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Structural variation in the complement 4 gene (C4) confers genetic risk for schizophrenia. The variation includes numbers of the
increased C4A copy number, which predicts increased C4A mRNA expression. C4-anaphylatoxin (C4-ana) is a C4 protein fragment
released upon C4 protein activation that has the potential to change the blood–brain barrier (BBB). We hypothesized that elevated
plasma levels of C4-ana occur in individuals with schizophrenia (iSCZ). Blood was collected from 15 iSCZ with illness duration < 5
years and from 14 healthy controls (HC). Plasma C4-ana was measured by radioimmunoassay. Other complement activation
products C3-ana, C5-ana, and terminal complement complex (TCC) were also measured. Digital-droplet PCR was used to determine
C4 gene structural variation state. Recombinant C4-ana was added to primary brain endothelial cells (BEC) and permeability was
measured in vitro. C4-ana concentration was elevated in plasma from iSCZ compared to HC (mean= 654 ± 16 ng/mL, 557 ± 94
respectively, p= 0.01). The patients also carried more copies of the C4AL gene and demonstrated a positive correlation between
plasma C4-ana concentrations and C4A gene copy number. Furthermore, C4-ana increased the permeability of a monolayer of BEC
in vitro. Our findings are consistent with a specific role for C4A protein in schizophrenia and raise the possibility that its activation
product, C4-ana, increases BBB permeability. Exploratory analyses suggest the novel hypothesis that the relationship between C4-
ana levels and C4A gene copy number could also be altered in iSCZ, suggesting an interaction with unknown genetic and/or
environmental risk factors.
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INTRODUCTION
The complement system, a part of the innate immune system,
contributes to the first line of defense against pathogens (Fig. 1A).
In addition, complement in the brain influences neuronal
development and refinement [1]. Dysregulation of complement
has been reported in patients with schizophrenia, based on
genetic, transcriptomic, and functional studies [2–6].
Genome-wide association studies (GWAS) found an association

between schizophrenia and structural variants in the Complement
component 4 (C4) gene [7]. C4A and C4B genes have variable
gene copy numbers (GCN), and each gene has long (L) and short
(S) forms (Fig. 1B). Schizophrenia patients carry more copies of
C4A genes and more of the C4AL form, accounting at least in part
for the GWAS signal [7]. Mice with higher C4 GCN and increased
C4 protein levels show aberrant neuronal development, including
increased pruning, accompanied by schizophrenia-like behavioral
traits [7–9]. Also linked to schizophrenia is a common intronic
allele of the CSMD1 gene [3, 10], which encodes a complement

inhibitor expressed in neural tissue, including developing neurons
[11, 12]. CSMD1 deletion in mice leads to neurocognitive deficits
[11]. Loss of CSMD1 expression in human stem-cell-derived
neurons increases their susceptibility to activated complement,
leading to increased complement deposition on neurites [12].
Changes in blood levels of complement proteins also have been

reported in schizophrenia [2–4]. A large study of individuals at
high risk of schizophrenia found that levels of complement and
coagulation proteins and particularly complement pathway
inhibitors predicted which individuals subsequently developed
psychosis [13]. In addition, the functional (hemolytic) activity of
the complement system is consistently higher in individuals with
schizophrenia vs. controls [2, 3]. Functional or hemolytic activity is
measured by exposing patient serum in vitro to antigens that
trigger complement cascade activity. The resulting cell lysis
provides a measure of how readily the complement system can
be triggered. Two small studies found increased C4 hemolytic
activity in individuals with schizophrenia compared to controls
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[14, 15]. An unexplored question is whether variation in
C4 structural genotypes contributes to complement activation in
the peripheral blood of patients with schizophrenia.
Anaphylatoxins are fragments of complement proteins that are

