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Abstract

Background: Better delivery systems are needed for routinely used vaccines, to improve vaccine uptake. Many vaccines
contain alum or alum based adjuvants. Here we investigate a novel dry-coated densely-packed micro-projection array skin
patch (NanopatchTM) as an alternate delivery system to intramuscular injection for delivering an alum adjuvanted human
papillomavirus (HPV) vaccine (GardasilH) commonly used as a prophylactic vaccine against cervical cancer.

Methodology/Principal Findings: Micro-projection arrays dry-coated with vaccine material (GardasilH) delivered to C57BL/6
mouse ear skin released vaccine within 5 minutes. To assess vaccine immunogenicity, doses of corresponding to HPV-16
component of the vaccine between 0.4360.084 ng and 3006120 ng (mean 6 SD) were administered to mice at day 0 and
day 14. A dose of 5566.0 ng delivered intracutaneously by micro-projection array was sufficient to produce a maximal virus
neutralizing serum antibody response at day 28 post vaccination. Neutralizing antibody titres were sustained out to 16
weeks post vaccination, and, for comparable doses of vaccine, somewhat higher titres were observed with intracutaneous
patch delivery than with intramuscular delivery with the needle and syringe at this time point.

Conclusions/Significance: Use of dry micro-projection arrays (NanopatchTM) has the potential to overcome the need for a
vaccine cold chain for common vaccines currently delivered by needle and syringe, and to reduce risk of needle-stick injury
and vaccine avoidance due to the fear of the needle especially among children.
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Introduction

Most vaccines are currently delivered by needle and syringe.

However as a vaccine delivery device, the needle and syringe has

many important shortcomings. These include potential transmis-

sion of blood borne diseases through needle-stick injuries [1] and

needle reuse – approximately 30% of injections for the purpose of

vaccination in developing nations are unsafe [2], and that needle-

stick injuries cause more than 500,000 deaths per year [3]. Needle-

phobia and the pain associated with an intramuscular injection are

also downsides – it is estimated that needle phobia is present in at

least 10% [4] of the population, or higher [5]. The muscle is also a

highly inefficient site for vaccination, as it does not have a high

density of antigen presenting cells. In contrast, the skin is an

attractive alternative site for vaccination due to its dense network

of potent antigen presenting cells (APCs) including Langerhans

Cells (LCs) [6], and many sub-sets of dermal dendritic cells (dDCs)

[7]. The close proximity of these cells to the skin surface means it

could be possible to target them in ways which may reduce pain

and potential of transmission of blood borne pathogens. While

cutaneous delivery has great potential, the closest method used

currently in the clinic – intradermal injection – is technically

difficult, necessitating development of advanced targeting methods

as reviewed in [8,9].

In this study a novel skin patch called the NanopatchTM is used to

target these skin immune cells. The NanopatchTM is a micro-

projection array with uniquely dense projection packing (.20,000/

cm2) and short projections (110 mm in length). This needle density

was designed such that delivered vaccine has been co-localized with

50% skin immune cells – in both epidermis and dermis – upon

cutaneous application without relying on diffusion (see Figure 1) [10].

Previous studies with NanopatchTM immunization have utilized

ovalbumin and split influenza vaccine as antigens without addition

of an adjuvant. Crichton et. al [11] demonstrated high antibody

titers after one immunization with under 2 mg via NanopatchTM

using the model antigen ovalbumin in C57BL/6 mice without a

boost using 65 mm long Nanopatch projections. Fernando et. al.

[10] demonstrated induction of protective levels of functional
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antibodies against influenza in mice with 110 mm long Nano-

patchTM projections (same as used in this study) using a split virus,

unadjuvanted trivalent influenza vaccine (Fluvax 2008H); with a

factor of 100 in delivered dose-sparing, compared to the needle

and syringe. In these previous studies, vaccines were delivered

without adjuvant.

In the current study we extend to explore the utility of the

NanopatchTM in delivering an alum adjuvant. This is important,

because many vaccines are adjuvanted – with Alum in the most

widely used [12].

