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Electroencephalography (EEG)-based emotion computing has become one of the

research hotspots of human-computer interaction (HCI). However, it is difficult to

effectively learn the interactions between brain regions in emotional states by using

traditional convolutional neural networks because there is information transmission

between neurons, which constitutes the brain network structure. In this paper, we

proposed a novel model combining graph convolutional network and convolutional neural

network, namely MDGCN-SRCNN, aiming to fully extract features of channel connectivity

in different receptive fields and deep layer abstract features to distinguish different

emotions. Particularly, we add style-based recalibration module to CNN to extract deep

layer features, which can better select features that are highly related to emotion.

We conducted two individual experiments on SEED data set and SEED-IV data set,

respectively, and the experiments proved the effectiveness of MDGCN-SRCNN model.

The recognition accuracy on SEED and SEED-IV is 95.08 and 85.52%, respectively. Our

model has better performance than other state-of-art methods. In addition, by visualizing

the distribution of different layers features, we prove that the combination of shallow layer

and deep layer features can effectively improve the recognition performance. Finally, we

verified the important brain regions and the connection relationships between channels

for emotion generation by analyzing the connection weights between channels after

model learning.

Keywords: electroencephalography (EEG), emotion recognition, graph convolutional neural networks (GCNN),

convolutional neural networks (CNN), style-based recalibration module (SRM)

INTRODUCTION

Human emotion is a state that reflects the complex mental activities of human beings. In recent
years, new modes of human-computer interaction, such as voice, gesture, and force feedback,
have sprung up. Although significant progress has been made in the field of human-computer
interaction, it still lacks one of the indispensable functions of human-computer interaction,
emotional interaction (Sebe et al., 2005). However, the prerequisite for realizing human-computer
emotional interaction is to recognize human emotional state in real time. Human emotions
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come in many forms, which can be recognized by human facial
expressions (Harit et al., 2018), body movements (Ajili et al.,
2019), and physiological signals (Goshvarpour and Goshvarpour,
2019; Valderas et al., 2019). But humans can control their facial
expressions, body movements to hide or disguise their emotions,
and physiological signals such as electroencephalogram,
electrocardiogram, and electromyography have the advantage of
being difficult to hide or disguise. With the rapid development
of non-invasive, portable, and inexpensive EEG acquisition
equipment, EEG-based emotion recognition has attracted the
attention of researchers.

EEG signals are collected through electrodes distributed
in various brain regions on the cerebral cortex, which has
the advantages of non-invasiveness, convenience, and fast. In
addition, EEG have the advantages of high time resolution,
and are considered to be one of the most reliable signals.
However, EEG also has some shortcomings, such as low spatial
resolution and low signal-to-noise ratio. Moreover, the EEG is
non-stationary, and there are great differences among subjects.
Studies have shown that some cortical and subcortical brain
systems may play a key role in the evaluation or reaction
phase of emotion generation (Clore and Ortony, 2008; Kober
et al., 2008). However, it is difficult to use EEG to model brain
activity and interpret the activity state of brain regions. Therefore,
high-precision recognition of emotions based on EEG is still
a challenge.

In these decades of development, researchers have proposed
many machine learning and signal processing methods for
EEG emotion recognition. Traditional EEG emotion recognition
methods usually include two aspects: EEG feature extraction and
emotion classification used to distinguish emotion categories.
The EEG features used for emotion recognition are mainly
divided into three parts: time-domain features, frequency-
domain features, and time-frequency features. Time domain
features mainly include statistics (Jenke et al., 2017), Hjorth
features (Hjorth, 1970), non-stationary index (NSI) (Kroupi
et al., 2011), fractal dimension (Sourina and Liu, 2011; Liu and
Sourina, 2013), sample entropy (Jie et al., 2014), and higher order
crossings (HOC) (Petrantonakis and Hadjileontiadis, 2011).
These features mainly describe the temporal characteristics and
complexity of EEG signals. Frequency domain feature refers
to the use of Fourier Transform (TF) and other information
analysis methods to transform EEG signals from time domain to
frequency domain, and then extract emotion related information
from frequency domain as features. At present, one of the
most commonly used frequency domain feature extraction
methods is to divide EEG signals into five bands: Delta
(1–4Hz), Theta (4–8Hz), Alpha (8–12Hz), Beta (12–30Hz),
Gamma (30–64Hz). Emotion Feature Extraction in frequency
domain mainly includes power spectral density (PSD) (Alsolamy
and Fattouh, 2016), differential entropy (DE) (Duan et al.,
2013), differential asymmetry (DASM) (Liu and Sourina, 2013),
rational asymmetry (RASM) (Lin et al., 2010), and differential
causality (DCAU) (Zheng and Lu, 2015). Time frequency feature
refers to the use of time-frequency analysis methods, such
as short-time Fourier transform (STFT) (Lin et al., 2010),
wavelet transform (WT) (Jatupaiboon et al., 2013) and Hilbert