released when the proteins are activated. They are small
molecules with half-lives on the order of minutes and have
specific downstream receptors and functional effects [16]. C4-ana
reflects C4 protein activation, which occurs in the classical and
lectin complement pathways. Protease-activated receptor 1
(PAR1) and protease-activated receptor 4 (PAR4) are the only
known C4-ana receptors [17]. C3-ana reflects the activity of C3-
convertase, which is activated by all three complement cascades.
C5-ana is released by the terminal complement cascade. Initiation
of any arm of the complement cascade generally results in
successive activation of subsequent pathways. The endpoint of
the terminal cascade is the formation of a circular protein
complex, C5b-9, or terminal complement component (TCC), that
embeds itself in cell membranes and causes cell lysis (Fig. 1A). A
soluble form of TCC, sTCC, can be measured in plasma and has a
half-life ~1 h [18]. The literature is unclear about which comple-
ment pathways are activated in patients with schizophrenia [3].
Measuring activation products provides one way to determine
which pathways are active in vivo.
Patients with schizophrenia often have evidence suggesting

BBB disruption, including after traumatic brain injury, which
increases the risk of schizophrenia [5, 19, 20]. A downstream effect
of C4-ana binding to a PAR1/4 receptor is endothelial cell
contraction and increased permeability through the endothelial
cell layer [17]. Thus, C4-ana activation of PAR1/4 receptors may

disrupt the BBB and contribute to neurodegeneration in
individuals with schizophrenia. We hypothesized that C4-ana
and thus C4 protein are increased in peripheral blood early in
schizophrenia. We carried out an initial test of this hypothesis in
individuals with schizophrenia with an illness duration of less than
five years vs. control individuals with similar age, sex, and
ethnicity.

MATERIALS AND METHODS
Recruitment of participants
We recruited 15 individuals with schizophrenia or schizoaffective disorder
from academic inpatient and outpatient settings. Participants were ages
18-35, unrestricted with regard to ethnicity. Additional inclusion criteria for
participants with schizophrenia included a clinical DSM-V diagnosis of
schizophrenia or schizoaffective disorder, confirmation of one of these
diagnoses by the Structured Clinical Interview for DSM-V (SCID-V), and
initial diagnosis or initiation of antipsychotic medication within the last 5
years. Exclusion criteria included a positive urine toxicology screen or self-
reported history of any of the following: current substance abuse or any
use of cannabis or tobacco products, a history of bleeding disorders,
excessive bleeding with previous surgery, taking blood thinners, auto-
immune conditions, epilepsy, known genetic disorders, immunocompro-
mised state, pregnancy, history of central nervous system disease, an
uncontrolled medical disorder such as cancer or inability to provide
informed consent. The 14 healthy control participants were matched to the
same age range as the group of individuals with schizophrenia, did not
meet criteria for any DSM-5 disorder by the SCID-V, and had a Distress
Score of less than or equal to 6 on the Prodromal Questionnaire-Brief
Version (PQ-B) [21].

Clinical assessment
Clinical evaluation was carried out by trained doctoral-level clinical
research interviewers. Participants were assessed for their capacity to
participate in the research study upon interview and according to best
practices [22]. All participants underwent a SCID-V interview. Controls also
completed a PQ-B and patients completed a Positive and Negative
Symptom Score Structured Interview (PANSS). Participants were asked
about current medications (see Supplementary Material for details).
Participants who completed the clinical evaluation and venipuncture were
invited to return for a subsequent visit for an optional lumbar puncture.
The study protocol was approved by the Stanford University Institutional

Review Board (IRB Protocol 47825). All participants gave written informed
consent. Participants were compensated for study participation.

Sample collection
All participants underwent antecubital venipuncture between 08:00 AM
and 12:00 PM at the Clinical Translational Research Unit (CTRU). Blood was
collected in EDTA tubes and transported on ice to the Stanford
Translational Applications Service Center (TASC) for centrifugation at
1000 × g for 10min at 4 °C within 30min of collection. Immediate cooling
halts protein metabolism since enzymes are optimally active at body
temperature, 37 °C. The supernatant was aliquoted and snap-frozen in
liquid nitrogen and stored at −80 °C until samples were analyzed.
Participants underwent height and weight measurements at the time of
blood draw. All collected samples were used in the analyses.