Indeed, until the recent licensure of AS04, alum was the only

adjuvant to be licensed by the FDA [13]. AS04 is alum based, with

the addition of a lipid based toll-like receptor 4 agonist 3-O-

desacyl-49-monophosphoryl lipid A (MPL) [14]. ‘‘Alum’’ is

chemically either aluminum oxyhydroxide, or aluminum hydro-

xyphosphate. For new technologies to take advantage of currently

licensed vaccines, ideally one should work with alum-adjuvanted

vaccines. So far, solid formulation work has been performed with

alum adjuvant for epidermal powder immunization (EPI) with

hepatitis B [15,16,17], and diphtheria and tetanus toxoids [17].

Extensive alum gel coagulation during drying is suspected to

inhibit the release of antigen such that it is not recoverable upon

rehydration [16], and losses of efficacy have been reported after

lyophilization or freezing [18,19,20]. To minimize these losses

without significantly reducing the amount of alum in the total solid

(,1% [18]), rapid freezing is used to prevent freeze concentration

of solutes in combination with glass forming excipients.

However, in our micro-projection coating, a freeze step is not

only more technically demanding, but has the potential to reduce

the mechanical integrity of the coated layer. The coating must be

mechanically strong enough to remain attached on needle

penetration, and differing thermal expansion properties between

the projections and the vaccine may cause cracking or delamina-

tion of coated layers while the device is brought to ambient

temperature.

Air drying of alum containing formulations was investigated in

Maa et.al.[17], and was found to cause extensive coagulation even

in the presence of trehalose, and/or mannitol, and/or dextran. As

current coating protocols are closer to the air drying protocols

described in [17] as opposed to lyophilization or freeze drying, it is

expected that vaccination with micro-projections dry coated with

an alum containing formulation would result in a poor immune

response. In this paper we use the soluble polymer methyl-cellulose

to reduce coagulation of the gel on dehydration, and to aid in

dissolution on rehydration upon application.

Our disease test case for this study is Human Papillomavirus

(HPV) because – aside from the societal importance of the vaccine

– assays to measure virus neutralization are well established.

Antigen structure is important for raising a virus neutralizing

antibody response [19], making the system sensitive to perturba-

tions in antigen structure which may be caused by alum

dehydration during dry coating.

HPV infection is causative in virtually all cases of cervical

cancer – with HPV DNA present in 99.7% of cervical carcinomas

[20]. Vaccination was made possible by modern recombinant

protein expression systems and the discovery that expression of the

L1 major capsid protein alone was sufficient to produce self-

assembling virus like particles (VLPs) [21,22]. The VLP is an

empty viral particle – so it does not contain the viral genome

which codes for the oncogenic proteins which cause malignancy

[23,24,25] in a natural infection.

Commercially available vaccines GardasilH [Merck] and

CervarixH [GlaxoSmithKline] demonstrated excellent prophylac-

tic action in clinical trials, preventing pre-malignancies and

subsequent cancers in almost 100% in the according-to-protocol

analyses [26,27,28]. Both vaccines contain a form of alum

adjuvant. Immunizations are given as three doses over the course

of six months. These vaccines are prophylactic. HPV is the most

common sexually transmitted infection [29], and cumulative

infection incidence over 2 years post first intercourse is

approximately 30%, with condom use not showing significant

protective effect [30]. Immunization must occur before first

intercourse to be fully protective. Many nations now have national

immunization programs targeting 11 and 12-year-old girls. This

has not been without issues. Mass fainting and headaches are

believed to be caused by a needle phobia and mass hysteria [31],

and vaccination without needles may improve vaccine uptake and

acceptance.

Figure 1. The NanopatchTM concept. A two dimensional array of projections localizes dry coated vaccines to layers of the skin rich in immune
cells. Once the vaccine hydrates, it diffuses through the viable epidermis and dermis.
doi:10.1371/journal.pone.0013460.g001

Micro-Projection Vaccination

PLoS ONE | www.plosone.org 2 October 2010 | Volume 5 | Issue 10 | e13460



Long term efficacy of HPV vaccines is important. While

incidence varies with age, the prevalence even in women between

the ages of 40 and 49 is estimated at 25.2% [32], so the potential

for infection continues over a lifetime. Duration of protection is a

significant factor in the cost effectiveness of HPV vaccines [33],

and any second generation vaccines must demonstrate long lasting

protection.