Huang transform (HHT) (Hadjidimitriou and Hadjileontiadis,
2012). Due to the typical non-stationary signal of EEG, the
traditional frequency domain analysis method such as Fourier
transform is not suitable for analyzing the signal whose frequency
changes with time, while the time-frequency analysis method
provides the joint distribution information of time domain and
frequency domain.

The classifiers based on EEG emotion recognition are mainly
divided into traditional machine learning method and deep
network method. Among the traditional machine learning
methods, support vector machine (SVM) (Koelstra et al., 2010;
Hatamikia et al., 2014), k-nearest neighbor (KNN) (Mehmood
and Lee, 2015), linear discriminant analysis (LDA) (Zong et al.,
2016) and other methods are used for emotion classification
based on EEG. Among them, SVM has better performance
and is usually used as baseline classifier. However, due to
the complexity of EEG-based emotion features, the current
method is to extract the artificial features, and then use machine
learning method to classify the extracted features, which leads
to the traditional machine learning method cannot get better
classification performance. Therefore, researchers turn their
attention to deep learning methods. Zhang X. et al. (2019)
summarized the work of using deep learning technology to
study brain signals in recent years. In EEG-based emotion
recognition based on neural network, the input is usually artificial
features, and then the neural network is used to learn deeper
features to improve the performance of emotion recognition.
Zheng et al. (2014) used deep belief networks (DBNs) to
learn and classify the frequency bands and channels of EEG-
based emotion, which is a great improvement compared to
SVM. In recent years, many deep networks have emerged
in this field to extract spatiotemporal features of EEG-based
emotions. Jia et al. (2020) proposed a spatial-spectral-temporal
based Attention 3D Dense Network (SST-EmotionNet) for
EEG emotion recognition. Li Y. et al. (2018) and Li et al.
(2020) proposed BiDANN and BiHDM networks for EEG
emotion recognition, considering the asymmetry of emotion
response between left and right hemispheres of human brain.
Li et al. (2021) proposed a Transferable Attention Neural
Network (TANN), which considers local and global attention
mechanism information for emotion recognition. In addition,
some researchers considered the spatial information of EEG
features, and arrange and distribute the features of each channel
through the physical location before inputting them into the
neural network. Li J. et al. (2018) arranged the DE features of
different leads into a two-dimensisonal feature matrix according
to their physical locations before entering the network. Bao et al.
(2021) mapped the DE feature to a two-dimensional feature
matrix through an interpolation algorithm according to the
physical location.

Although researchers currently use neural network to consider
the temporal and spatial information, the EEG signals of
each channel are distributed in different regions of the brain,
which can be regarded as a non-Euclidean data. However,
convolution neural network processing EEG will ignore the
spatial distribution information. In order to solve this problem,
graph convolution neural network (GCNN) (Defferrard et al.,
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2016) is introduced to process non-Euclidean data. Zhao
et al. (2022) proposed a new dynamic graph convolutional
network (dGCN) to learn the potentially important topological
information. Song et al. (2020) used dynamic graph convolution
network (DGCNN) for the first time in the EEG-based emotion
recognition task. The network constructed graph data more in
line with the brain activity state by learning the connections
between different channels, and achieved better performance.
Zhong et al. (2020) proposed a regularized graph neural network
(RGNN), which considers the global and local relationships
of different EEG channels. Zhang T. et al. (2019) proposed
GCB-Net, which combines GCN and CNN to extract deep-level
features and introduces a generalized learning system (BLS) to
further improve performance.

