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ABSTRACT
Forest plantation, either through afforestation or reforestation, has been suggested to
reverse and mitigate the process of deforestation. However, uncertainties remain in
the potential of plantation forest (PF) to sequestrate carbon (C) and nitrogen (N)
compared to natural forest (NF). Soil C and N stocks require a critical and updated
look at what is happening especially in the context of increasing rate of land use
change and climate change. The current study was conducted in China’s Eastern
forest to estimate soil C and N stocks in six depth layers (0–10, 10–20, 20–40, 40–60,
60–80 and 80–100 cm) and two forest types (NF and PF) at four sites along climate
factors gradient. The results showed that the overall mean soil C and N amounts
to a depth of 20 cm ranged from 2.6 ± 1.1 Mg ha−1 to 38.6 ± 23.1 Mg ha−1, and soil
nitrogen stock ranged from 0.2 ± 0.1 Mg ha−1 to 3.3 ± 1.5 Mg ha−1. Moreover, a loss of
C stock was observed at Qingyuan (QY) by −7%, Dinghushan (DH) by −26%,
Jianfengling (JF) by −13%while that of N stock was observed at QY (−8%), DH (−19%)
and JF (−12%) at both depth layers. These results indicate that NFs have a better
capacity to accumulate soil C and N. The soil C and N decreased from the southeast to
the northeast and increased from tropical to temperate mixed forests zone in the
eastern part of the study area. The C and N stock mainly occurred in the topsoil
and decreased significantly with depth. Moreover, soil C and N stocks increased with
age of plantation. This study provides an overview of the current spatial distribution
and soil stocks of C and N, as well as the effects of environmental factors on soil C
and N stocks. It also indicated that, although mean annual temperature and mean
annual precipitation are the key factors affecting the variations in soil C and N, their
vertical and horizontal distribution differed in various aspects.

Subjects Soil Science, Forestry
Keywords Soil C and N stock, Land use change, Natural and plantation forest, Climate factors

INTRODUCTION
Soil is the major carbon sink of global terrestrial ecosystems, storing about 1,550 Pg of
carbon (C), which is twice the atmospheric carbon pool (Lal, 2004). The C stock is closely
linked to the soil nitrogen (N) which could increase soil C stocks through promoting
plant growth and improving the net primary productivity of terrestrial ecosystem (Solberg
et al., 2004). However, it is limited by the accessibility of soil N in forest ecosystem due to
the fact that N dynamics can regulate terrestrial carbon sequestration, for example,
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increasing N inputs leads to sustainable C sequestration (Reich & Oleksyn, 2004; Deng
et al., 2016). Soil N does not only have a substantial impact on soil carbon sinks through
the interaction between soil nitrogen and carbon, but also on maintaining the ecological
function of plantation ecosystem (Reich et al., 2006; Liu et al., 2016). Furthermore,
the C stability of terrestrial ecosystems is notably sensitive and can be directly affected to
impact human activities in the short term, including deforestation, biomass burning,
land-use changes, forest management practices and environmental pollution (Batjes &
Dijkshoorn, 1999; Stockmann et al., 2013). It has been recognized that small fluctuations of
soil organic carbon (SOC) pool could have large impacts on the atmospheric carbon
dioxide (CO2) concentration by implication in the control of the greenhouse effect
(Lal, 2004; Powlson, Whitmore & Goulding, 2011).

Due to the importance of soil C and N as a source or as a sink to atmospheric CO2,
several studies have assessed soil C and N stocks (Batjes, 2002; Maquere et al., 2008; Gross
et al., 2018; Gao et al., 2019b; Li et al., 2019; Da Silva Santana et al., 2019). Besides, an
assessment of soil C stock is crucial for the evaluation of the capacity of soil to sequester
atmospheric C. It has been demonstrated that soil C and N stocks are influenced by the
complex interactions of tree species, management, climate, vegetation cover, land use
(LU), bulk density (BD), soil type and texture (Batjes, 1996; Lal, 2005). For example,
numerous studies have reported that tree species can alter soil C and N stocks by many
processes such as changes in litter quantity and quality, turnover rate of roots and
exudates, microbial communities and soil physicochemical properties (Paul et al., 2002;
Pérez-Cruzado et al., 2012; Wang et al., 2013; Hoogmoed et al., 2014; Deng & Shangguan,
2017). Globally, LU change is the second largest source of greenhouse gas emissions
(GHG) after burning fossil fuels and the first for the tropical region (Houghton, 2003).
Deforestation through the conversion of natural forests (NF) to other LUs contributes to
GHGs emission and could alter soil C and N cycles by variations in the amount of
forest floors and may have a significant impact on the total amount of GHG emissions
(Minasny et al., 2017; Gao et al., 2019a). Ensuring the stability of forest carbon stocks is an
essential global challenge in the future. Instituting control measures to reduce GHG from
forests is therefore essential for maintenance of stable stock of forest carbon.

