean norm in ambient space is sufficient, but in cer
tain applications (such as for very noisy or sparse datasets, or 
scrambled datasets where correlations between dimensions can 
be exploited like in our Drosophila data (23)) other metrics may 
be warranted. It may be easiest to describe this in reference to 
the colorful caricature in Fig. S1. Consider the case where we 
want to find a jointly smooth embedding for the rose color chan
nels as well as for the blooming stage (age) channels at which 
we collect data. The questionnaire metric (see Supplementary 
material 2 and Refs. (24, 25, 36)) uses (i) the data-driven geometry 
of the blooming stage indices to inform the distances between the 
color channel indices; as well as (ii) the data-driven, now “slightly 
informed about blooming stage” geometry of the color channel in
dices to inform, in turn, the distances between the blooming stage 
indices. The procedure iteratively improves the joint metric until 
convergence. If a third “viewpoint” (in addition to color and bloom
ing stage—e.g. possibly type of fertilizer used) is included, we iter
ate between all three viewpoints.
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Illustrative example
Model data
To illustrate our approach, we will use data generated by a 
vertex-plus-signaling model of a tubular epithelium which ap
proximates ventral furrow formation in early Drosophila embryos; 
the model was first developed in Ref. (17) (see also Refs. (44–46)). 
The approach combines: 

1. A 2D mechanical model consisting of a ring of 80 quadrilat
eral cells. Since each pair of neighboring cells shares two ver
tices, the state space of the mechanical model is described by 
the positions of 160 vertices. The vertices are acted on by line 
tension on the edges, a stiff outer membrane, and energy pen
alties for deviation in the volume of each individual cell, as 
well as the central “yolk” they collectively envelop.

2. A chemical signal model for a protein involved in embryonic 
development. The (temporally varying) chemical intensity of 
the signal is assumed to be spatially uniform within each cell 
(the cells are “well mixed”). There is a source for the signal in 
certain cells, whose intensity is time-dependent: it grows to a 
maximum value at the “stopping time” ts before decaying 

exponentially with first-order rate constant d. Transport be
tween the cells is proportional to the concentration difference 
between them, and is characterized by an “effective diffusiv
ity” De.

The overall model overlays the mechanical and chemical compo
nents to generate “videos” (series of snapshots) in the spirit of ex
perimentally tracking the staining for the relevant protein. For 
more details, see Supplementary material 3. The model contains 
a number of constitutive parameters; here, we will fix several of 
them, and focus on three that we will allow to vary: the effective 
diffusivity De, the protein degradation rate constant d, and the 
stopping time ts.

We generated data from this Drosophila embryo model for 1000 
distinct parameter settings. For each configuration, De and d were 
generated from independent normal distributions with 
{μDe

= 0.2, σDe = 0.04} and {σd = 0.075, σd = 0.005}. Settings beyond 
two standard deviations from the mean were discarded and re
drawn. The stopping time ts was then taken to be a prescribed 
function of De and d; the point of this is to illustrate that, even 
though three parameters are varying, there is only a two-parameter fam
ily of variations—so that our parameter settings lie on a 2D 

A B C D

Fig. 3. A) A space–time Drosophila embryo chemical signal field for a particular parameter setting (d = 0.1750, De = 0.0650, ts = 40.17). Five representative 
points in time are highlighted in red. B) Observation snapshots corresponding to those points in time. Data are taken from the area outlined in white. C) 
Corresponding snapshots, showing the location of the cell vertices. D) Signal Snapshots at the same time instances but for a different parameter setting 
(d = 0.1830, De = 0.0848, ts = 39.91).
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manifold embedded in the 3D parameter space (Fig. 5A). We will 
thus expect our data-driven approach to recognize that the effect
ive parameter variation is 2D.