Intra-dermal injection of Canine Oral Papillomavirus (COPV)

L1-glutathione-S-transferase fusion pentamers – similar to HPV

pentamers – has been shown to be protective in beagles at 400 ng/

dog [33]. Suzich, J.A., et al. [34] demonstrated that assembled

COPV-VLP resulted in complete protection at a 50 ng dose level,

and partial protection at 0.125 ng using the intra-dermal route in

beagles.

The HPV VLP is assembled from 72 pentamers of the L1

protein [35,36]. Disassembly of the VLPs can be reversibly

performed in-vitro at high pH, low salt concentration, and with the

addition of reducing agents (for example pH 8.2, 0.166M NaCl

with 2 mM DTT). Dialysis against a pH 6.8 buffer with a salt

concentration of 0.5–1 M results in assembly of the particles [37].

Lenz, P., et al. [38] demonstrates that HPV16L1-VLPs alone but

not their constituent L1-pentamers induce maturation of dendritic

cells in-vitro. Thönes et. al. [39] estimate that immunization with

L1-pentamers also requires 20–40 fold more protein administered

to obtain similar antibody response. Denatured L1 protein does

not give a virus neutralizing antibody response [19], and while dry

formulations can mean longer shelf life at higher temperature, a

poor formulation can cause significant degradation of protein

products. Suitable liquid formulations for HPV-VLP stability have

been defined for both Gardasil [40] and Cervarix [41]. As the

formulation has an impact on the assembly of the VLPs (and

potentially the structure of the capsomeres themselves) and VLPs

are more immunogenic than the capsomeres, formulation is

important for the potency of a dry coated vaccine. Both vaccines a

component of alum adjuvant – Gardasil contain aluminium

hydroxyphosphate. To our knowledge, studies using solid

formulations have not been published for HPV, or HPV adsorbed

to alum.

The NanopatchTM design used in this study utilizes a 58658

array of micro-projections 110 mm high, and 30 mm in base

diameter, with a spacing of 70 mm between projection centers (see

Figure 2). Vaccine is dry coated onto micro-projections as

described in [42], and NanopatchesTM are applied at 2 ms21.

This configuration delivers material into the epidermal and dermal

layers of mouse ear skin with a penetration depth of 42 mm

(SD = 9.9, N = 365), as determined by imaging of fluorescent

tracer in cryo-sectioned mouse ears as described in [11], but with

similar projections to those utilized in [10].

In this paper, we demonstrate dry coating and release of an

alum adjuvanted HPV-VLP vaccine with the NanopatchTM. We

then demonstrate a subsequent immune response which is long

lasting, and neutralizes the virus to levels comparable with

intramuscular injection with the needle and syringe.

Results

Projection morphology of dry coated NanopatchesTM is
suitable for needle penetration

Coated patches were examined by scanning electron microsco-

py (SEM) using secondary electron and backscattered modes

(Figure 2) to investigate the distribution of the coated vaccine

along projections. Secondary electron mode showed the surface

shape of the coated needles, while backscattered electron mode

was used to qualitatively confirm the thickness of the coating due

to differences in the atomic mass of the gold NanopatchTM surface

and the coating. Attempts to dry coat alum adjuvant without

excipient resulted in minimal vaccine coating on needle tips, and

crystallization of the alum adjuvant (Figure S1). Therefore we

added methyl-cellulose to stabilize the vaccine and improve

coating morphology (Figure 2). A significant proportion of the

coating was localized to the tapered portion of the projections.

This can be seen in the secondary electron images by the

difference in morphology before and after coating, and in the

backscattered electron images by the dark signal on projection tips.

In the 800 ng group, some bridging between projections was

observed in certain areas of the NanopatchesTM (indicated by the

arrow in Figure 2b) probably due to the higher concentration of

vaccines than that in other groups.