However, the brain activity in emotional state is more
complex, and multiple brain regions participate in interaction.
The traditional convolutional neural network cannot effectively
learn the interaction between brain regions.

However, the networks proposed in the above studies
all use one layer of GCN, and (Kipf and Welling, 2017)
concluded that using 2-3 layers is the best. In addition, the
receptive field of single-layer GCN is limited and cannot extract
spatial information well. The brain activity in emotional state
is more complex, and multiple brain regions participate in
interaction. Therefore, the characteristics of single network
learning are relatively single, and cannot well reflect the complex
emotional state. For this reason, in this paper, we proposed
a multi-layer dynamic graph convolutional network-style-
based recalibration convolutional neural network (MDGCN-
SRCNN) to extract shallow layer and deep layer features. The
shallow layer features include the features of different levels
of GCN learning, which contain different levels of spatial
information. Deep layer features are mainly learned by SRCNN,
because CNN has a strong ability to learn abstract features.
In addition, by adding the style-based recalibration module,
when CNN extracts features, it emphasizes the information
related to emotion and ignores other information, which greatly
enhances the representation ability of CNN. The shallow layer
and deep layer features are connected to form a multi-level
rich feature, and finally the fully connected layer search is
used to classify the features that are distinguishable from
various emotions.

The main contributions of this paper are as follows:

1) MDGCN-SRCNN framework composed of multi-layer GCN
and multi-layer style-based recalibration CNN is used to learn
features at different levels. In the shallow layer network, GCN
learns different levels of spatial features. In the deep layer
network, CNN learns abstract features, using a fully connected
layer to fuse the shallow layer spatial features with deep layer
abstract features and search for highly distinguishable features
for emotion classification.

2) SEED and SEED-IV data sets are used to verify the
performance of the emotion recognition frameworkMDGCN-
SRCNN proposed in this paper. Compared with the existing
models, the framework proposed in this paper obtains the best
results, which proves that the network proposed in this paper
has a strong classification ability in EEG emotion recognition.

METHODS

In this section, we introduce in detail the framework MDGCN-
SRCNN proposed in this paper.

Model Framework
As shown in Figure 1, we propose the MDGCN-SRCNN
framework for EEG-based emotion recognition tasks. The
MDGCN-SRCNN model consists of four blocks: graph
construction block, graph convolutional block, SRM-based
convolutional block and classification block. We will give the
specific model architecture below.

Graph Construction Block

We considered that EEG is non-Euclidean data. EEG data is
collected by many electrodes, which are distributed in different
parts of the brain. The construction of a graph requires three
parts: nodes, features, and edge sets. For EEG signals, the nodes
of the graph are the EEG signal channels. Different acquisition
devices have different channel numbers. Currently, 16 channels,
32 channels, 64 channels, and 128 channels are commonly used.

The feature is the data collected by each channel, which can be
the original collected data or manually extracted features. Most
of the current researches use artificial features for EEG-based
emotion recognition. Therefore, in this paper, the DE features of
five bands are extracted as the features of the graph. Short Time
Fourier Transform (STFT) is used to transform each segment of
data. The formula of DE features is as follows:

h(X) = −
∫ ∞

∞

1√
2πσ 2

e
− (x−µ)2

2σ2 log

(

1√
2πσ 2

e
− (x−µ)2

2σ2

)

dx

= 1

2
log

(

2πeσ 2
)

(1)

where X ∼ N(µ, σ 2) is the input raw signal, x is a variable, and e
and π are constants.

The edge set of the graph describes the connected relationship
between nodes. Currently, Pearson correlation coefficient
(PCC) (Faskowitz et al., 2020), coherence value (Wagh and
Varatharajah, 2020), phase locked value (PLV) (Wang et al.,
2019), and physical distance (Song et al., 2020) are mainly used
to describe the connection between channels. In this paper, PCC
is used as the weighted adjacency matrix of each channel, and its
calculation formula is as follows:

A(i, j) = abs(PCC(xi, xj)) = abs(
cov(xi, xj)

σxiσxj
) (2)

where i, j = 1, 2, ......, n, n are the number of channels of EEG
signals. xi/j represents the EEG signal of the i/j-th channel. cov(·)
refers to covariance.