A representative simulation output is summarized in 
Fig. 3C. From this type of output, we generated “videos” of just 
the chemical signal expression (Fig. 3B), with no specific morph
ology information, since the morphology evolves in the same 
way in all our trials. In order to simplify analysis, we sample 
data from a 1D “backbone curve,” guided by the midpoints of the 
cell interface edges (see white outlines in Fig. 3B/D).

We approximate the data, sampled on N = 360 points along this 
curve of cell midpoints, using bivariate splines. With T = 61 snap
shots for each movie, this results in a 1,000 × 61 × 360 data tensor; 
each snapshot contains N = 360 spatial grid points. Figure 3 shows 
how a space–time field for a particular parameter setting corre
sponds to snapshots from the original video; to illustrate variabil
ity, some snapshots from a different parameter setting are also 
included in the last column. We then artificially scramble our 
Drosophila dataset.

Embedding results
After applying diffusion maps with the questionnaire-informed metric 
to our scrambled Drosophila data, a subset of the diffusion map ei
genvectors provide an embedding for each axis of our data tensor 
(parameters, space, and time), which are shown in Fig. 4. While 
these embeddings may not be intuitive at first glance, they can 
(in this example) be rationally interpreted in terms of the under
lying system.

We begin with the embedding of the parameters, since it is the 
simplest. Since our parameter settings were sampled from a 2D 
manifold, we would expect the algorithm to embed the data 
with only two unique coordinates. In general, taking diffusion 
map eigenvectors with the highest eigenvalue may not give the 
most parsimonious embedding, since “higher harmonics” of sig
nificant coordinates may appear before unique coordinates. 
Methods exist, however, to filter out such unnecessary coordi
nates (47). In this case, the first and third diffusion map eigenvec
tors were the only relevant coordinates, with eigenvector 2 being a 
function (“higher harmonic”) of eigenvector 1. Figure 5 shows that 
the two recovered coordinates are bi-Lipschitz with the true pa
rameters, with the first coordinate being mostly a function of d 
and the other mostly a function of De. Thus, with no prior assump
tions on the nature of the system, we have established the 

effective two-dimensionality of the parameter variations, and 
we have revealed the underlying intrinsic organization geometry 
of the data in parameter space.

Given that the data are sampled from a 1D curve in space, it is 
reasonable to expect a 1D embedding for space; yet in this case the 
algorithm gives a 2D space embedding (Fig. 4B) which is locally 1D. 
Note the ridged “hairpin”-like shape of this embedding, which can 
be explained as follows: For a perfectly circular domain, reaction– 
diffusion dynamics on both sides of a source cell would give left– 
right symmetric concentration profiles. However, the asymmetric 
(and moving!) source cell locations introduce a symmetry break
ing into the system, making the branches “above” and “below” 
the source close but distinguishable. This becomes clear in the 
space embedding (Fig. 6A), where ψ1 encodes the distance to the 
source term and ψ9 the induced symmetry breaking.

We therefore use the arclength along this “hairpin” to paramet
rize the emergent spatial geometry of the data. An effective coord
inate ψ̃ is extracted using diffusion maps on the curve in Fig. 6A 
with a nearest neighbor similarity measure, and shown in 
Fig. 6B as a function of the arclength s along the cell centerline 
from which data was taken—notice the one-to-one correspond
ence. We use this coordinate ψ̃ as the emergent, data-driven space 
coordinate (35) in which to learn the dynamics of c(ψ̃, t) (Fig. 6C).

The embedding of the time samples (Fig. 4C) also has a similar 
quirk, in that it requires two dimensions. The first embedding co
ordinate roughly follows the overall chemical concentration, 
which starts at zero, rises to a maximum near ts, and then fades 
back asymptotically to zero. Because the numerical experiment 
is stopped at finite time, the embedding coordinate never reaches 
its original value, but comes close. There is a need for a second 
embedding coordinate (ϕ9) which captures the fact that the spatial 
distribution of chemical concentrations is different when the 
overall level is rising (more tightly focused around the source 
cells) than when it is falling (more spread out due to diffusion be
tween cells). In this case, the diffusion is not that strong, so the dif
ference is slight, which is why this second coordinate “shows up” 
later on in the spectral hierarchy as ϕ9. Essentially, the time evo
lution of this system has been characterized by the algorithm as 
a “skinny” loop.

