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Abstract

Background

Limited data existed exclusively describing Mycobacterium tuberculosis lineage 3 (MTB-

L3), sub-lineages, and clinical manifestations in Kampala, Uganda. This study sought to elu-

cidate the circulating MTB-L3 sub-lineages and their corresponding clinical phenotypes.

Method

A total of 141 M. tuberculosis isolates were identified as M. tuberculosis lineage 3 using Sin-

gle nucleotide polymorphism (SNP) marker analysis method. To ascertain the sub-lineages/

sub-strains within the M. tuberculosis lineage 3, the direct repeat (DR) loci for all the isolates

was examined for sub-lineage specific signatures as described in the SITVIT2 database.

The infecting sub-strains were matched with patients’ clinical and demographic characteris-

tics to identify any possible association.

Result

The data showed 3 sub-lineages circulating with CAS 1 Delhi accounting for 55% (77/141),

followed by CAS 1-Kili 16% (22/141) and CAS 2/CAS 8% (12/141). Remaining isolates 21%

(30/141) were unclassifiable. To explore whether the sub-lineages differ in their ability to

cause increased severe disease, we used extent of lung involvement as a proxy for severe

disease. Multivariable analysis showed no association between M. tuberculosis lineage 3

sub-lineages with severe disease. The risk factors associated with severe disease include

having a positive smear (OR = 9.384; CI 95% = 2.603–33.835), HIV (OR = 0.316; CI 95% =
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0.114–0.876), lymphadenitis (OR = 0. 171; CI 95% = 0.034–0.856) and a BCG scar (OR =

0.295; CI 95% = 0.102–0.854).

Conclusion

In Kampala, Uganda, there are three sub-lineages of M. tuberculosis lineage 3 that cause dis-

ease of comparable severity with CAS-Dehli as the most prevalent. Having HIV, lymphadeni-

tis, a BCG scar and a smear negative status is associated with reduced severe disease.

Introduction

Seven major lineages of human-adapted Mycobacterium tuberculosis complex (MTBC) are

preferentially distributed in specific geographical niches, where they are the primary cause of

Tuberculosis (TB). Geographic dispersion includes Mycobacterium tuberculosis (M. tuberculo-
sis) lineage 1 (Indo Oceanic) found in areas along the Indian ocean, M. tuberculosis lineage 2

found majorly in east Asia, M. tuberculosis lineage 3 found in East Africa and India, M. tuber-
culosis lineage 4 (Euro-American) found mainly in Africa, Europe and America, M. tuberculo-
sis lineage 5 & 6 (M. africanum1 & 2) found exclusively in West Africa and M. tuberculosis
lineage 7 found primarily in Ethiopia [1–3]. The M. tuberculosis lineage 3 (MTB-L3), also

known as the Central Asian strains (CAS), occurs predominantly in areas around the Indian

Ocean, East Africa and India [4, 5]. The genetic diversity of the CAS can be defined based on

specific single nucleotide polymorphisms (SNPs) [6, 7], genomic deletion, also known as long

sequence polymorphism (LSP) [4, 5], and a particular spoligotype pattern [8]. The latter can

further subdivide the main M. tuberculosis lineage 3 into specific sub-lineages [8]. Emergence

and spread of M. tuberculosis lineages to other niches (where they were originally absent) has

been associated with immigration, clinical and demographic factors, as well as evolution of

MTB strains [9, 10]. Understanding mechanisms shaping transmission of MTB strains can

provide a lead about the potential approaches for TB control.

The data from our previous studies showed that in Kampala, Uganda, there are 3 main M.

tuberculosis lineages circulating, of these 11% were M. tuberculosis lineage 3 [11]. Moreover,

findings also revealed that all the M. tuberculosis predominant in Kampala were equally viru-

lent (based on cavitation as a proxy for virulence). Nevertheless, elsewhere authors have

reported that different M. tuberculosis complex lineages infections present with specific clinical

phenotypes [3]. The failure to demonstrate specific clinical outcomes in our earlier dataset

might be attributable to comparing genetically heterogeneous M. tuberculosis complex main

lineages; this could have confounded our results thereby suggesting no difference in virulence.