Plantation forest (PF) either through afforestation or reforestation have been suggested
to overcome this problem and ensure the sustainability of the forests through the process
of deforestation, which consequently favors the accumulation of C (Metz et al., 2007)
as PF have potential to contribute to “Kyoto Protocol” targets for reducing net national
GHG emissions (Bolin, 1998) as large quantities of atmospheric CO2 can be fixed into tree
biomass for a long period of time (Hoen & Solberg, 1994). Although, the assessment of
the soil C and N stock is complicated, it is crucial to assess if all PF necessarily result in
carbon sequestration in the soil or whether this sequestration is significant. In other
words, it is essential to know if it can play the same role as PF of storing soil carbon.
Therefore, quantitative assessment of soil C and N stocks and their dynamics is crucial
in understanding the carbon sink capacity of terrestrial ecosystems in the context of the
climate change. We hypothesized that the conversion of NF–PF would result in a loss of C
and N stocks, and that topsoil has higher potential accumulation than subsoil in both
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forest types. Also, we expected that C, N stocks will decline with depth, but would be
influenced by mean annual temperature (MAT) and mean annual precipitation (MAP)
especially in NF. Therefore, the objectives of this study were to (1) estimate the soil C and
N stocks within the 0–100 cm soil layer along and compare their variations throughout
the profile under different LU types; (2) investigate the effects of forest conversion in soil C
and N stocks and assess the interaction between soil C and N changes and (3) analyze the
effects of environmental factors and main factors influencing soil C and N stocks.

MATERIALS AND METHODS
Study site and soil sampling
The study sites were located in Chinese eastern forest which extends from Hainan Island
to China’s northern border, ranging from 105�E to 130�E at latitudes and from 10�N
to 50�N (Fig. 1). This zone provides an ideal platform to research carbon and nitrogen of
forest ecosystems in East Asia’s monsoon region (Yu et al., 2008). Along the Eastern
forest of China, we chose four forests which included four forest sites were selected as
experimental plots including Qingyuan (QY), Huitong (HT), Dinghushan (DH) and
Jianfengling (JF) across eastern China forest (Fig. 1). Vegetation sequence distribution
includes temperate mixed forests, evergreen broadleaved forest, subtropical evergreen
coniferous forest and tropical rainforest from north to south (Sheng et al., 2014).
The specific characteristics of the sampling sites are described in Table 1. A total of 168
samples were collected in August 2017 from NF to PF stand of each site. Three pits were

Figure 1 The location of forest stands at four sites across eastern China. QY, Qingyuan; HT, Huitong;
DH, Dinghushan; JF, Jianfengling. Full-size DOI: 10.7717/peerj.8377/fig-1
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dug at one m depth for soil sampling and mineral soil samples were collected at six depth
layers 0–10, 10–20, 20–40, 40–60, 60–80 and 80–100 cm along soil profiles. MAT and
MAP data collected from 1960 to 2014 in the adjacent climate monitoring stations are
utilized herein. Soil C and N content were measured using an isotope ratio mass
spectrometer (IsoPrime 100; Isoprime Ltd., Cheadle, UK), connected to a CN elemental
analyzer (Vario MICRO cube; Elementar, Langenselbold, Germany). Soil pH was
determined using a digital potentiometric pH meter in 1:3 soil suspensions in both
0.01 M CaCl2 solution and deionized water. Soil samples were extracted using a
stainless-steel cylinder of 100 cm3 in volume of the undisturbed soil samples and BD was
calculated by dividing the oven-dried weight of fine earth by the volume of the core
(Table 2).

Statistical analysis
Soil C and N stocks were determined on a weight to area basis (kg of C/N per m2 of soil)
per soil depth class was calculated using the following formula:

TX ¼
Xn

i

X%i � BDi � vi � a

where TX is soil C or N stock (kg Cm−2); X%i is C or N in percentage at depth i; BDi is bulk
density at depth i; and vi is volume of soil at each horizon; a is the instrument’s typical
precision ±0.005% for C and ±0.001% for N according to the manufacturer’s standard
material (Assefa et al., 2017). The carbon and nitrogen content data were obtained from
our previous manuscript (Ngaba et al., 2019) (Table 3).