Vaccine is released from projection tips, and bulk delivery
efficiency is consistent with expectations based on
coating morphology and penetration data

Tenfold serial dilutions of GardasilH were prepared and 14C

labeled Ovalbumin added as a tracer to each sample, coated on

NanopatchesTM, and applied to the ventral earlobe of C57BL/6

mice (N = 5 per dose group) as detailed in Materials and Methods.

A mass balance using the radiolabeled tracer was performed

between the total coated amount, and that which was delivered

into the ear skin, left on the NanopatchTM, or deposited on the

surface of the skin. Efficiency of release was: 19% (SD = 7.5), 34%

(SD = 4.7), 36% (SD = 10), and 27% (SD = 5.2) for 800 ng, 80 ng,

8 ng, and 0.8 ng of coated HPV-16 respectively (see Figure 3).

Delivery percentages were then used to calculate effective doses

by multiplying delivery efficiency by the coated amount. Delivery

amounts were estimated at 300 ng (SD = 120), 55 ng (SD = 6.0),

5.7 ng (SD = 1.6), and 0.43 ng (SD = 0.084) of HPV-16L1.

NanopatchesTM post-application were also visualized with SEM

to determine whether any coating solution still remained on

projections. Low molecular mass material was detected on the

base in some instances, but seldom on projection tips (Figure S3)

NanopatchTM vaccination elicits long lasting virus
neutralizing immune response, comparable with
intramuscular

NanopatchTM doses were divided over each ear (i.e. one patch

per ear), and administered at day 0 and again at day 14. Sera were

collected at day 28 and day 112 after vaccination to examine the

immediate response, and the longer term persistence of antibodies

post vaccination. Sera were assayed for ability to neutralize the

HPV virus with the pseudovirion-based neutralization assay

(PBNA) (Figure 4). A non-inferiority analysis was used (Materials

and Methods) similar to previous Human Papillomavirus immu-

nization comparison studies [43].

At day 28 post-immunization, titers in the 3006120 ng and

5566.0 ng dose NanopatchTM groups were statistically non-

inferior to all intramuscular doses (p,0.001) with geometric mean

titer (GMT) of 30500 and 26000 respectively (Figure 4). In each of

the 5.761.6 ng and 0.4360.084 ng dose level NanopatchTM

groups, two mice did not seroconvert.

Neutralizing antibodies were titered at day 112 post-immuni-

zation (Figure 4) to establish long-term efficacy. At day 112 post-

immunization, all NanopatchTM groups showed 100% sero-

conversion. At day 112, all NanopatchTM doses were statistically

non-inferior to all intramuscular doses (p,0.05).

When comparing the response at day 112 and day 28 within

each group (Figure 4), the day 112 titer did not meet non-

inferiority criteria against the day 28 titer in both the 100 ng and

Micro-Projection Vaccination
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Figure 2. Representative scanning electron micrographs examining projection coating morphology in both secondary and
backscattered electron modes. Secondary electron images show the surface morphology while backscattered electron images show composition
– with low atomic mass elements giving low signal – i.e. coated area appears dark in comparison with the uncoated NanopatchTM. Micro-projections
are coated at b) 800 ng, c) 80 ng, d) 8 ng and e) 0.8 ng of HPV-16 protein per patch. While some bridging is occurring in the 800 ng group (panel b –
white arrow), coating is seen on the tapered portion of projections in all dose groups.
doi:10.1371/journal.pone.0013460.g002
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1 ng intramuscular groups (ratio of titres: 100 ng 90% CI (0.40,

1.2), and 1 ng 90% CI (0.39,1.2)). In contrast, within group

NanopatchTM titer comparisons showed titres at day 112 were

non-inferior in all cases, and superior at the 0.4360.084 ng dose

level, with the day 112 titer being 1.2–5.8 times higher than the

day 28 titer (p,0.05) at the same dose.

Discussion

This paper demonstrates effective coating and release of an

alum containing vaccine GardasilH from a novel micro-projection

array patch (NanopatchTM) designed to deliver vaccine directly to

about 50% of the abundant skin antigen presenting cells [10], for

efficient induction of a virus neutralizing antibody response.