Differences in bacterial characteristics have provided insight into how the M. tuberculosis com-
plex bacteria cause disease, and why some are geographically wide spread. For instance, the

Beijing strains that belong to M. tuberculosis lineage 2 are highly virulent, prone to drug resis-

tance and BCG vaccination is not protective. This may partly explain why they are a global

threat [12–15]. Additionally, strains of M. tuberculosis lineage 4 are associated with pulmonary

tuberculosis and severe lung consolidation, less virulent [16] and prone to anti-tuberculosis

drug resistance [17] as opposed to other sub lineages. Similarly Newton et al,[18] showed that

sub-lineages of M. tuberculosis lineage 3 cause severe disease; Stucki et al, [19] and Hershberg,

2016 [20] showed that M. tuberculosis lineage 5–7 have a narrow host range, thus they are

restricted to particular geographical niche. Therefore, accurate understanding of M. tuberculo-
sis complex sub-lineages and their clinical outcomes can bolster the development of appropri-

ate intervention strategies that more effectively target the circulating strains.
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Given that background in the current study, we are describing sub-lineages/sub-strains

within the main M. tuberculosis lineage 3, the least dominant MTB lineage in kampala. To

answer this question we shall start by analyzing the MTB direct repeat (DR) loci for sub line-

ages within M. tuberculosis lineage 3 as well as understanding the demographic and clinical

manifestation of patients infected with MTB-L3 sub lineages. With such an approach, we can

describe whether sub-lineages of M. tuberculosis lineage 3 prevalent in Kampala, Uganda differ

in their ability to cause severe disease (extent of lung involvement abnormalities) as evaluated

by chest x-ray.

Materials and methods

Study design and M. tuberculosis isolates

The M. tuberculosis isolates used in this study were obtained from adult (� 18 years) patients

(index cases) and their household contacts (HHCs), confirmed with pulmonary TB by culture

in a cross sectional study (2002–2012) in Kawempe division Kampala, Uganda [11, 21], where

the data for the current study is coming from. The HHCs were TB patients who had stayed

with an index patient for at least 7 consecutive days for the previous 3 months. The index cases

residing with 1 or more HHCs were enrolled in the study through the clinic at the Uganda

National TB and leprosy program at Mulago Hospital or by referral to the TB research clinic at

Mulago Hospital or through public sensitization in Kawempe division. Adults with clinical

signs (a positive chest x-ray or sputum smear positive) suggestive of tuberculosis provided a

sputum sample for culture following standard laboratory procedures. The patients with active

TB were treated using a short course therapy of Isoniazid (INH), rifampicin (RIF), pyrazina-

mide and ethambutol for 2 months, followed by 4 months of INH and RIF. The cultured sam-

ples were later tested for drug resistance, patients with resistant MTB isolates were provided

with treatment according to the TB program guidelines. The HHCs� 5 years old, HIV and

TST-positive were prophylactically treated with INH for 6–9 months. Patients’ baseline demo-

graphic and clinical variables such age, sex, HIV status, employment status, status on income,

TB cavitation on chest x-ray (present or absent), ethnicity (Bantu & others), status of smoking,

body mass index (BMI) calculated from height & weight, alcohol drinking, presence of BCG

scar, whether patients have night sweats, knowledge of TB in the past, presenting with hemop-

tysis (cough with blood), having swollen lymph nodes (lymphadenitis), evaluation of extent of

lung involvement on chest radiography (classified as normal, mild, moderate, or far advanced)

and smear status (positive or negative), were recorded by a medical physician or a laboratory

technician.

Genomic DNA extraction and genotyping M. tuberculosis isolates

DNA extraction for 141 M. tuberculosis isolates and SNP (lineage-specific SNP for M. tubercu-
losis lineage 3: Rv0129c_0472n) typing to identify M. tuberculosis lineage 3 was performed as

described by Wampande et al, [11]. To determine the sub-lineages of M. tuberculosis lineages

3, the isolates were further analyzed with a spoligotyping commercial kit as described by

Kamerbeek et al, [22], the shared international type (SIT) spoligotyping were assigned accord-

ing to SITVIT and SITVIT2 database [8, 23].