Two-way ANOVA method was used to test the significance of differences in site, depth
and their interactions on soil C and N stocks under NF and PF using a significance level
of a = 0.05. Pearson correlation analysis was used to analyze the relationships between

Table 1 Location and characteristics of forest stands at four sites across the eastern China.

Sites Location pH Province Elevation
(m)

Soil type Climate
zones

MAT
(�C)

MAP
(mm)

Natural
land use

Plantation
type

Plantation
age

NF PF

Qingyuan (QY) N 41.85
E 124.93

5.57 5.54 Liaoning 597 Brown
forest soil

Mid
temperate

5.91 794 DBL Pinus
koraiensis.

38

Huitong (HT) N 26.85
E 109.60

4.58 4.69 Hunan 427 Lateritic
red soil,
yellow soil

Mid
subtropical

17.17 1,256 EBL Cunninghamia
lanceolata

33

Dinghushan (DH) N 23.17
E 113.52

4.02 4.37 Guangdong 275 Lateritic
red soil,
yellow soil

Southern
subtropical

21.08 1,955 MEB Pinus
massoniana

30

Jianfengling (JF) N 18.44
E 108.01

4.52 4.69 Hainan 800 Yellow soil Tropical 19.80 2,499 TMF Pinus caribaea 30

Note:
DBL, Deciduous broad-leaved forest; EBL, Evergreen broad-leaved forest; MEB, Monsoon evergreen broad-leaved forest; TMF, Tropical monsoon forest. NF, Natural
Forest; PF, Plantation Forest.
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soil C or N stocks and pH, BD, elevation, age of plantation, MAT and MAP. All statistical
analyses were performed using the SPSS version 20.0 (Systat Statistical Software Package
for Windows) (Coakes & Steed, 2009).

Table 2 Soil C and N content, Soil BD under different forest types.

Soil depth (cm) QY HT JF DH

NF PF NF PF NF PF NF PF

C content
(g kg−1)

0–10 48.95 41.06 17.09 15.15 25.38 19.39 25.77 14.67

10–20 26.67 23.41 10.03 12.87 15.83 12.48 12.53 5.05

20–40 12.84 12.99 8.54 9.43 11 6.93 6.97 3.93

40–60 6.97 5.82 5.47 6.02 6.58 6.21 5.14 3.03

60–80 4.38 3.86 4.54 5.07 4.61 8.52 4.7 6.21

80–100 2.76 3.07 4.06 4.31 3.34 3.28 3.57 3.41

N content
(g kg−1)

0–10 4.23 3.23 1.99 1.66 1.98 1.51 2.13 1.24

10–20 2.6 2.42 1.3 1.48 1.32 1.13 1.13 0.6

20–40 1.33 1.49 1.18 1.17 0.97 0.64 0.75 0.49

40–60 0.79 0.69 1 0.97 0.66 0.64 0.67 0.45

60–80 0.51 0.49 0.94 0.91 0.5 1.17 0.63 1.39

80–100 0.34 0.36 0.92 0.9 0.36 0.35 0.57 0.56

BD
(g cm−3)

0–10 0.80 0.95 1.10 1.26 0.98 1.08 0.98 1.54

10–20 1.03 1.09 1.12 1.21 1.14 1.31 1.30 1.66

20–40 1.27 1.26 1.13 1.28 1.24 1.48 1.41 1.69

40–60 1.27 1.32 1.16 1.26 1.34 1.41 1.39 1.51

60–80 1.28 0.92 1.18 1.37 1.54 1.36 1.52 1.48

80–100 1.20 0.76 1.25 1.33 1.43 1.41 1.46 1.55

Notes:
Data are means of three plots.
NF, Natural forest; PF, Plantation forest; QY, Qingyuan; HT, Huitong; DH, Dinghushan; JF, Jianfengling; BD, Bulk
density.

Table 3 Two-way ANOVA results for all soil variables in both forest type.