Graph Convolutional Block

In the graph convolutional block, we use graph convolution
network as a shallow layer network to learn the spatial
information of EEG signals.
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FIGURE 1 | The overall architecture of the MDGCN-SRCNN model consists of four blocks: graph construction block, graph convolutional block, SRM-based

convolutional block, and classification block. The output of the model is a predicted label with probability.

The graph convolutional neural network is the network using
convolution operations on the graph. Given a graph G = (V , E),
where V refers to the vertex set with |V| = n nodes, and E is a
set of edges between nodes. Data on vertex V can be represented
by a set of feature matrix X ∈ R

n×f , where n represents the
number of nodes and f represents the feature dimension. The
edge set E can be represented by a set of weighted adjacency
matrices A ∈ R

n×n describing the connections between nodes.
Kipf andWelling (2017) proposed the propagation rules of Graph
Convolutional Networks (GCN):

H(l+1) = σ (D̃− 1
2 ÃD̃− 1

2H(l)W(l)) (3)

where Ã = A + I is the adjacency matrix of the undirected
graph G with additional self-connections, and I is the identity
matrix. D̃ is the diagonal matrix of Ã, that is, D̃ii =

∑

j Ãij,

W(l) is the training parameter matrix of the l-th layer. H(l)

is the transformation matrix of the l-th layer. σ refers to the
activation function.

Next, GCN is analyzed by spectral convolution. The Laplacian
operator matrix of the graph G is defined as L = D −
A, the normalized Laplacian operator can be expressed as

L̂ = I − D− 1
2AD− 1

2 , and the characteristic decomposition
of L̂ is L̂ = UλUτ , where U is the orthonormal eigenvector
matrix, and 3 = diag(λ1, ..., λn) is the diagonal matrix of the
corresponding characteristic.

For the input signal X, the graph Fourier Transform is:

X̂ = UTX (4)

The inverse Fourier transform is as follows:

X = UX̂ (5)

The generalized convolution on the graph can be defined as the
product of signal X and filter gθ in Fourier domain:

gθ ∗ X = U((UTgθ )⊙ (UTX)) = Ugθ (3)UTX (6)

where ⊙ refers to the element-wise multiplication, and gθ (3) =
diag(gθ 1

, ..., gθ n)represents the diagonal matrix withnspectral
filtering coefficients.

If formula 6 is calculated directly, the amount of calculation
is very large. For a large graph, it costs a lot to calculate all the
features of Laplacian matrix, and it needsO(n2)times to multiply
with Fourier basisU. Therefore, Defferrard et al. (2016) proposed
that the diagonal matrix gθ (3) of spectral filtering coefficients
can be approximated to Kth by the truncated expansion of
Chebyshev polynomials:

gθ (3) ≈
K

∑

k=0

θkTk(3̃) (7)
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FIGURE 2 | SRM module. This module is mainly composed of two parts: style pooling and style integration. AvgPool refers to global average pooling, StdPool refers

to global standard deviation pooling; CFC refers to the channel fully connected layer; BN refers to batch standardization.

where, 3̃ = 2
λmax

3 − I, λmax refer to the largest eigenvalues of L.
θ is a vector of Chebyshev coefficients. Chebyshev polynomials
Tk(·) can be recursively computed as Tk(x) = 2xTk−1(x) −
Tk−2(x), whereT0(x) = 1 and T1(x) = x. Then the graph filtering
operation can be written as:

gθ ∗ X ≈
K

∑

k=0

θkTk(L̃)X (8)

where L̃ = 2
λmax

L̃− I is the normalized Laplacian. Then equation
8 is the Laplacian polynomial. In this case, the computational
complexity is reduced toO(|E|).

The GCN proposed by Thomas et al., based on Equation
8, sets K = 1, λmax = 2, θ0 = −θ1, then Equation 8
becomes Equation 3.