Similarly to our approach for the space embedding, we can ex
tract a coordinate ϕ̃ from this skinny loop, to obtain a 1D embed
ding for emergent time (Fig. 7B). We also show the data in this 
final emergent space–time in Fig. 7C. We emphasize that these em
beddings are the output of diffusion maps with the 

A B C

Fig. 4. The recovered questionnaire embeddings for the A) parameters, B) space, and C) time (see text).
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questionnaire-informed metric, and it is these embeddings that 
reorganize our data tensor to appear smooth before we can learn 
the underlying dynamics.

Learning the dynamics in the emergent 
coordinates
We start the section by approximating the evolution operator in 
emergent space but still in physical time; we pose a distributed 
parameter model (a PDE) whose right-hand side is approximated 
by a fully connected feed forward neural network (in emergent 
space) (3, 19). We approximate the dynamics of the concentration 
for a single parameter setting through a PDE

∂c
∂t

= f c,
∂c
∂ψ̃

, . . . ,
∂nc
∂ψ̃n

􏼒 􏼓

, (2) 

where f is represented by a neural network and c = c(ψ̃, t). Here, we 
use n = 3 derivatives, estimated using finite differences. We there
fore resample the data on an equally spaced grid in ψ̃ using a bi
variate spline approximation, and also on T = 1,500 equally 
spaced points in actual time.

f is composed of three fully connected hidden layers with 966 
neurons each, with one output layer containing a single node. 
Each hidden layer is followed by a Swish activation function 
(48). The model is optimized using the PyTorch framework (49) 

and a Adam (50) optimizer with the default hyperparameters, 
based on the mean squared error of the predicted and true ∂c

∂t. 
The (actual) time derivatives are estimated using finite differences 
in (actual) time. The initial learning rate is set to 0.005, and subse
quently halved when the training loss did not decrease for 75 
epochs. The model is trained for a total of 750 epochs using a batch 
size of 256. Overfitting was assessed using a held out validation set 
composed of all spatial points of the respective last 300 snapshots 
(20% of the data). Note that we do not provide a chemical source term in 
the model. We therefore ignore a narrow space–time corridor sur
rounding the source location, and learn the (translationally invari
ant) PDE in its complement. Furthermore, boundary conditions are 
not in principle available for the learned model. We therefore pro
vide, in lieu of boundary conditions, narrow “boundary corridors” 
informed by the data. As in Ref. (35), we regularize the outputs of 
the learned model using a truncated singular value decomposition. 
Finally, we integrate an initial c profile using the learned model.

Note that here we learned the dynamics, cf. Eq. 2, at just a sin
gle parameter setting, and took the temporal ordering of the snap
shots as known and given. However, if the true times are not known, 
we can instead construct the model to integrate in emergent time. 
As discussed above, scrambled temporal data result in a hairpin 
embedding ϕ similar to the space embedding, so we use a similar 
emergent coordinate τ =ϕ̃ (see Fig. 7), and learn a PDE operator (a 
“right-hand side”) in this emergent time.

A B C D

Fig. 5. A) Parameter settings of the observations (black dots) in De,d,ts-space, with the blue surface showing the 2D manifold those parameters were 
drawn from. B–D) Data-driven parameter embedding coordinates (as in Fig. 4A) colored by De, d, and ts. The embedding is one-to-one with the 2D 
parameter domain surface.