NF PF

Variables F P F P

Site C stock 15.16 *** 3.31 **

N stock 28.99 *** 4.85 **

Depth C stock 5.35 ** 36.33 ***

N stock 4.17 n.s 36.39 ***

Site * Depth C stock 0.31 n.s 2.24 n.s

N stock 0.32 n.s 2.71 n.s

Notes:
n = 15 (Depths), n = 4 (Site).
* Indicate a significant level at P < 0.05.
** Indicate a significant level at P < 0.01.
*** Indicate a significant level at P < 0.001, respectively.
n.s, non significant.
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RESULTS
Soil C and N stocks
For all the sampling sites evaluated, soil C stock ranged from 2.6 ± 1.1 Mg ha−1 to 38.6 ±
23.1 Mg ha−1 and soil nitrogen stock ranged from 0.2 ± 0.1 Mg ha−1 to 3.3 ± 1.5 Mg ha−1.
Following the land use change (LUC) in the two depth layers, a gain of soil C was
observed at HT (+16%) while a loss of C was observed at QY (−7%), DH (−26%) and
JF (−13%) (Fig. 2), similar result was found for N stock. The current study reported a loss
in depth layers at QY (−8%), DH (−19%) and JF (−12%) (Fig. 3). The pattern distribution
of N stock at HT site changed following the soil depth. A loss of −5% was observed in
the topsoil while a gain of +24% was reported in the subsoil. Moreover, the Northeast
region (QY) had the highest C and N stock followed by the Southeast (JF) (Figs. 2 and 3).
Generally, the spatial distribution of C and N stock increased from South to North with the

Figure 2 Soil C stocks under different forests in the 0–100 cm soil layers along the study sites and land use. NF, Natural forest; PF, Plantation
forest; (A) QY, Qingyuan; (B) HT, Huitong; (C) DH, Dinghushan; (D) JF, Jianfengling. Error bars are the standard errors of the means (n = 3).

Full-size DOI: 10.7717/peerj.8377/fig-2
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decreasing climate factors. Soil C and N stock was significantly (P < 0.001) higher in the
topsoil compared to subsoil in both forest types. The concentration of C in soil among
0–20 cm layers varied in the order of QY > JF > DH > HT in NF and in the order of QY >
JF > HT > DH in PF. Similar result was observed for N stock. The highest and lowest
concentrations of N stock were found at QY, respectively in both forest types.

Relationship between soil C, N stocks, and underlying factors
Soil C and N stock varied significantly (P < 0.05, for all) with sites, soil depth under NF and
PF but not their interactions (Table 3). The statistical analysis showed a strong correlation

Figure 3 Soil N stocks under different forests in the 0–100 cm soil layers along the study sites and land use. NF, Natural forest; PF, Plantation
forest; (A) QY, Qingyuan; (B) HT, Huitong; (C) DH, Dinghushan; (D) JF, Jianfengling. Error bars are the standard errors of the means (n = 3).

Full-size DOI: 10.7717/peerj.8377/fig-3
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between soil C and N stock (R2= 0.93, P < 0.001 and R2= 0.71, P < 0.001 for NF and PF,
respectively). However, soil pH under the NF did not significantly change in all depths
compared to that under PF which was negatively correlated with soil C and N stock in the
subsoil of PF. In general, the BD increased progressively with increasing depth in both
depth layers and did not have a strong effect on soil C and N stock in the topsoil of PF
(Table 2). Plantation age and elevation were positively corelated with soil C and N except
at 0–10 cm of PF where elevation was negatively correlated with their values (Table 4).

Relationship between soil C, N stocks and climate factors
Soil C stock increased with increasing N stock in NF and PF LU types (Fig. 4). Moreover,
we observed a significant relationship between these variables in NF (R2 = 0.93, R2 = 0.71,
P < 0.001 for all in PF and NF, respectively). In general, soil C was negatively correlated
to environmental factors following NF in both depth layer (Table 4), whereas soil N stock
was significantly correlated with MAT in NF of both depth layers (P < 0.05, for all).

DISCUSSION
Specifically, we focused our attention on soil C and N at the topsoil (0–20 cm) depth layer
in different LU type because topsoils accumulate more C and N than deeper soil layers
(Deng et al., 2016; Angst et al., 2018; Zhang et al., 2019) and the subsoil generally contains
less soil C (Rumpel & Kögel-Knabner, 2011; Kunlanit, Butnan & Vityakon, 2019).

Effects of land-use change on soil C and N stock
Our results indicated that LUC from NF to PF is one of the key variables explaining the
variation in soil C and N stock. The statistical analysis showed that soil C and N stock was
significantly different across forest types (P < 0.01). Although a gain of C and N was
observed at HT, the current study showed a clear decrease by −7%, −13% and −26% at
QY, JF and DH, respectively, following the conversion from NF to PF. These findings
suggest that LUC from NF to PF influences C and N inputs into the soil followed by a
decrease in soil C and N stocks, which is in line with previous studies. For example, Guo &
Gifford (2002) reported a decrease in soil C stocks after conversion forest to plantation

Table 4 Pearson’s coefficients correlation between soil C, N stocks and affecting factors.