The EEG signal is converted into graph structure data by
graph construction block and input into graph convolution
network. Assuming that the initial data of the input graph
rolled into the network is H(0), the output of the l-th graph
convolutional layer is shown in formula 3.

SRM-Based Convolutional Block

In the SRM-based convolutional block, we use a convolutional
neural network combined with a style-based recalibration
module as a deep layer network to learn abstract features
related to emotions. The style-based recalibration module can
be regarded as an attention module. But different from the
traditional attention mechanism, the style-based recalibration
module dynamically learns the recalibration weight of each
channel based on the importance of the task style, and
then merges these styles into the feature map, which can
effectively enhance the representation ability of convolutional
neural network.

Given an input X ∈ R
N×C×H×W , SMR generates a

channel-based recalibration weight G ∈ R
N×C through the

style of X, whereNrefers to the number of samples in the
minimum batch training, C represents the number of channels,
H and W represent the spatial dimensions. This module is
mainly composed of style pooling and style integration, as
shown in Figure 2.

In the style pooling module, using the mean and standard
deviation of the channel as style features, the extracted style

features are T ∈ R
N×C×2. Compared with other types

of style features, using the mean and standard deviation of
the channel can better describe the overall style information
of each sample and channel (Lee et al., 2019). In the
style integration module, the style features are converted
into channel-related style weights through the channel fully
connected layer, batch standard layer, and sigmoid activation
function, which can simulate the importance of styles related
to a single channel, thereby emphasizing, or suppressing
them accordingly.

The output H(l) of the convolutional network from the l-
th graph is globally superposed and pooled as the input of
the convolutional neural network, and then SRM is used in
the middle of the convolutional layer to extract information
related to the task style. Then each convolutional layer can be
written as:

Ck = SRM(conv(Ck−1, h)) (9)

where h = 1, 2, 3 represents the size of convolution kernel
dimension, which is related to the input data type. In this paper,
h = 2, C0 = Pool(H(l)). conv(·, h) refers to h-dimensional
convolution operation. k is the number of convolution layers.
SRM(·) refers to SRM operation.

Classification Block

In the classification block, the learned features are input to the
multi-layer fully connected layer for feature aggregation, and
then the softmax layer is used for classification. After the shallow
layer features and deep layer features are extracted, the multi-
level features are spliced together, then the connected features can
be written as:

F = [Pool(H(1)), Pool(H(2)), ..., Pool(H(l)), Pool(Ck)] (10)

where Pool(·) refers to the global pooling operation, in which the
global sum pooling operation is used in the graph convolutional
network. Compared with the maximum pooling and the average
pooling, the sum pooling shows a stronger expressive ability
(Xu et al., 2019). In convolutional neural networks, maximum
pooling is used.
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The classification prediction of the input EEG signal is:

ŷ = softmax(FC(F)) (11)

where FC(·) refers to the fully connected layer operation, and
ŷ ∈ R

C is the predicted label of class C.
We use DGCNN to learn the adjacency matrix of the graph by

optimizing the loss function. Then use the optimizer to optimize
the cross entropy loss:

L = cross_entropy(y, ŷ)+ α‖2‖2 (12)

where y refers to the true label of the sample. θ is the matrix
of all the parameters learned in the MDGCN-SRCNN model,
α is the regularization coefficient, cross_entropy(·) refers to the
calculation of cross entropy, and ‖·‖2 refers to the calculation of
the second norm.

We use the Adam optimizer to learn the adjacency matrixA:

A∗ = A− lr
m̂∗

√
v̂∗ + ε

(13)

m̂∗ = m∗

1− β1
= β1m+ (1− β1)∇θθ

1− β1
(14)

v̂∗ = v∗

1− β2
= β2v+ (1− β2)(∇θθ)

2

1− β2
(15)

where A∗ is the adjacency matrix after learning and A is
initialization value. lr is learning rate. m = 0, v = 0, β1 = 0.9,
β2 = 0.999, ε = 10−8. θ is all parameters of the network.

Algorithm 1 summarizes the specific implementation steps of
the MDGCN-SRCNNmodel.