Complement activation product measurements
Samples were shipped overnight on dry ice to Complement Laboratory of
the National Jewish Medical Center (Denver, CO) where they underwent
radioimmunoassay measurement of plasma and CSF C3-ana, C4-ana, and
C5-ana concentrations in a CLIA-certified laboratory. sTCC, or soluble
terminal complement product, concentration was measured according to
manufacturer’s instructions using the Human Terminal Complement
Complex ELISA kit (HK328 Hycult Biotech, Netherlands) in technical
duplicates and averaged per sample.

C4 genotype copy number determination
DNA was extracted from 0.5 to 1mL frozen whole blood collected in EDTA
tubes using the DNAeasy Blood & Tissue Kit (Qiagen, Netherlands). C4A
and C4B structural polymorphism genotypes were assayed with digital-
droplet PCR (ddPCR; BioRad, Pleasanton, CA) with the method of Sekar

Fig. 1 C4A/B genes produce C4A/B protein, which both release
C4-ana when activated. A C4-ana is produced when C4 protein is
activated in the Classical and Lectin Complement Pathways.
Similarly, C3-ana is released when C3-convertase is activated and
C5-ana is produced upon activation of the Terminal Complement
Pathway. B An inactive retrovirus, HERV, present between exons 9
and 10 of the C4A or C4B gene, differentiates the long form of the
gene from the short form of the gene. The C4A gene produces the
C4A (acidic) protein while the C4B gene produces the C4B (basic)
protein, differentiated by 5 amino acids as a result of four nucleotide
polymorphisms. Both forms of the protein lead to the cleavage
product, C4-ana when activated by binding to protein binding
partners.
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et al. [7]. Briefly, in this assay PCR probes for C4A, C4B, C4L and C4S are
assayed as technical duplicates. A long-range PCR for C4S is then
performed whose products are analyzed by ddPCR to determine the
Gene Copy Numbers (GCN) of C4AS and C4BS, following which GCN can be
computed for C4AL and C4BL. Predicted C4A and C4B expressions are then
determined according to a formula [7] derived from post-mortem
genotype and brain expression data:

C4A expression= (0.47 * C4AL GCN)+ (0.47 * C4AS GCN)+ (0.20 *
C4BL GCN)
C4B expression= (1.03 * C4BL GCN)+ (0.88 * C4BS GCN)

Statistical analysis
The primary outcome was plasma C4-ana concentration in the control
vs. patient groups. All other statistical tests were considered exploratory
and thus were not corrected for the number of tests. Protein
concentrations (C3-, C4- and C5-ana, and sTCC) and C4 GCN frequencies
were not normally distributed (Shapiro–Wilk test) so that non-
parametric (rank-based) tests were used for group contrasts
(Mann–Whitney U-Test and correlational analyses Spearman’s rho).
Differences between pairs of rho values were tested for significance
using the appropriate modification of Fisher’s Z-transformation of
correlation coefficients [23, 24]. All analyses were performed using JMP
Pro 14.1.0 (SAS Institute, Cary, NC).

Primary brain endothelial cell (BEC) culture
Primary human brain microvascular endothelial cells (ACBRI 376, Cell
Systems, Kirkland, WA) were cultured in Complete Classic Medium with
Serum and CultureBoost (4Z0-500, Cell Systems, Kirkland WA) under
standard conditions (37 °C and 5% CO2) until a monolayer was formed.
Attachment Factor (4Z0-210, Cell Systems, Kirkland, WA) and Passage
Reagent Group (4Z0-800, Cell Systems, Kirkland, WA) were used for
passaging according to the manufacturer’s instructions. Cells were tested
for mycoplasma.