Depth (cm) Forest type Variable pH BD (g cm−3) Age (years) Elevation (m) MAT (�C) MAP (mm)

0–10 NF C stock 0.367 n.s −0.628* / 0.098 n.s −0.625* −0.462 n.s

N stock 0.349 n.s −0.584* / 0.227 n.s −0.623* −0.371 n.s

PF C stock −0.065 n.s 0.016 n.s 0.588* −0.591* 0.433 n.s 0.082 n.s

N stock 0.205 n.s −0.270 n.s 0.154 n.s −0.537* −0.478 n.s −0.689**

10–20 NF C stock 0.468 n.s 0.766** / 0.944** −0.893** −0.803**

N stock 0.424 n.s 0.849** / 0.973** −0.836** −0.722**

PF C stock −0.707** −0.612* 0.068 n.s 0.461 n.s −0.255 n.s 0.198 n.s

N stock −0.733** −0.607* 0.518* 0.251 n.s −0.616* −0.252 n.s

Notes:
** Correlation is significant at the 0.01 level.
* Correlation is significant at the 0.05 level.
n.s, not significant; n = 15; BD, Bulk density; NF, Natural forest; PF, Plantation forest; MAT, Mean annual temperature; MAP, Mean annual precipitation.
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by −13% whereas Girmay et al. (2008) observed a decrease by −83% in topsoil (0–10 cm).
The patterns of gain and loss in soil C and N can vary according to a broad variety of
soil types, shifts in abundance of woody and herbaceous vegetation, microbial activities,
altered soil water, and temperature regimes which accelerate decomposition (Covington,
1981; Johnson et al., 1995; Jackson et al., 2000; Turner, Lambert & Johnson, 2005).
The change of litter fall/input, the amount and type of plant residues associated with
microbial activities produced by plants can explain, in part, the change of C and N stock.
According to Arevalo et al. (2009), the lack of mixing mineral soil with the surface
litter material for example, resulted in low C stocks and the accumulation of litter in the
humus layer. On the other hand, soil N stock is attributed with the change of N input
such as atmospheric N deposition, biological N fixation and output such as N uptake by
plant, N emission to groundwater or the atmosphere (Li, Niu & Luo, 2012).

Changes in soil C and N are associated with changes of trees species and their diversity
through variation in litter quantity and quality, exudates and turnover rate of roots
(Wang et al., 2013; Hoogmoed et al., 2014; Deng & Shangguan, 2017). Our findings largely
confirm this trend as it was observed that Pinus koraiensis stock five times more soil C than
Metasequoia glyptostroboides and two times more than Cunninghamia lanceolata in

Figure 4 Correlation between soil carbon stock and nitrogen following land use. NF, Natural forest;
PF, Plantation forest. Full-size DOI: 10.7717/peerj.8377/fig-4
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PF. Similar results were observed for N stock. In addition, C. lanceolata stocks four
times more N than M. glyptostroboides. Variation in soil C and N values with tree species
as demonstrated in the present study has been also reported previously. For example,
Demessie, Singh & Lal (2011) argued that coniferous species (Pinus patula and Juniperous
procera) accrue more stock of C and N compared to the Eucalyptus species. Other studies
suggested that soil C stock was generally larger under coniferous species than broadleaf
species (Augusto et al., 2002; Kasel & Bennett, 2007; Schulp et al., 2008) or increases linearly
with tree species diversity (Montagnini & Porras, 1998). According to Wang et al. (2013),
SOC stock in 0–20 cm layer was significantly higher in the mixed plantation than in
the monoculture plantations. Thus, the potential of C and N sequestration in soil varies
from one species to another within an area.