Details of the MDGCN-SRCNN Model
We consider that the amount of EEG data is too small,
so the network cannot be designed too deep to prevent
overfitting. In addition, the graph convolutional network cannot
be superimposed too much, which will affect the performance,
generally within 5 layers. After a small amount of trial and error
experiments, we have observed that MDGCN-SRCNN achieves
a higher accuracy rate under the two-layer graph convolutional
layer and the two-layer convolutional layer plus the three-layer
fully connected layer. The detailed description of the MDGCN-
SRCNNmodel is shown in Table 1.

EXPERIMENTAL SETTINGS

In this section, we introduce the data sets andmodel settings used
in the experiment.

Datasets
We used two datasets SEED (Zheng and Lu, 2015) and SEED-IV
(Zheng et al., 2018) to evaluate our proposed model.

Algorithm 1: The training process of MDGCN-SRCNN.

Input : A labeled training data set{X,Y} = {xi, yi}Ni=1, the
maximum number of training epochs T; the
initialize adjacency
matrixA,regularization coefficientα.

Output: The learned adjacency matrixÂ, the model
parameter2 for MDGCN-SRCNN and the
predicted labelŷ.

Step 1 : Initialize the model parameters2 in
MDGCN-SRCNNmodel. Set iteration unit iter= 1;

Step 2 : whileiter < Tdo
Step 3 : fork = 1, ..., ldo
Step 4 : Calculate the k-th graph convolutional layerH(k)via

Eq. (1) and calculate the k-th sum
pooling layerPool(H(k));

Step 5 : fork = 1, ..., ldo
Step 6 : Calculate the k-th SMR-based convolution

layerCkvia Eq. (9);
Step 7 : Concatenate the different layers of featuresFvia

Eq. (10);
Step 8 : Calculate the prediction labelŷ via Eq. (11);
Step 9 : Update the adjacency matrixAand the model

parameters2 via optimizer according to the
cross-entropy loss.

Step 10: iter=iter+1;
Step 11: end while

SEED

The SEED data set contains EEG data of 15 subjects (7 males
and 8 females), which were collected through 62 channels
of ESI neuroscan system when they watched movie clips.
All participants watched 15 movie clips, which contained five
positive emotions, five neutral emotions, and five negative
emotions. Each movie clip lasted about 4min. There were three
periods of data collection, and each subject collected a total of
45 experiments. The original EEG data were de sampled and the
artifacts such as EOG and EMG were removed. The EEG data
of each channel is divided into 1s segments without overlapping,
and then the differential entropy characteristics of the five bands
(Delta, Theta, Alpha, Beta, and Gamma) of the linear dynamic
system smoothing (LDS) (Duan et al., 2013) are calculated for
the segmented data segments.

SEED-IV

The EEG data of 15 healthy subjects (7 males and 8 females)
were collected in the SEED-IV dataset using the same equipment
as the SEED dataset. The data set selected 72 video clips to
induce four different emotions (happy, neutral, sad, and fear).
Each video clip lasted about 2min. Each experiment conducted
24 experiments (6 experiments for each emotion). Each subject

participated in three experiments at different times, and a total of
72 experiments were collected. Each experiment was divided into

non-overlapping data segments of 4 s, each segment of data as a
sample. Same as SEED, the differential entropy characteristics of
five frequency bands are calculated.
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TABLE 1 | MDGCN-SRCNN architecture.

Block Layer Kernel size Stride Input Output Activation

Graph convolution Input (n, f )

GCN1 (n, f ) (n, 16) Leaky_ReLU

Global_add_pool (n, 16) 16

GCN2 (n, 16) (n, 64) Leaky_ReLU

Global_add_pool (n, 64) 64

SMR-based convolution Reshape 64 (8,8,1)

Conv1 (2,2) 2 (8,8,1) (7,7,16) Leaky_ReLU

SMR1 (7,7,16) (7,7,16) Sigmoid

Conv2 (2,2) 2 (7,7,16) (6,6,32) Leaky_ReLU

SMR1 (6,6,32) (6,6,32) Sigmoid

Max_pool (2,2) (6,6,32) (3,3,32)

Classifier Reshape (3,3,32) 3*3*32

FC1 16+64+3*3*32 256 Leaky_ReLU

FC2 256 128 Leaky_ReLU

FC3 128 C Softmax

TABLE 2 | Compare the accuracy rate (mean/std) with different existing methods on the SEED data set.