Release efficiency varied between dose groups. It is predicted

that this is primarily dependant on the coating morphology. This is

supported by our theoretical delivery expectations (Figure S2).

Our predicted releases (Figure S2) as compared with measured

release were most accurate within the lowest dose groups. We

over-predicted the release in the highest dose groups. This

discrepancy is likely to be due to bridging between projections

and excessive coating on the base of NanopatchesTM (Figure 2b)

leading to wastage of coating solution. Since coating on the base

and bridging projections were not accounted for in calculations,

Figure 3. Proportion of 14C radio-labeled tracer protein coated onto the NanopatchTM which is released into the ear skin upon
application. Release was determined by mass balance, and varied between coated amounts with an average of 19%, 34%, 36%, and 27% for the
formulations used for 800 ng, 80 ng, 8 ng, and 0.8 ng of coated HPV-16 per NanopatchTM.
doi:10.1371/journal.pone.0013460.g003

Figure 4. Pseudovirion neutralization assay titers at day 28 and day 112 after immunizations at day 0 and boost at day 14.
NanopatchTM doses were 300 ng (SD = 120), 55 ng (SD = 6.0), 5.7 ng (SD = 1.6) and 0.43 ng (SD = 0.084). Intramuscular doses were 10 mg, 1 mg,
100 ng, 10 ng, and 1 ng. At day 28, NanopatchTM 300 ng and 55 ng dose groups have reached comparable virus neutralizing titers to all
intramuscular injection groups (p,0.05). By day 112, all NanopatchTM doses have reached comparable neutralizing titres against all intramuscular
injection groups (p,0.05). Replicates are staggered in x axis to aid in visualization. Unimmunized plotted at a dose of 0.05 ng due to log scale.
doi:10.1371/journal.pone.0013460.g004
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where these amounts are significant, it would result in an

overestimate of delivered amount as the theoretical calculations

were only based upon coating solution on the projections. This

bridging will likely be alleviated by the addition of a surfactant in

later formulations. These data, and the post application images

demonstrate that the release from the projections is complete, and

thus with advances in coating technology to isolate coating solely

to portions of the projections which penetrate skin, complete

release 100% efficiency is possible with these formulations.

Fast release is likely to aid in ensuring consistent vaccine dose is

delivered, as it is easier to ensure compliance with the

immunization protocol. An observation period of 15–20 minutes

following a standard intramuscular immunization is generally

recommended as most anaphylactic shock will occur within this

period [44]. Release of the dry coated vaccine from the

NanopatchTM occurred within five minutes – thereby easily

meeting observation period guidelines.

To demonstrate that virus neutralizing antibodies were raised,

serum was screened by the Pseudovirion-Based Neutralization

Assay (PBNA) – considered the ‘‘gold standard’’ in the WHO

guidelines for HPV vaccines [45,46]. This assay measures the

effectiveness of antibodies or other compounds in blocking the

entry of the HPV virus into 293TT cells [47]. This is significant, as

protection is believed to be a result of antibody mediated virus

neutralization [48,49]. The method also removes the bias of using

the same material for both immunization and immunological

assay which occurs when ELISA is used. Assay signal is only

generated by intact pseudovirions that mimic the native virus, thus

any immune response raised against contaminants or denatured

protein will not impact the results of the neutralization assay.

NanopatchTM immunization with 0.4360.084 ng of HPV-16

resulted in virus neutralizing response at day 112 after vaccination.

This implies that the dry coated L1 protein maintains some native

virus-like structure. We speculate that some degree of disassembly

of VLP into pentamers may have occurred. This assertion is based

on our similar studies using viral vectors (unpublished data).

Owing to the increased immunogenicity of VLPs in comparison

with pentamers, if disassembly into pentamers is currently

occurring during dry-coating, a great increase in activity is likely

through reformulation to further preserve VLP structure.