Effects of soil depth on soil C and N stock
In general, soil C and N stocks decrease with increase of soil depth. For example, the
topsoil of C accounts for 59% (QY) and 57% (JF) in NF, and similar results were observed
in PF. In addition, soil N stock accounted for 68% in NF and 53% in PF of HT which is
consistent with previous studies. Similar to our results, Li et al. (2019) and Wang et al.
(2016) found a decrease of soil C and N stocks with depth. Therefore, we proposed the
hypothesis that topsoil is most biologically active than subsoil and thus, has higher soil C
and N accumulation. In addition, our results also provide some indication that soil C
and N stock do not only reduce in the topsoil (0–10 cm), but also in the subsoil
(10–20 cm). The statistical analysis showed a significant variation and negative correlation
of soil C and N following soil depth indicating that soil C and N sequestration mechanisms
varied with the soil profile. This result could be due to destruction of the existing litter
layer and an increasing soil organic C mineralization rate through to the low rate of canopy
covers which exposed the soil in PF to the solar radiation (Chen & Wang, 2007). On the
other hand, soil disturbance on vegetation can also, in part, explain this result by way
of differences in root distribution and its management. Obviously, different vegetation
types will have different litter decomposition processes consequently leading to differences
in release of C and N in the soil (Zhang et al., 2013). Jobbágy & Jackson (2000) for example,
argued that root distributions affect the vertical placement of C in the soil, and above-
and below-ground allocation affects the relative amount of C that eventually falls to the soil
surface from shoots. Moreover, the action of deep roots which create pores and facilitate
the movement of this nutrient could explain the larger soil N stock observed in NF
(Poirier, Roumet & Munson, 2018). In addition, vegetation management influences the
balance of forest C by desired crop tree species and by increasing the rate of C storage and
biomass accumulation (Colombo et al., 2005). Consequently, in the current study soil
disturbance affected the balance of C entering via plant exudates and residues and C
output through mineralization in the soil and on N stock.

The variation in soil C and N with soil depth likely results from type of soil as postulated
in other studies. Da Silva Santana et al. (2019) proposed that C and N stocks was lower
in Planosols than Acrisol and Ferralsol in Brazil partly due to their shallowness and
their lower capacity to stabilize N in the organic form.West & Six (2007) further suggested
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that soil type influenced the equilibrium between the C inputs and outputs. The current
study showed that the level of C and N stock in lateritic yellow soil (Ultisols in the US
Soil Classification) of JF was significantly higher with those found in mountain reddish
yellow earth of HT site. However, no significant difference has been observed between the
soil type at DH and JF. This finding indicates that the residence time and capacity of
sequestration varies with soil types.

Effects of BD and soil pH on soil C and N stock
The statistical analyses showed that soil BD and pH vary significantly with soil depth. Soil pH
tends to decrease with an increasing soil depth under different forest types while the opposite
has been observed for BD. Our study showed that BD was strongly correlated with soil C
and N stock except in the topsoil of PF, but only significantly correlated with pH in the
subsoil of PF . This result suggests that the pattern distribution of soil BD and pH affects soil
function such as soil microbial community and microbial activity (Thomas, 1996) which are
closely related to soil C and N stock. It has been suggested that low soil pH can decrease
microbial biomass and activity (Blagodatskaya & Anderson, 1998) and might also lead to
the accumulation of soil C (Beets, Oliver & Clinton, 2002, Chen, Xu & Mathers, 2004).
In addition, soil pH is influenced by trees species that can directly affect the pattern
distribution of soil C and N stock since tree species have different capacity of sequestration in
the soil. Generally, a low BD at total depth of 0–20 cm in both forest types was observed and
it was significantly influenced by type of LU and not by soil depth. The lowest rate of BD
was observed in DH where curiously the lowest values of soil C and N stock has been
observed. This finding prompts us to hypothesize that the rate of BDmay influence C and N
input in the soil. Consistent with our findings,Demessie, Singh & Lal (2011) suggested that the
lowest C and N stocks compared to the reference under Cupressus lusitanica compared to
the other plantation sites may be partly ascribed to the lower BD along the profile.

Effects of elevation and stand age on soil C and N stock
The current study showed that elevation is one of the main factors controlling soil C and
N stock variation. We observed that elevation favors C and N accumulation in soils
particularly in both depth layers of NF while it had a negative correlation in the topsoil of
PF. Saby et al. (2008) found that elevation was a control factor on SOC in a French region.
Previous studies reported a lower carbon and nitrogen stock at lower elevation (Tesfaye
et al., 2016). This trend was confirmed in the current study as the lowest values in soil C
and N stock were found at DH which is located at the lowest elevation (275 m). Besides,
the pattern of distribution of soil C and N stock following the elevation showed an
increase of those variables with an increase in elevation. This finding is in line which the
results obtained by Jones et al. (2005) who reported that the largest SOC stocks occur in
high elevation areas of Europe.