Model Delta band Theta band Alpha band Beta band Gamma band All bands

SVM (Zheng and Lu, 2015) 60.50/14.14 60.95/10.20 66.64/14.41 80.76/115.6 79.56/11.38 83.99/9.72

GSCCA (Zheng, 2017) 63.92/11.16 64.64/10.33 70.10/14.76 76.93/11.00 77.98/10.72 82.96/9.95

DBN (Zheng and Lu, 2015) 64.32/12.45 60.77/10.42 64.01/15.97 78.92/12.48 79.19/14.58 86.08/8.34

STRNN (Zhang et al., 2017) 80.90/12.27 83.35/9.15 82.69/12.99 83.41/10.16 69.61/15.65 89.50/7.63

GCNN (Song et al., 2020) 72.75/10.85 74.40/8.23 73.46/12.17 83.24/9.93 83.36/9.43 87.40/9.20

DGCNN (Song et al., 2020) 74.25/11.42 71.52/5.99 74.43/12.16 83.65/10.17 85.73/10.64 90.40/8.49

BiDANN (Li Y. et al., 2018) 76.97/10.95 75.56/7.88 81.03/11.74 89.65/9.59 88.64/9.46 92.38/7.04

GCB-net (Zhang T. et al., 2019) 80.38/10.04 76.09/7.54 81.36/11.44 88.05/9.84 88.45/9.67 92.30/7.40

GCB-net+BLS (Zhang T. et al., 2019) 79.98/8.93 76.51/9.56 81.97/11.05 89.06/8.69 89.10/9.55 94.24/6.70

RGNN (Zhong et al., 2020) 76.17/7.91 72.26/7.25 75.33/8.85 84.25/12.54 89.23/8.9 94.24/5.95

MDGCN-SRCNN 77.73/10.23 77.27/9.38 80.47/13.22 87.59/12.13 89.02/9.13 95.08/6.12

Bold represents the best result.

Model Settings
The parameter selection of the MDGCN-SRCNN model is based

on previous experience and a small number of experiments. The
Adam optimizer is used to optimize the loss function, and the

learning rate is selected in the range of [0.001, 0.01]. L2 regular
term coefficient α = 0.01. The fully connected layer in the
SMR-based convolution block uses a dropout rate of 0.7. In the
SEED data set, the batch size used is 16, and in SEED-IV, the batch
size used is 9.

RESULTS AND ANALYSIS

In this section, we will evaluate the effectiveness and
advancement of the propos ed model on the two data sets
described in section Experimental Settings.

Overall Performance
Performance on SEED

In the SEED data set, we refer to the settings of Zheng and Lu
(2015), Song et al. (2020), and Li Y. et al. (2018). Each subject

contains 15 trials per experiment. Therefore, the first 9 trials are
used as the training set and the remaining 6 trials are used as the
test set. The final accuracy and variance are the average results of
15 subjects.

The MDGCN-SRCNN model proposed in this paper is
compared with the latest methods such as Support Vector
Machine (SVM), Deep Belief Network (DBN), DGCNN, RGNN,
GCB-net, STRNN, and BiHDM. In addition, we evaluated the
performance of the related model on the 5 frequency bands
of the DE feature. The comparison results of these models are
shown in Table 2.

It can be seen in Table 2 that the model MDGCN-SRCNN
proposed in this paper has achieved the best performance in
the full-band features, with an average recognition accuracy rate
of 95.08% (standard deviation of 6.12%). The performance in
each frequency band is also very good. Compared with the
low-frequency band (Delta band, Theta band and Alpha band)
features, the high-frequency band (Beta band and Gamma band)
features are more related to human brain activity. Compared
with DGCNN and CGB-net, the accuracy rate of the whole
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frequency band is improved by 4.68 and 2.78%, respectively, and
the stability of our proposed model is better.