A B C

Fig. 6. A: Data-driven space embedding (as in Fig. 4B) obtained from the questionnaires, colored with the position s along the cell section centerline from 
which the data were taken. B: Arc length ψ̃ extracted from the space embedding ψ, as a function of the position s. C: Concentration data parametrized by 
the extracted embedding arclength ψ̃. The black vertical line corresponds to the position of the minimum of ψ1; that is, to the left edge of the embedding 
shown on the left.
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∂c

∂ϕ̃
= f c,

∂c
∂ψ̃

, . . . ,
∂nc
∂ψ̃n

􏼒 􏼓

(3) 

with c = c(ψ̃, τ). The results of integrating this model are shown in 
Fig. 8. Data-informed boundary corridors, as well as the source 
term are provided.

If the source term is not given, the predictions of the learned 
(translationally invariant) PDE simulated over the entire spatial 
domain are simply wrong. This becomes obvious when using the 
learned model to predict the dynamics over the entire domain 
(only providing boundary conditions at the edges, but not the source 
information). Alternatively, one can extend this approach to learn 
the source term in the corridor Is as well; for further results and 

discussion of learning a nonautonomous dynamical system, see 
Supplementary Information 4.

Future work will focus on incorporating the emergent param
eter coordinates, π, into the learning process,

∂c
∂τ

= f c,
∂c
∂ψ̃

, . . . ,
∂nc
∂ψ̃n ; π

􏼒 􏼓

, (4) 

providing a fully data-driven system identification framework.

The hidden geometry of a complex neuronal 
network
While we artificially scrambled the known space–time of the 
Drosophila data, there are systems where no clear spatial geometry 

A B

Fig. 8. A: True data as shown in Fig. 7C. B: Simulation results using the nonautonomous ML-learned emergent PDE model, Eq. 17, using the same initial 
snapshot. The boundary conditions were provided in the area along the left and right edges as defined by the vertical white lines. Data for the PDE source 
term in the area between the two vertical black lines (bracketing the time-dependent source) were also provided to account the nonautonomous nature of 
the PDE. Note the visual agreement with the true data.

A B C

Fig. 7. A: Data-driven time embedding (as in Fig. 4C) obtained from the questionnaires, colored with the true time t. B: Embedding arclength ϕ̃ extracted 
from the time embedding ϕ, as a function of the true time t. C: Concentration data parametrized by the extracted arclengths ψ̃ and ̃ϕ. The black vertical line 
corresponds to the position of the minimum of ψ1 as above.
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is known a priori and our proposed approach becomes necessary. 
Networks are a prime example, as behavioral connectivity pro
vides the natural representation of the underlying geometry, ra
ther than proximity in some physical embedding space.

The pre-Bötzinger complex is a neuronal network in the brain
stem responsible for generating and modulating respiratory 
rhythms in mammals (51). This network is typically modeled as 
a Chung–Lu type network (varying number of connections be
tween nodes) of Hodgkin–Huxley neurons, each with a potential 
Vk (35, 52, 53). Here, we depict a model of the dynamics of Vk for k = 
1, 024 neurons. When visualized as a network (using the networkx 
python package (54)) or plotted by neuron index (see Fig. 9A,B), the 
dynamics appear complex and disordered: the neuron index does 
not embody a meaningful spatial dimension. Yet, by applying the 
questionnaire metric using the ensemble of individual neuron os
cillations as our data points, we uncover an “emergent space” par
ameterized by two emergent spatial coordinates (see Fig. 9C). In this 
space, the state of the 1,024 neurons can be embedded on a 
smooth surface. Over time, this surface exhibits wave-like mo
tion, enabling the underlying dynamics to be learned effectively 
in the form of a PDE in this newly discovered “emergent” space. 
More details on this example, as well as an additional “phase 
plus amplitude” coupled oscillator network example, can be 
found in Supplementary Information 5.

Conclusions
The mathematics underpinning the data-driven solution of puz
zles have started, in recent years, to provide increasingly sophisti
cated puzzle reconstructions, including cases of missing data. 
Even cases where different parts of the puzzle have been observed 
through different sensors (so, “puzzle fusion”) are starting to ap
pear in the literature (55).