While early results showed only 50% sero-conversion in the

5.761.6 ng and 0.4360.084 ng NanopatchTM groups, advantages

become clearer at the terminal bleed when all mice have sero-

converted. At the lower doses intramuscular began to falter, with

the titers of two mice dropping below the detection limit. It is

possible that NanopatchTM immunization, with alum containing

vaccines, has slower release kinetics as compared with intramus-

cular administration – owing to the different administration site

and a greater depot effect from dehydrated alum. While extremely

low doses of HPV-VLP appear immunogenic intramuscularly in

mice, doses for humans in the approved vaccines are in the 20–

40 mg range per subtype. Slow release kinetics may favorably alter

immunological outcomes and assist in achieving optimal activation

of APCs without the need to physically apply more doses. Further

work is required to investigate this.

Previous studies of intradermal immunization with COPV [33,34]

utilized an ELISA assay so a direct comparison with our results is not

possible. Suzich et al [34] studied the intradermal delivery of

assembled COPV-VLPs and obtained partial protection at sub-

nanogram dose level. By comparison, a later study by Yuan, et. al.

[33] with intradermal administration of COPV-L1-GST fusion

protein (unable to assemble into VLPs) showed no detectable response

by ELISA below a 400 ng dose. This work focused on assembly

incompetent pentamers as an inexpensive alternative to VLPs. In both

instances, partial protection was noted against challenge even when

antibodies were not detected. NanopatchTM immunization with split

virion influenza vaccine gives superior dose reduction against

intramuscular [10] as compared with what has been demonstrated

in intradermal administration [50]. If disassembly of HPV-VLPs is

occurring in our NanopatchTM dry coating, the closest effective dose

comparison is with the work of Yuan et al. This would suggest that

NanopatchTM immunization may give increased immunogenicity in a

direct comparison with intradermal administration (and thus

presumably intramuscular administration) of L1-pentamers. Howev-

er, as the currently licensed vaccines are VLP based, reformulation to

preserve VLP integrity will be the focus of future work.

Our release assays measure the proportion of coating which is

released into the skin – they do not measure what proportion of

antigen is effectively released from the alum, nor its conformation

on release. If the alum gel is coagulated, in accordance with

previous studies [17], antigen may not escape the collapsed alum

matrix – thus reducing the effective dose. This effect may in fact

negate any adjuvant benefits the alum otherwise provides, though

further study is required to determine the extent to which the alum

matrix impairs release, and its impact. Future work will investigate

protein structure and coagulation of the alum as well as excipients

to reduce it. As HPV-L1-VLPs are highly immunogenic even

without adjuvant, formulations without alum will also be

investigated. We speculate that with enhanced formulations,

NanopatchTM immunization may eventually mean lower doses

of alum adjuvanted VLP can be used to elicit a lasting immune

response in humans.

Future work will focus on improving dose sparing in

NanopatchTM immunization, and investigating thermostability.

To this end, dry coated VLP integrity, exploring unadjuvanted

VLPs and improving formulations will be explored.

Materials and Methods

Ethics Statement
All animal experiments were conducted according to the

University of Queensland animal ethics regulations.

NanopatchTM Fabrication
NanopatchesTM were fabricated by Deep Reactive Ion Etching

according to patent [51] in the Rutherford Appleton Laboratory,

Oxford, UK. NanopatchesTM were sputter coated with gold to a

thickness of 100 nm. Uniform morphology was confirmed by

Scanning Electron Microscopy (SEM) on a Philips XL30. Samples

were tilted at 45u to confirm appropriate projection profile.

NanopatchTM Coating
GardasilH (Merck, USA) was centrifuged at 5000 g for 15

minutes to pellet the alum with the adsorbed virus like particles.

The supernatant was removed and the pellet re-suspended in

methylcellulose to a final concentration of 10 mg/mL methylcel-

lulose, and 100 ng/mL of HPV-16-VLP. Ten-fold serial dilutions

were prepared in 10 mg/mL methylcellulose to formulate different

doses. MethocelH 60 HG - Methyl-cellulose (cat # 646555) was

purchased from Sigma Aldrich (Castle Hill, NSW, Australia).