Statistical analysis

Baseline variables were given as means, median if continuous while the categorical variables

were described in percentages. The outcome of our analysis was a patient with minimal (lung

infiltrates of slight to moderate density and disease present to a small portion of one or both
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lungs with no cavitation) or advanced disease (lesions more extensive than minimal disease

with cavitation) on chest x-ray examination [24]. Univariate analysis was perfomed and the

chi square test or Fisher’s exact test was used to compare the distribution of categorical variable

by disease. Variables in univariate analyis with P� 0. 2; except HIV a known risk factor for

TB, were included in the multivariable logistic model. Multivariable logistic regression was

used to evaluate the association between sub-lineages (sub strains) of M. tuberculosis lineage 3

(independent variable) and extent of lung involvement (minimal or advanced) disease on

chest x-ray (dependent variable). The 2 individuals infected with CAS were excluded from the

analysis because of the small number. Age, sex, smear status, HIV status, BCG scar, smoking

status, swollen lymph nodes (lymphadenitis) and BMI were used as adjusters. All analyses

were conducted with Stata software, version 12 (StataCorp, College Station, Texas).

Ethics

The institutional review boards and ethics committees at University Hospitals of Cleveland,

Makerere University, and the National HIV/AIDS Research Committee as well as the Uganda

National Council for Science and Technology approved the study protocols. All patients gave

written informed consent for study participation, including pre- and post- HIV test

counseling.

Results

In the parent study we genotyped 1286 isolates of these 11% (141/1286) were MTB lineage 3.

Of the 141 patients with pulmonary tuberculosis and infected with M. tuberculosis lineages 3,

77 (55%) were infected with CAS 1-Dehli, 22 (16%) were infected with CAS 1-Kili, 10 (7%)

were infected with CAS 2, 2 (1%) were infected with CAS and the rest 30 (21%) were infected

with M. tuberculosis lineage 3 sub lineages not yet defined in the SIT/VIT2 spoligotype data-

base [8] (Fig 1 & S1 Table). The most frequent SITs were SIT26 30% (43/141) followed by

SIT21 16% (23/141), SIT25 11% (16/141), while the rest were� 7%, those considered as

orphans were 12% (17/141) (S1 Table and S2 Table).

Demographic and clinical characteristics of the study participants

For the analysis we included 141 M. tuberculosis lineage 3 isolates, each corresponding to a

tuberculosis patient.

The description of the patients demographic and clinical characteristics has been detailed

in Table 1; the proportions of the patients’ characteristics for the different variables among the

sub-lineages of M. tuberculosis lineages 3 (Table 1) were generally similar irrespective of the

MTB sub-lineage. From now onwards we have excluded the CAS strains in the analysis due to

a small number (2 strains).

Risk factors associated with MTB lineage 3 infections

In all the analyses, CAS1-Dehli was used as the reference since is the most prevalent, and we

set out to understand why it is dominant in comparison with other sub lineages circulating in

the study area. Univariate analysis showed that disease severity (extent of lung involvement:

minimal versus advanced disease) was not associated with any of the sub-lineages of M. tuber-
culosis lineage 3 (P� 0.05).

Risk factors such as sex (OR = 2.79; CI 95% = 1.408–5.564), smear status (OR = 4.35; CI

95% = 1.849–10.231), cavitary TB (OR = 11.667; CI 95% = 4.863–27.991), and smoking status

(OR = 2.865; CI 95% = 1.331–6.16), were significantly associated with advanced severe disease.

Mycobacterium tuberculosis lineage 3 in Kampala-Uganda
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Presence of BCG scar was protective (OR = 0.326; CI 95% = 0.153–0.691). Others variables, for

instance age, HIV status, alcohol drinking, tribe, coughing, fever, night sweats, BMI (under

weight =<18.5 kg/m2, normal weight =�18.5–25 kg/m2), lymphadenitis, employment status,

income and history of TB in the past are not associated with (P� 0.05) severe TB disease

(Table 2).