Immunofluorescence
Primary BEC were cultured on glass chamber slides (80827, ibidi GmbH,
Germany). Cells were starved in media without serum and exposed to
stimulants for 30min. Then, cells were fixed in 4% paraformaldehyde in
PBS pH 7.4 for 10min at room temperature and washed 3× with ice-cold
PBS for 5 min. Cells were permeabilized with 0.1% Triton X-100 in PBS for
10min and stained with Texas Red-X Phalloidin for 20min at room
temperature (T7471, ThermoFischer Scientific, Waltham, MA) or

alternatively incubated overnight at 4 °C with primary antibody against
PAR1 (sc-13503, Santa Cruz Biotechnology Inc., Dallas, TX) and PAR4 (sc-
1666, Santa Cruz Biotechnology Inc., Dallas, TX). The samples were
subsequently washed and incubated with secondary antibody (A21203,
Life Technologies, Eugene OR) for 1 h at room temperature, and 5min with
DAPI (Sigma Aldrich, St. Louis, MO). Cells were imaged at the Stanford
University Cell Sciences Imaging Facility on a Zeiss 880 confocal
microscope using a ×40 objective.

In vitro permeability assay
Transwell plates (Corning, Corning NY) were coated overnight at 4 °C
with 10 μg/mL of rat tail collagen (Corning, Corning NY). Then, cells
were grown on the transwell inserts until a monolayer formed.
Stimulants, thrombin (T4393, Sigma Aldrich, MO) or C4-anaphylatoxin
(A106, Complement Technologies, Tyler, TX) were added for 1 h, and
permeability was measured according to manufacturer’s instructions
(CB6929, Cell Biologics, Chicago, IL). The experiment was performed
three times, each with technical duplicate wells per experimental
condition.

RESULTS
Characteristics of the cohort
A total of 19 controls and 16 individuals with schizophrenia
enrolled in the study. Four individuals in the control group were
ineligible after SCID-V assessment, and 1 control and 1 individual
with schizophrenia withdrew before completing the study. Thus,
14 healthy controls and 15 participants with schizophrenia or
schizoaffective disorder completed the clinical evaluation and
blood sampling (Table 1). The two groups did not differ
significantly with respect to age, sex distribution, or ethnicity.
Together, the individuals with schizophrenia had a higher body
mass index (BMI). All of the individuals with schizophrenia except
one (in remission) were taking medications at the time of
venipuncture (Supplementary Fig. 1). The C4-ana concentration
of the medication-free individual with schizophrenia was in the
upper range (688 ng/mL).

Plasma C4-ana concentration
Concentrations of plasma C4-ana were elevated in individuals with
schizophrenia compared to controls (mean ± standard
deviation = 656 ± 150 ng/mL vs. 555 ± 93 ng/mL, χ2 approxima-
tion [1df] = 5.97, p-value = 0.015) (Fig. 1B). This difference
persisted after excluding the individual with schizophrenia whose
C4-ana concentration (1142 ng/mL) was an outlier value (620 ±
68 ng/mL vs. 555 ± 93 ng/mL, χ2 approximation [1df] = 5.07, p-
value = 0.024). There are no clear relationships between plasma
C4-ana concentration and BMI, fasting status or sex (Supplemen-
tary Fig. 2).

Additional complement split products in plasma
Results are shown in Fig. 2. There is a trend towards increased C3-ana
concentrations in individuals with schizophrenia (189 ± 37 ng/mL vs.
170 ± 19 ng/mL, χ2 approximation [1df]= 2.90, p-value = 0.09). C5-
ana and TCC concentrations did not differ between groups.

Complement split products in CSF
Only 5 patients and 6 controls completed lumbar puncture.
Procedures are discussed and preliminary data are shown in
Supplementary Fig. 3.

C4 genotype distribution
Figure 3A shows the distributions of C4 gene copy numbers (GCN)
in individuals with schizophrenia and controls for the individual
alleles (C4AL, C4AS, C4BL, C4BS) and for aggregate alleles (C4A,
C4B, and C4). Exploratory analyses showed an increase in C4AL
(p= 0.03) in individuals with schizophrenia and a trend for all C4A
(p= 0.06) (Fig. 3B).

Table 1. Demographics of study participants.