The mechanism of soil carbon sequestration with vegetation restoration is more
complex (Wang et al., 2019). Although it has been reported that there is a high rate of
growth and carbon uptake in young trees, our finding reported a higher soil C and N stock
in NF compared to PF yet it has younger vegetation. This result could be explained by the
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stand age. In the current study, NF has much longer stand age than PF, hence soil C
and N inputs have probably more time to accumulate in the soil of NF through litter and
roots in the long term compared to PF. Our findings are therefore consistent with the
results found by Arevalo et al. (2009) who reported an increase of SOC stock with
plantation age. In addition, our results showed that plantation age positively affected C and
N stock with time. Interestingly, in PF, the highest rate of C and N stock was found at
the QY which is the oldest PF site with 33 years old and the lowest values were observed at
the youngest site of DH. Consequently, older stand general has a higher soil C stock
because of the long-term soil C accumulation (Sariyildiz, Savaci & Kravkaz, 2015). Deng
et al. (2017) reported that soil C stocks of Caragana korshinskii plantations increased
remarkably with stand age from young to mature plantations in the Loess Plateau, whereas
Laganière, Angers & Paré (2010) reported a gain of 6.1% and 18.6% in mature stage
(10–30 years) and older stage (>30 years) plantations, respectively, with increase of time.
Therefore, PF might need the same time or longer time period to accumulate the same
level of NF in soil C and N stock in the soil. However, the verification of this hypothesis
could be difficult because C stored in NF has a longer residence time and has a greater
susceptibility to loss in PF (Mackey et al., 2008). Moreover, the difference observed could
be also due to site management such as site preparation, the effects of harvesting, the type
and level of silviculture activities and the antecedent soil fertility.

Effects of forest management on soil C and N stock
Forest management can also affect the change of soil C and N stock through soil erosion or
deposition. Certain management practices such as the site preparation by breaking down
the physical protection of soil C can significantly increase the decomposition of soil
organic C (Guo & Gifford, 2002). Thus, increasing the frequency of erosion after rainfall
consequently influences soil structural stability and porosity. Our finding indicates that
although it has been demonstrated that SOC does not accumulate indefinitely (Johnston,
Poulton & Coleman, 2009), this alternative of replacement of NF with PF can be effective
if the right measures are implemented avoiding as site preparation with burnt treatment,
soil erosion, vegetation burning, wood products were harvested and (/or) an increased
output as plantations (Harmon, Ferrell & Franklin, 1990; Berthrong, Jobbagy & Jackson,
2009; Liao et al., 2010) and maximizing litter inputs to soils. Otherwise, it will be not a
sustainable measure because its performance can decrease over time partially if proper
management actions are not taken. Luo & Zhang (2006) for example, reported that soil
organic C stock decreased by 10% from the first to the second rotation for C. lanceolata
plantations, and by 15% from second to the third rotation. The application of good
management practices in PF could run up soil C and N sequestration after several years
through maximizing litter inputs and might be valued to gain of C and N storage in the soil.
The low values in soil C and N stock observed at DH could be as a result of the high
level of site disturbance in this site which considerably decreases the rate of fine root biomass
and affects the balance between biomass production and decomposition, root distribution
or vegetation communities. According to Jobbágy & Jackson (2000) root distributions
affect the vertical placement of C in the soil and Yimer, Ledin & Abdelkadir (2006) reported
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in the Bale Mountains that the mean SOC stocks were lower among the vegetation
communities in the western and northern aspects than in the southern and the eastern
aspects both in the upper 0.3 m soil layer.

Effects of climate factors on soil C and N stock
Soil C and N stocks are influenced by the complex interactions of climate (Lal, 2005) due to
its impact on microbial activity and forest growth, consequently on the quantity and
quality of organic residue soil inputs and on the rates of soil organic matter mineralization
and litter decomposition (Quideau et al., 2001; Heviaa, Buschiazzoa & Heppera, 2003).
Higher soil temperatures for example, increase microbial decomposition of organic
matter (Conant et al., 2011) and high precipitation can also lead to C transport down
the soil profile as dissolved and/or particulate organic matter (Borken & Matzner, 2009).
According to Post et al. (1982), the influence of climate factors results from their
influence on the balance of carbon inputs from plant production and outputs through
decomposition in soil. The current study reported a significant impact of climate factors on
the soil C and N stock in both depth layers. Soil C and N was negatively linked with climate
factors; we observed a decrease in soil C and N stocks with MAT and MAP following
soil depth layer. This finding is consistent with previous studies. Vieira et al. (2011) for
example, reported a significant inverse correlation between carbon and nitrogen stocks and
soil temperatures whereas Quideau et al. (2001) and Heviaa, Buschiazzoa & Heppera
(2003) argued that this is probably due to their effects on the rates of soil organic matter
mineralization and litter decomposition and on the quantity and quality of organic
residue soil inputs.