Our purpose here was to combine a data organization technol
ogy (Questionnaires) with the (ML assisted) construction of predict
ive mathematical models. More specifically, these models came in 
the form of differential equations (here, PDEs): models which, given 

a few initial/boundary conditions, allow us to reconstruct the entire 
puzzle. In this sense, what we present can be thought of as a com
bination of data organization and “boosted” data compression: now, 
with very few data (initial/boundary conditions) and an evolution 
law (here, a parabolic PDE) we can reconstruct good approximations 
of all the missing data, and even sometimes extrapolate successful
ly. We should stress again that what we did would be much easier if 
we had explicit time/space information, as is the case in Refs. (6, 56, 
57); here we had to invent the data-driven, emergent space–time in 
which the data appear smooth, and where, therefore, a parabolic 
PDE type model can be postulated. This “boosted” data compres
sion, in the form of “very few data plus evolution law” can now be 
used to interpolate in parameter space or in emergent physical 
space–time; one may even attempt to extrapolate (up to when sin
gularities may arise). More importantly, the approach naturally al
lows for “physics infusion”—if one has an informed guess of what 
the actual independent space variable should be, or of what an ap
proximate closed form of the underlying dynamic model could be, 
this information can be included in the process in a “gray box” iden
tification scheme (12, 13, 58, 59) that will calibrate the partial phys
ical knowledge to the quantitative truth (the data) in the form of 
a multifidelity calibration problem.

It is important also to note how some crucial assumptions 
(homogeneity of the emergent space, or autonomousness, i.e. 
homogeneity in emergent time) shape the entire process; if there 
is reason to believe they do not hold, then fitting a space–time 
homogeneous predictive model to the data will reproduce the 
(training) data, interpolate between them, but fail to extrapolate/ 
generalize. Among different equally successful interpretations (dif
ferent sets of physically interpretable quantities that are also 
one-to-one with the data-driven observables), we can choose the 
one with the best numerical behavior (best condition number; 
best Lipschitz constants (60)). When trying to understand/rational
ize the dynamics learned in emergent space, one often resorts to 
sparse identification: fitting the data well with “a few” common dic
tionary terms “ought to be the right physical interpretation.” Yet it 
may be (at least a little) presumptuous to expect the truth to be 

Fig. 9. A: Network representation of (a subsample of) the pre-Bötzinger complex, with nodes colored by their potential at a particular phase of their 
collective synchronized oscillation. The snapshot, visualized as a random arrangement of nodes, appears disordered and lacks smoothness, making it 
challenging to learn the dynamics. (For visualization purposes, only 308 out of the 1,024 nodes and 10% of the edge connections are shown in the left 
network representation.) B: Instantaneous neuronal voltage (minus the mean voltage at this particular oscillation phase) plotted at the same time 
instance as on the left, ordered by node index k. The state remains irregular, with no visible smooth spatial pattern. C: Voltage (z-axis) plotted as a 
function of the two emergent coordinates (discovered by the questionnaire metric) that parameterize the “emergent spatial” embedding of the 1,024  
neurons. The state now appears 2D and smooth (moving up and down like a “waving flag” when viewed as a function of time); this description enables the 
ML-assisted learning of the underlying PDE dynamics.
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parsimoniously expressible in our everyday favorite dictionaries. 
Ultimately, the dynamic behavior does not have to appear simple 
in our own favorite current language. Following P.A.M. Dirac “…now 
we have to change the principle of simplicity to the principle of 
mathematical beauty.” (61) It is then the language in which the dynam
ics is beautiful that we should strive to formulate—the transform
ation to the space in which the evolution is isospectral, as in the 
Lax Pair formulation of integrable systems, or the space in which 
“troubles melt like lemon drops,” as Dorothy would sing in the 
Wizard of Oz.

Note
a Two (hopefully informative) visual caricatures of our “shuffling” 

process that results in disorganized data in two dimensions are pro
vided in Supplementary Information Part 2 as Fig. S1 followed by 
Fig. S2.
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