Multivariable analysis for association between severe lung disease and sub

lineages of M. tuberculosis lineage 3

In the multivariate analysis after adjusting for sex, smear status, HIV status, BCG scar, smok-

ing status and lymphadenitis, the data suggests that severity of TB disease is not dependent on

the M. tuberculosis sub lineages (P� 0.05).

Risk factors independently associated with disease severity included having a positive

smear on sputum analysis (OR = 9.384; CI 95% = 2.603–33.835): HIV patients (OR = 0.316; CI

95% = 0.114–0.876), patients with lymphadenitis (OR = 0. 171; CI 95% = 0.034–0.856) and

those with a BCG scar (OR = 0.295; CI 95% = 0.102–0.854) are less likely to have a severe TB

disease (Table 3).

Discussion

M. tuberculosis infections are of global concern, therefore understanding the drivers of disease

progress and spread is paramount. Host and environment factors have been suggested as key

players among others that can bolster TB spread, there is also overwhelming evidence that

Fig 1. Sub-lineages of M. tuberculosis lineage 3. The sub-lineages were identified by spoligotyping as described in Materials and Methods, N = 141.

https://doi.org/10.1371/journal.pone.0221644.g001
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Table 1. Participant characteristics infected with different M. tuberculosis sub lineages.

Variable CAS-Dehli n (%) CAS-Kili n (%) CAS-2 n (%) Others n (%)

Sex Male 43 (56) 12 (55) 5 (50) 10 (33)

Female 34 (44) 10 (45) 5 (50) 20 (67)

Age� < 30 years 54 (70) 12(55) 7(70) 20(67)

� 30 years 23 (30) 10(45) 3(30) 10(33)

Smear status# Positive 59 (76) 15 (68) 7 (70) 17 (57)

Negative 15 (19) 7 (32) 3 (30) 11(37)

ND 3 (5) 0 0 2 (6)

Extent of lung involvement Minimal disease 40 (51) 11(50) 3 (30) 15 (50)

Advanced disease 37 (49) 11 (50) 7 (70) 15 (50)

HIV status# Positive 29 (37) 10 (45) 5 (50) 15 (50)

Negative 41(53) 12 (55) 5 (50) 13 (43)

ND 7 (10) 0 0 2 (7)

BCG scar# Present 45 (58) 10 (45) 2 (20) 14 (47)

Absent 24 (31) 10 (45) 5 (50) 12 (40)

ND 8 (12) 2 (10) 3 (30) 4 (13)

Cavity# Present 34 (44) 12 (55) 7 (70) 15 (50)

Absent 34 (44) 5 (22) 2 (20) 11(37)

ND 9 (12) 5 (22) 1 (10) 4 (13)

Smoking status# Never smoked 46 (60) 15(68) 8(80) 21 (70)

Ever smoked 27 (35) 6 (27) 2(20) 7(23)

ND 4 (5) 1(5) 0 2(7)

Drinking alcohol# Yes 20 (26) 6(27) 2(20) 5(17)

No 55 (70) 15(68) 8(80) 23(77)

ND 2 (4) 1(5) 0 2(6)

Tribe# Ganda 54 (69) 17(77) 6 (60) 20(67)

Non-Ganda 21(27) 4(23) 4(40) 8(27)

ND 2 (4) 0 0 2(6)

Coughing# Cough blood 12 (15) 2(9) 1(10) 3(10)

No blood 63 (81) 20 (91) 9(90) 27(90)

ND 2 (4) 0 0 0

Fever Yes 48 (62) 16(73) 5(50) 19(63)

No 29 (37) 6(27) 5(50) 11(37)

Night sweat# Yes 51(65) 18(82) 3(30) 17(57)

No 26(33) 4(18) 7(70) 12(40)

ND 0(0) 0 0 1(3)

Lymphadenitis# Yes 5 (6) 4 (18) 0 3 (10)