Controls Schizophrenia p-value

# Participants 14 15

Median age 24 22 0.14

Age range 21–36 18–34

Sex (% male) 64% 73% 0.46

Caucasian 9 5

African American 2 2

Asian 3 5

Hispanic 1 2

Schizophrenia 0 12

Schizoaffective disorder 0 3

BMI, average 24 27.5 0.01

There were no statistical differences in participant age or sex between the
two groups. The average BMI (body mass index) was higher in the
Schizophrenia group. Attempts were made to recruit participants from a
variety of ethnic backgrounds. The majority of participants in the
Schizophrenia group met the criteria for the diagnosis of Schizophrenia
and 3 met DSM-V criteria for Schizoaffective disorder.
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The relationship between C4 gene copy number and plasma
C4-ana levels
Figure 3C shows the correlations between plasma C4-ana and (i)
GCN values (C4, C4A, C4B, C4AL, C4AS, C4BL, C4BS); and (ii)
predicted C4A and C4B gene expression in the brain. In the
entire cohort, the only nominally significant correlation was an
inverse relationship between plasma C4-ana and predicted C4B
expression (ρ=−0.37, p= 0.05). We then analyzed individuals
with schizophrenia and controls separately. In individuals with
schizophrenia, plasma C4-ana was positively correlated with
C4A GCN (ρ= 0.69, p= 0.005); in controls, there was no
correlation (ρ = −0.69, p= 0.15). The correlations in individuals
with schizophrenia and in controls were significantly different
based on the modified Fisher’s Z-transformation test for rho
(z[difference] = −2.371, p= 0.018) (Fig. 3D). This difference was
sensitive to the removal of the patient outlier (p = 0.61 in the
patients, N= 14; z[difference] = −1.79, p= 0.073). The group-
specific correlations between C4-ana and C4B GCN were in the
opposite directions and were not significantly different from
each other (cases: p = −0.68, p= 0.006; controls: p = 0.24, p=
0.41; z[difference] = 1.11, p= 0.27). A negative correlation
between C4A and C4B GCNs is expected, based on population
allele frequencies [7], as observed also in C4 GCN assays in
European-, African- and Chinese-ancestry individuals [DF
Levinson, unpublished data].

C4-ana increases in vitro permeability of brain endothelial
cells in monolayer cultures
We hypothesized that increased C4-ana could have a pathological
effect by binding to PAR1 and PAR4 [17] on brain endothelial cells
(BEC) and causing increased permeability. We tested this
hypothesis by studying monolayer BEC cultures. We confirmed
that PAR1 and PAR4 receptors are present on BEC (Supplementary
Fig. 4) and observed that exposure to C4-ana increased actin stress
fiber formation (Fig. 4A). C4-ana, like thrombin, increased
permeability of the BEC monolayer. In this assay, C4-ana was
~10× less potent than thrombin (Fig. 4B).

DISCUSSION
Elevated C4 gene copy number has been implicated in schizo-
phrenia etiology by GWAS [7] and by murine models [7–9]. An
allele of the complement inhibitor, CSMD1, is also associated with
schizophrenia [3, 11, 12]. In addition, peripheral inflammation may
contribute to disease pathogenesis through changes to the BBB
[25]. Based on these considerations and our pilot data from
individuals with schizophrenia, we hypothesized that circulating
complement fragments, known to be inflammatory mediators,
could be increased in this disease. To address this hypothesis, we
measured the concentrations of anaphylatoxins (C3-ana, C4-ana,
C5-ana) and TCC from carefully collected plasma, which provides a
way to determine complement protein activation in vivo, rather
than ex vivo methods that trigger activation [18].
We found significantly higher plasma C4-ana levels, but not C3-