NanopatchesTM with 110 mm long needles were coated by

pipetting 8 mL of coating solution onto the surface and dry coating

via nitrogen jet as previously described [42]. Appropriate coating

morphology was confirmed by SEM.

NanopatchTM Immunization
Four groups (N = 5) of female C57BL/6 mice at 6 wks old were

anesthetized with KetamilH and XylasilH. Mice were then patched

Micro-Projection Vaccination
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once in each ear on the ventral side using a spring application

device to apply the patch at 2.0 ms21 - a velocity found to give

maximal needle penetration without damaging tissue (data not

shown). Doses stated in this paper refer to total HPV-16 dose for

each immunization distributed over two NanopatchesTM, and

mice were immunized at day 0 and boosted at day 14. Patches

were held in situ for 5 minutes. This study was carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Health and

Medical Research Council (Australia). The protocol was approved

by the Committee on the Ethics of Animal Experiments of the

University of Queensland (Permit Number AIBN/020/10 (NF)).

All efforts were made to minimize suffering.

Intramuscular injections
GardasilH doses were concentrated by centrifugation at 5000 g

for 15 minutes. Excess supernatant was removed and pellet was re-

suspended in the appropriate amount of supernatant to give an

HPV-16 VLP concentration of 0.2 mg/mL. Four 10-fold serial

dilutions were prepared into the excess supernatant.

Five groups (N = 5) of C57BL/6 mice at 6 wks old were

immunized intramuscularly at day 0 and boosted at day 14 with

25 uL delivered approximately 2 mm into each caudal muscle of

the hind leg with each group receiving 10 mg, 1 mg, 100 ng, 10 ng,

or 1 ng of HPV-16 per mouse per immunization.

Control Application
Topical control: One group (N = 5) of C57BL/6 mice at 6 wks

old were anesthetized with ketamil and xylasil. Mice were

restrained with ventral ear surface flat, and 125 mL of GardasilH
(containing 10 mg of HPV-16) was applied topically for five

minutes.

Fluvax immunized control: One group (N = 5) of C57BL/6

mice at 6 wks old were anesthetized with KetamilH and XylasilH,

and immunized intramuscularly with 6 mg of Fluvax 2008H (CSL

Ltd., Melbourne, Australia) in a volume of 30 mL.

Unimmunized control: One group (N = 5) of C57BL/6 mice at

6 wks were anesthetized with KetamilH and XylasilH and sacrificed

immediately upon cessation of reflexes by cardiac puncture.

Sera collection
Blood samples were obtained at day 28 and 112 after

vaccinations by retro-orbital bleeds, and serum separated. Sera

were stored at 220uC until analysis.

Scanning Electron Microscopy (SEM)
Samples were examined in secondary electron and back

scattered electron modes in a Philips XL30. Samples were tilted

to 45u to enable visualization of the needles, and imaged at an

accelerating voltage of 20 kV.

Predicted delivery image analysis
The canny edge detection method was used in MATLABH

2010a (The MathsworksTM) to generate the outline of a silhouette

of projection shapes on both coated and released NanopatchesTM.

Silhouettes were filled in and checked manually as binary images,

with coated projections at a grey level of 0 and released projections

at a grey level of 255, and images were overlaid to generate a

binary image of expected coating shape. For each projection, a

region-of-interest was created based on the proportion of the

projection expected to penetrate skin from fluorescent dye studies

[11] and ratios of amount of coating on each projection tip as

compared with the whole projection were taken.

Radiometric delivery analysis
1.5 ml vials of GardasilH were concentrated to 330 mL via