No 69 (89) 18 (82) 10 (100) 26 (87)

ND 3 (5) 0 0 1(3)

BMI� Under weight 39 (51) 10(45) 5(50) 14(47)

Normal weight 38 (49) 12(55) 5(50) 16(53)

Employed# Yes 8 (10) 3(14) 2(20) 4(13)

No 12 (15) 3(14) 2(20) 6(20)

ND 57 (74) 16(72) 6(60) 20(67)

Income# Low 18 (23) 6(27) 3(30) 6(20)

High 19 (24) 7(32) 3(30) 7(23)

ND 40(53) 9(40) 4(40) 17(57)

(Continued)
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Table 1. (Continued)

Variable CAS-Dehli n (%) CAS-Kili n (%) CAS-2 n (%) Others n (%)

TB in the past# Yes 1 (1) 1(5) 1 (10) 1 (3)

No 69 (88) 21(95) 9(90) 26(87)

ND 7 (11) 0 0 3(10)

# ND refers to not determined

�For age, mean = 27.43 years and median = 28 years: BMI mean = 18.86 kg/m2 and median = 18.61 kg/m2

https://doi.org/10.1371/journal.pone.0221644.t001

Table 2. Univariate analysis for odds of developing severe disease based on extent of disease on chest x-ray.

Proportion of patients with severe disease n (%) �uOR �uCI (95%)

MTB lineage 3 sub strains 38 (49) CAS-Dehli 1 1

11 (50) CAS-Kili 1.05 0.41–2.71

7 (70) Cas 2.46 0.59–10.20

15 (50) Unknown lineage 3 strains 1.05 0.45–2.44

Age1 49 (53) � 30 years 1 1

21 (47) >30 years 0.754 0.37–1.53

Sex2 26 (38) Female 1 1

44 (62) Male 2.80 1.41–5.56

Smear status 3 9 (25) Negative 1 1

58 (59) Positive 4.35 1.85–10.23

HIV status4 40 (56) Negative 1 1

27 (46) Positive 0.65 0.33–1.31

BCG scar 5 34 (67) Absent 1 1

28 (39) Present 0.33 0.15–0.69

Cavity 6 10 (19) Absent 1 1

50 (74) Present 11.67 4.86–27.99

Smoking status7 37(41) Never smoked 1 1

24 (67) Ever smoked 2.86 1.33–6.17

Drinking alcohol8 49(49) No 1 1

17 (52) Yes 1.13 0.51–2.48

Tribe9 20 (53) Non-ganda 1 1

48 (49) Ganda 0.88 0.42–1.87

Coughing10 60 (50) No blood 1 1

9 (50) Cough blood 0.98 0.36–2.65

Fever11 25(49) No 1 1

45 (51) Yes 1.11 0.56–2.22

Night sweat12 22(45) No 1 1

47 (53) Yes 1.43 0.71–2.88

Lymphadenitis13 65 (53) No 1 1

3(25) Yes 0.30 0.08–1.15

BMI14 39(57) Under weight 1 1

31(43) Normal weight 0.58 0.29–1.13

Employed15 16(70) No 1 1

12 (70) Yes 1.05 0.27–4.133

Income16 17(51) High 1 1

17 (47) Low 0.84 0.33–2.17

(Continued)
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Table 2. (Continued)

Proportion of patients with severe disease n (%) �uOR �uCI (95%)

TB in the past17 63(50) No 1 1

1 (25) Yes 0.33 0.03–3.24

1 = no data missed

2 = no data missed

3 = 5 missed data for smear status

4 = 9 missed data for HIV status

5 = 17 missed data for BCG

6 = 20 missed data for cavity

7 = 7 missed data for smoking status

8 = 5 missed data for drinking alcohol

9 = 4 missed data for tribe

10 = 2 missed data for coughing with blood

11 = no data missed

12 = 1 missed data for night sweat

13 = 4 missed data for lymphadenitis

14 = no data missed

15 = 99 missed data for employment

16 = 70 missed data for income and

17 = 10 missed data for TB in the past

� u- Unadjusted OR and CI at 95% were obtained by logistic regression

https://doi.org/10.1371/journal.pone.0221644.t002

Table 3. Multivariable analysis for odds of developing severe disease.