ana or C5-ana levels, in individuals with schizophrenia compared
to healthy controls (Fig. 2). A previous small study of drug-naive,
first-episode psychosis patients measured their TCC, C3-, and C5-
ana (but not C4-ana) levels and found a trend toward elevated C3-
ana. Notably, this trend was eliminated after treatment [26]. The
latter result is consistent with our findings, as the majority of our
participants were taking medication at the time of sampling. Two
prior studies have measured in vitro activation of C4 protein,
isolated from individuals with schizophrenia and controls [14, 15].
In both studies, C4 activation from individuals with schizophrenia
was enhanced. This is also consistent with our results, as C4-ana is
an in vivo by-product of C4 protein activation. Furthermore,
several studies observed increased levels of a C4 protein inhibitor,
C4-binding protein, in individuals with schizophrenia, implying an
active compensatory mechanism [13, 27]. Together, these findings
suggest that plasma C3-ana may play a role in acute psychosis,
whereas plasma C4-ana may contribute in a more chronic manner.
In general, there are no known disease associations for C4-ana, we
found just one small study that showed elevated concentrations
of C4-ana in multiple sclerosis [28].
Consistent with prior work [7], we found significantly increased

C4AL GNC and a trend towards increased total C4A GCN in
individuals with schizophrenia compared to controls (Fig. 3).

Fig. 2 C4-ana concentration is higher in plasma from individuals with schizophrenia. A Concentration of C4-ana, C3-ana, and C5-ana in
plasma in the whole cohort. The mean concentration of C4-ana is higher for the patient group compared to controls, p= 0.01 (p= 0.02 if the
outlier is removed), as calculated by Mann-Whitney. The mean plasma levels of C3-ana, C5-ana are lower in the control group when compared
to the group from individuals with schizophrenia. Detailed values and statistics are shown in the table in B.
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Studies of post-mortem brain tissue showed higher C4A mRNA
levels in individuals with schizophrenia compared to controls
[5–7]. One study of peripheral blood mononuclear cell transcripts
found increased C4A mRNA that correlated with PANSS positive
symptoms factor p-scores, driven by the severity of delusions [29].
However, in two other studies, C4 mRNA levels in peripheral blood
were not increased [6, 30]. In healthy individuals, peripheral blood

C4A and C4B protein concentrations correlate with the C4A and
C4B gene copy number but also depend on age and sex [31, 32].
The literature on the serological complement system in schizo-
phrenia is large but characterized by small samples, variable
methodological approaches, clinical diversity of cohorts, failure to
assay C4A and C4B separately in most studies, and inconsistent
results [2, 3, 27]. A recent meta-analysis of 10 studies of C4 protein

Fig. 3 The relationship between C4-ana concentration and C4 gene copy number differs in cases vs. controls. A The number of C4AL,
C4AS, C4BL, and C4BS genes were determined experimentally by ddPCR. The frequency of each gene variant in the control and individuals
with schizophrenia groups are reported. Total C4A was determined by adding the number of C4AL and C4AS gene copies for each participant.
Similarly, C4B was determined by adding the number of C4BL and C4BS gene copies for each participant. Total C4 was determined by adding
the total gene copies of C4A and C4B for each participant. The frequencies of each gene copy number for participants are reported in the
graphs above. The average gene copy numbers for each distribution are reported in table (B). In this cohort, we see that samples from
individuals with schizophrenia have higher gene copy numbers of total C4A and C4AL genes compared to controls (p-value = 0.04 and 0.03,
respectively. These p-values are not statistically significant if the Bonteferoni correction is applied). C The table shows results of Spearman’s rho
correlation analyses between plasma C4-ana concentration and (i) each subset of C4 gene copy numbers (total C4, C4A, C4B, C4AL, C4AS,
C4BL, C4BS); and (ii) predicted C4A and C4B gene expression in brain based on the formula of Sekar et al. D Plasma C4-ana concentration (Y
axis) is plotted against total C4A (X axis), with regression lines shown for the entire cohort and separately for cases and controls. Cases showed
a positive relationship, and controls an inverse relationship, between C4A GCN and plasma C4A GCN.
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concentration (mostly in serum) included 468 individuals with
schizophrenia and 440 controls. This study did not find a
difference between individuals with schizophrenia and controls,
but did note a larger range of concentrations in the individuals
with schizophrenia (23). Importantly, the liver is the major source
of plasma C4 [33], but no studies have examined C4 mRNA in the
liver in individuals with schizophrenia.
We also found a positive, significant correlation between