centrifugation, and tenfold serial dilutions were made in saline –

final alum concentrations – 1 mg/mL, 100 ng/mL, 10 ng/mL,

1 ng/mL, and 0.1 ng/mL all in a volume of 300 mL. 80 nCi of 14C

Radio-labeled ovalbumin tracer (American Radiolabeled Chem-

icals Cat# ARC 0431) was added to each vial, and incubated for

one hour at room temperature. Binding efficiency of tracer to the

alum within 30 minutes was 95%. The mixtures were then

centrifuged at 5000 g for 15 minutes, the supernatants collected in

vials for scintillation counting, and the pellets re-suspended in

10 mg/mL methylcellulose to a final volume of 54 mL. Nano-

patchesTM were coated with the radio-labeled formulation as

described above, and applied to mouse ears (N = 5/dose) as

described for NanopatchTM immunization. Ear surfaces were

swabbed to remove vaccine left on the surface of the ear and not

delivered into the cell layers below. Ears were excised and

solubilized in Soluene (Perkin Elmer) for 4 hours at 60uC. Swabs,

ears and used NanopatchesTM were placed in scintillation vials

and 10 mL of Hionic Fluor (Perkin Elmer) was added to each vial.

Samples were counted for two minutes per sample in a liquid

scintillation counter.

Pseudovirion-Based Neutralization Assay (PBNA)
Pseudovirion based Neutralization assay was performed as

previously described [52]. Briefly 100 mL of 293TT (generously

provided by John Schiller, NIH, USA) cells were plated at 36105

cells/mL in 96-well plates and allowed to attach. Serum was

diluted in three-fold serial dilutions from 1:100 to 1:1968300,

mixed with type 16 pseudovirions expressing secreted alkaline

phosphatase (SEAP) (plasmids p16shell and pYSEAP generously

provided by John Schiller, NIH, USA), and pre-incubated on ice

for 1 hour before addition to cell layers. In plate controls were five

wells of cells without pseudovirion applied, and five wells of cells

with pseudovirion applied at the same concentration as in wells

incubated with serum. Plates were incubated for 3 days at 37uC,

and SEAP expression was quantified using the colorimetric

approach. Plates were read at 405 nm absorbance, and data was

normalized between cells only and pseudovirion only wells. Log

transformed data was fitted with the four parameter dose-response

model (GraphPadTM Prism v5.03 ). Neutralization titer was

calculated as the theoretical dilution of serum which gives 50%

reduction in SEAP expression (EC50 from the model). Non sero-

converted samples were assigned an arbitrary titer of 1.

Non-inferiority analysis
Two-sided 90% confidence intervals (CI) of the anti-HPV-16

titer ratios (NanopatchTM divided by comparison group) were

calculated on the log10 transformation of the ratio between titers

under comparison using the Fieller’s theorem [53]. If the lower tail

of the CI was greater than 0.5, non-inferiority was concluded. If

the lower tail of the CI was greater than 1.0, superiority was

concluded.

Supporting Information

Figure S1 Coating without excipient. Representative secondary

electron (left - S.E) and backscattered electron (right - B) SEM

images of a NanopatchTM coated without adding the polymer

methylcellulose. Crystallization of the coating is evident, and

backscattered electron imaging confirms that coating is localized

towards the base of the micro-projections and the NanopatchTM.

Found at: doi:10.1371/journal.pone.0013460.s001 (0.57 MB

TIF)
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Figure S2 Theoretical delivered amounts compared with

measured. Theoretical (marked with asterisks) and actual propor-

tion (solid bars) of 14C radio-labeled tracer protein coated onto the

NanopatchTM which is released into the ear skin upon

application. Theoretical released amount was determined by

image analysis of coated NanopatchesTM, and varied between

coated amounts with estimates of 35%, 48%, 36%, and 36% for

the formulations used for 800 ng, 80 ng, 8 ng and 0.8 ng of coated

HPV-16 per NanopatchTM.

Found at: doi:10.1371/journal.pone.0013460.s002 (2.02 MB TIF)

Figure S3 NanopatchesTM after five minute application to

mouse ear skin. Secondary and backscattered electron scanning

electron micrographs of NanopatchesTM after 5 minute applica-

tion to the ear skin. Backscattered electron images show the atomic

mass of compounds imaged - thus darker areas represent lower

atomic number elements - such as the coating solution. It can be

seen that coating is no longer on projections as in figure 3. Low

atomic mass material on the base of projections as seen in panels d

and b may be either coating solution or biological matter post-

application.

Found at: doi:10.1371/journal.pone.0013460.s003 (6.53 MB TIF)
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