�aOR �aCI (95%)

MTB lineage 3 sub strains CAS-Dehli 1 1

CAS-Kili 1.11 0.31–3.97

CAS 5.88 0.36–95.76

Unknown lineage 3 strains 1.69 0.49–5.85

Sex1 Female 1 1

Male 2.233 0.82–6.09

Smear status2 Negative 1 1

Positive 9.38 2.60–33.84

HIV status3 Negative 1 1

Positive 0.32 0.11–0.88

BCG scar4 Absent 1 1

Present 0.30 0.10–0.85

Smoking status5 Never smoked 1 1

Ever smoked 2.45 0.84–7.20

Lymphadenitis6 No 1 1

Yes 0.17 0.03–0.86

1 = no data missed

2 = 5 missed data for smear status

3 = 9 missed data for HIV status

4 = 17 missed data for BCG

5 = 7 missed data for smoking and

6 = 4 missed data lymphadenitis

� a- adjusted OR and CI at 95% obtained by logistic regression

https://doi.org/10.1371/journal.pone.0221644.t003
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bacterial diversity of M. tuberculosis may impact the dynamics of TB outcomes among those

patients infected with the bacteria [16]. In the current study, we sought to determine whether

sub-lineage variations within M. tuberculosis lineage 3 could influence disease severity out-

come. Firstly, we characterized the sub-lineages within the main M. tuberculosis lineage 3 cir-

culating in central Kampala. Secondly, we investigated for the clinical and epidemiological risk

factors associated with sub-lineage infections. Such data is important in designing appropriate

strategies for the management of TB.

In our study, among sub-lineages of M. tuberculosis lineage 3, the most successful sub-line-

age was CAS 1-Dehli that causes at least 50% of the pulmonary TB, followed by CAS 1-Kili and

CAS. This current data is contrary to earlier findings by Asiimwe et al, [25] in central Uganda,

who showed that CAS 1-Kili was the most prevalent sub-strain, yet Bazira et al, [26] in western

Uganda observed only CAS-Dehli sub-strains. In another study that exclusively considered

extra pulmonary TB showed CAS 1-Dehli as the most prevalent, the previous 2 studies com-

pares well with the current data [27]. Despite these incongruences, we argue our data is more

robust since spoligotyping was performed on isolates that were first confirmed as M. tuberculo-
sis lineage 3 by SNP [7] typing. The approach of defining first the main MTB lineage by SNP

typing reduces on the errors of misclassifying intra lineage sub strains by spoligotyping since

the direct repeat loci is prone to convergent evolution [6]. The other studies described exclu-

sively used spoligotyping technique alone to define the sub lineages, and this could result in

misclassification of sub lineages due to convergent evolution, thereby impacting the data.

Moreover, in addition to MTB-L3 sub lineages, they considered other MTB lineages in the

same study, which can disproportionately misrepresent the status quo due to overrepresenta-

tion of other sub lineages in the study area [11, 28]. Our current data demonstrated quite a

number of isolates, 21% (30/141) that could not be classified in any of the known sub lineage.

This finding leads one to consider that these might be unknown strains. Nevertheless, we can-

not rule out the possibility of mixed (having more than one sub lineage) infections in patients

as earlier reported by Dickman et al, [29] who studied isolates from the same study area. Such

a scenario produces muddled finger prints which cannot be ascribed to any of the known

shared international type (SIT) spoligotypes in the SITVIT2 database. Efforts are underway to

fully characterize these supposedly “unknown strains” and have them undoubtedly described

to the M. tuberculosis research community.