plasma C4-ana and C4A GCN in individuals with schizophrenia
(Fig. 3). A possible explanation is an enhanced susceptibility to
activation of C4 protein in individuals with schizophrenia,
discussed above. A mechanism for the enhancement could
involve the effects of interferon-γ (INF-γ), a pro-inflammatory
cytokine, that is the strongest known inducer of C4 protein
expression [33, 34]. A recent meta-analysis found INF-γ to be
elevated in both individuals with schizophrenia and first-episode
psychosis (FEP) [35]. In a study of FEP patients who went on to a
diagnosis of schizophrenia, INF-γ was elevated in FEP compared
to controls and inversely correlated with the percentage of
whole-brain gray matter [36]. INF-γ induction of C4 protein
expression would result in more C4A-type protein in individuals
with schizophrenia because they carry more copies of the C4A
gene. C4A protein has differential biochemical properties and
functions in synaptic pruning [9, 37] and may also be more
susceptible to activation. Examining the correlation between INF-
γ and C4-ana concentrations as a function of C4 GCN in both
individuals with schizophrenia and controls would begin to test
this hypothesis. Alternatively, unknown factors may affect C4
protein activation.
Functions of C3-ana and C5-ana are well-characterized. They

bind to G protein-coupled receptors, C3aR and C5aR1, respec-
tively, induce migration and effector function in neutrophils,
mast cells, and macrophages and increase the permeability of
small blood vessels [38]. In contrast, surprisingly little is known
about the biology of C4-ana [39]. Although named an
“anaphylatoxin,” C4-ana does not have the same mechanisms
of action as C3-ana and C5-ana. The C4-ana receptor, PAR1, is
expressed on neurons and astrocytes [40, 41]. Activation of PAR1
leads to apoptotic cell death in neurons [41], and to glutamate
release in astrocytes producing activation of neighboring NMDA
receptors on neurons [41]. These mechanisms are consistent with
the glutamatergic excess found in individuals with and at risk for
schizophrenia [42].
PAR1 is also expressed on leukocytes, platelets, and endothelial

cells (16), including BEC [43]. Indeed, the only well-established
downstream effect of C4-ana binding to a PAR1/4 receptor is

endothelial cell contraction and increased permeability through
the endothelial cell layer [17].
We found that the addition of C4-ana increases the permeability

of a BEC monolayer (Fig. 4). A recent in vitro study demonstrated
that PAR1 activation is required for lymphocyte transmigration in
BEC [44]. There is evidence that suggests BBB disruption in
individuals with schizophrenia [5, 19, 20]. Thus, C4-ana activation
of PAR1/4 receptors may be a contributing mechanism to
changing the BBB and contribute to neurodegeneration in
individuals with schizophrenia.
The limitations of this study include its small sample size which

limited our ability to measure group differences of several
activation products. Future studies where larger sample sizes
and additional makers of protein activation are needed. We were
also unable to exclude two possible confounders: (i) the effect of
medication and (ii) BMI on complement activation products. (i)
One previous study reported an increase in C3-ana after
medication treatment [26], however other studies examining the
complement system did not find changes related to medication
[2, 3]. (ii) We observed a trend toward a correlation between BMI
and C4-ana concentrations, but only in the patient group
(Supplemental Fig. 1). One study reported that BMI was strongly
correlated with serum C3 and weakly with serum C4A and C4B
concentrations [31, 45]. A second study reported that metabolic
syndrome and waist circumference were associated with total
serum C4 at baseline in a longitudinal study, with C4 level
predicting the incidence of metabolic syndrome over time (C4-ana
was not assayed) [31, 45]. C4-ana has not previously been studied
in relation to BMI or related variables. Our data do not permit
disentangling the relationships among C4-ana, antipsychotic
medication, and BMI.
Further work is needed to test hypotheses arising from the

current findings: that a peripheral mechanism of C4 protein
activation in patients with schizophrenia interacts with increased
C4 GNC and structural variants, leading to increased C4-ana. Given
the small sample size of our study, larger cohorts are needed in
FEP and individuals with chronic schizophrenia.
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