Previous studies reported a decrease in SOC levels followed by an increase of MAT
(Wang et al., 2004), a trend that was partially confirmed in our study. The highest values of
soil C and N stock were found at the coldest area, particularly at QY. However, we also
observed an increase in soil C and N stock from Southeast to Northeast, particularly
from JF to QY. The highest values were found at QY probably due to lower temperature
conditions favoring accumulation of organic matter in these vegetation communities
(Post et al., 1982).

Interestingly, we observed a similar pattern of distribution between soil C and N stock
and climate factors. Soil C and N stock decreased with decreasing precipitation and
temperature from the Southeast to the Northeast. This trend is in line with previous studies
(Jobbágy & Jackson, 2000; Amundson, 2001; Homann, Kapchinske & Boyce, 2007),
Townsend, Vitousek & Trumbore (1995) and Trumbore, Chadwick & Amundson (1996)
who indicated that lower temperatures could result in reduced SOC breakdown, thereby
increasing SOC accumulation. By contrast, we observed that the highest soil C and N
were found at QY under the lowest precipitations followed by JF which was under the
highest precipitations. This differential response could be attributed to low decomposition
of litter under those precipitation regimes (Seneviratne, Van Holm & Kulasooriya,
1997) and the complex interactions which exist between plant species, soil conditions,
microorganisms and climatic conditions. According to Leifeld, Bassin & Fuhrer (2005),
it could be due to the couple effect of lower temperatures and higher altitudes which
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probably limit C turnover, which results in increased C accumulation even under conditions
of smaller productivity and C inputs. Although, it is generally accepted that MAT and MAP
temperature are the main factors influencing the potential of C and N sequestration, we
could not find consensus on the specific effects of climate factors in soil C and N.

Correlation between C and N stock
Similar to previous studies (Li, Niu & Luo, 2012; Deng, Shangguan & Sweeney, 2013;
Deng et al., 2016), we observed a significant positive correlation between soil C and N stock
in both forest types. The spatial distribution of soil C and N stock was similar with the
largest values observed in the Northeast (QY) followed by Southeast (JF). We also observed
an increase of N stock following an increase of C stock, indicating that the C budget is
limited by the availability of soil N due to the coupling effect between C and N cycles in
forest ecosystem (Reich & Oleksyn, 2004; Melillo et al., 2011). Besides, the relationship of
soil C and N stock in NF was significantly stronger in the topsoil than in the subsoil
probably due to the effect of rainfall on N vertical distribution. According to Deng et al.
(2016), rainfall can facilitate the migration of N into deeper soils, increase N accumulation
in the subsoil during revegetation process and vegetation restoration, and thereby
decreased soil C–N relations. This finding provides support to the trend observed below,
N dynamics regulate terrestrial carbon sequestration for example, increasing N inputs lead
to sustainable C sequestration (Deng et al., 2016). Thereby, high soil N concentration
stimulates tree growth, which potentially increases carbon inputs into soils through
litterfall and rhizo deposition, and promotes SOC sequestration by decreasing
decomposition rates of old litter and recalcitrant soil organic matter by suppression of
soil microbes and by chemical stabilization (Jandl et al., 2007; Mo et al., 2008).

CONCLUSIONS
Land-use changes from NF to PF significantly affected soil C and N input although
controlling factors induced differences in C and N stocks. The destruction of NF
contributes to the loss of C and N from soil and a net increase of carbon in the atmospheric
CO2, which aggravates climate change. Our study demonstrated that although PFs can
lead to higher C and N sequestration and have been promoted as a measure to mitigate
future climate change, NFs have below-ground C and N processes which promote better
accumulation in the soil. Although PF is one obvious approach of maintaining or
increasing future wood supply and mitigating the impacts related to their destruction,
it cannot replace the ecological roles played by NF especially if we consider animal
biodiversity and the loss of their habitat. The best way to protect and preserve NFs for a
healthy environment is to encourage the reforestation of degraded environments.
The results of the currents study showed also the complex interaction existing between
abiotic and biotic factors and soil C and N input.
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