From our current data, to assess why CAS 1-Dehli is the most successful sub lineage in

causing disease, we hypothesized that sub-lineages within M. tuberculosis lineage 3 differ in

their ability of causing advanced severe disease; we defined severe disease as extent of lung

engrossment with TB specific lesions and cavitation (minimal or advanced disease) on chest x-

ray. Our data shows that the M. tuberculosis sub-lineages circulating in central Uganda equally

cause disease in the infected patients (P� 0.05). The CAS-sub-lineage suggests an association

with severe disease (aOR = 5.9; aCI = 0.36–95.76), but then again due to the small sample size

the wide confidence interval does not support the finding, this calls for another bigger study to

substantiate on this observation. Contrary to our findings, M. tuberculosis lineage 3 sub strain

infections have been associated with different phenotypes for instance, reduced expression of

TNFα and IFNγ, reduced growth rate in macrophages [18, 30], causing cavitary TB, pan sensi-

tivity to anti-TB drugs [31] and causing severe disease [18]. Noticeably, TB household popula-

tion studies can be confounded by a number of factors that could have affected our downward

data analysis [32]. Nonetheless, we think our analysis was robust enough since known risk

factors, such as patients with a positive smear (OR = 9. 384; CI 95% = 2.603–33.835) were asso-

ciated with severe disease, HIV reduces (OR = 0.316; CI 95% = 0.114–0.876) the risk of devel-

oping severe disease [33, 34]. Additionally, the data showed that patients with BCG scar

(OR = 0.295; CI 95% = 0.102–0.854) and swollen lymph nodes (lymphadenitis) were less likely
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to develop advanced severe disease. Presence of scar on the shoulders suggests that the patients

were vaccinated with a BCG vaccine. The efficacy of the BCG vaccine has been found to be var-

iable in conferring protection against M. tuberculosis infection [35, 36]. For instance BCG vac-

cination is not protective to M. tuberculosis Beijing (MTB lineage 2) strains [12, 37], but is

protective of lineage 4 (H37RV, Harlem) and M. canetti strains [38]. This data therefore sug-

gests that BCG vaccination might be protective against the development of advance severe dis-

ease in M. tuberculosis lineage 3 sub strains infections. Whether this is true between lineages,

another study can elucidate on this observation. In addition, the data suggests that patients

with lymphadenitis (OR = 0.171; CI 95% = 0.034–0.856) are less likely to develop severe dis-

ease. This could be for two reasons; perhaps patients had other infections that caused the

lymphadenitis and not M. tuberculosis lineage 3 infections per say. Secondly, trafficking of M.

tuberculosis from the primary foci (most often the lung depending on the route of infection) to

the regional lymph nodes causes inflammation and subsequent localization of the bacillus in

the lymphatic tissues a scenario referred to as extra pulmonary tuberculosis. Studies have dem-

onstrated that M. tuberculosis sub lineages preferentially targets pulmonary (lungs) or extra

pulmonary tissues (lymph nodes, bones, intestines, meninges among others) [39, 40]. For

instance, the Euro American lineage is associated with pulmonary tuberculosis [41], Beijing

strains are associated with severe lung pathology [15], the East Africa India strains cause a less

severe pulmonary disease [42] and CAS strains are more prevalent in extra pulmonary tuber-

culosis infections [27, 43].

Limitations

Because MTB-L3 is not common in Uganda, our analyses of the sub lineages were limited by

sample size, resulting in large confidence intervals and a potential loss of statistical power. Sec-

ondly, there was a selection bias (index patient) in recruitment of the patients which could

inherently skew the findings. Thirdly, the study did not explore the possibilities of other

comorbid diseases among the TB patients which could impact our results. Our approach could

have been inferior to other genotyping techniques such MIRU-VNTR, whole genome

sequencing in resolving sub lineages. However, the strength of this study is that we used a

robust SNP typing assay to delineate MTB- main lineages 3, this improves on the accuracy of

defining the sub lineages.

Conclusions

In Kampala, Uganda, there are sub lineages of M. tuberculosis lineage 3, of which CAS-Dehli is

the most predominant. None of these is associated with increased risk of causing severe dis-

ease. Patients infected with M. tuberculosis lineage 3 strains who have lymphadenitis or have a

BCG scar are less likely to develop severe disease; patients with a positive smear have a higher

risk of developing severe disease”
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