Performance on SEED-IV

On the SEED-IV data set, in order to better compare other
methods, we have the same settings as Zheng et al. (2018) and
Li et al. (2020). Each subject has a total of 24 trials in an
experiment. The first 16 trials are selected as the training set, and
the remaining 8 trials are used as the test set. The 8 trials in the
test set include 2 trials of happy, neutral, sad, and fear.

In order to evaluate the performance of the MDGCN-SRCNN
model proposed in this paper on the SEED-IV dataset, we
compared the baseline methods SVM, DBN, DGCNN, etc., and
also compared the current latest methods RGNN, BiHDM, SST-
EmotionNet, etc. We conduct experiments and comparisons on
theDE features of the whole frequency band (Delta, Theta, Alpha,
Beta, and Gamma). The results are shown in Table 3.

In Table 3, it can be seen that the MDGCN-SRCNN model
proposed in this paper achieves the most advanced performance
at present, with an average accuracy of 85.2%, which is 15.64
and 6.15% higher than the similar graph networks DGCNN and

TABLE 3 | The accuracy of the proposed method is compared with the existing

methods on the SEED-IV dataset.

Model ACC (%) STD (%)

SVM (Zhong et al., 2020) 56.61 20.05

DBN (Zhong et al., 2020) 66.77 7.38

GSCCA (Zheng, 2017) 69.08 16.66

DGCNN(Zhong et al., 2020) 69.88 16.29

BiDANN (Li Y. et al., 2018) 70.29 12.63

EmotionMeter (Zheng et al., 2018) 70.58 17.01

BiHDM (Li et al., 2020) 74.35 14.09

RGNN (Zhong et al., 2020) 79.37 10.54

SST-EmotionNet (Jia et al., 2020) 84.92 6.66

MDGCN-SRCNN 85.52 11.58

Bold represents the best result.

RGNN, respectively. It shows that MDGCN-SRCNN model has
a good advantage in emotion recognition task.

Visualization of Results
In order to intuitively distinguish between different emotions,
we draw the confusion matrix of SEED data set and SEED-
IV data set. As shown in Figure 3, the positive and neutral
emotions of SEED dataset are better distinguished than negative
emotions, and the neutral emotions will have certain negative
emotions. Fear emotions in the SEED-IV data set are relatively
difficult to distinguish. On the contrary, sad emotions are the
best to distinguish among the four types of emotions, followed
by neutral and happy emotions.

In addition, we performed a visual analysis of feature
distribution to evaluate the influence of the corresponding
modules in theMDGCN-SRCNNmodel.We use t-SNE to reduce
the dimensionality of the features output in different layers,
and draw a two-dimensional feature distribution map. Figure 4
shows the original artificial feature distribution of the SEED data
set and the SEED-IV data set and the output feature distribution
of different layers. It can be seen from Figure 4 that the output
features of a single layer will be confused with some samples to
varying degrees, resulting in a decrease in classification accuracy.
In addition, the features learned by two-layer GCN are more
representative than those learned by single-layer GCN.Moreover,
the deep features learned by SRCNN can better express each type
of emotion. Therefore, by combining the shallow GCN features
and the deep SRCNN features, the features that express various
emotions can be fully learned, and the robustness of the model
is improved.

Study of Brain Connection
We analyzed the connections between the brain regions in
human emotion. We standardize the initial adjacency matrix
and the adjacency matrix learned by network, and the range
of their values is [0, 1]. We select the top 10 strongest
connection weights in the SEED dataset and the SEED-IV
dataset, respectively, and draw their connection diagram, as
shown in Figure 5. Figures 5A,B show the initial connection

FIGURE 3 | Confusion matrix of different data sets. (A) is the confusion matrix of the SEED data set; (B) is the confusion matrix of the SEED-IV data set.
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FIGURE 4 | Visualization of t-SNE output from different layers. (A,F) are the original data; (B,G) are the feature distributions output by the first layer of GCN; (C,H) are

the feature distributions output by the second layer of GCN; (D,I) is the feature distribution of the output of the convolutional neural network; (E,J) are the feature

distributions after connecting the two layers of GCN and SRCNN. Different colors represent different emotions.

FIGURE 5 | The connection weights between the first 10 channels are selected from the initial adjacency matrix and the learned adjacency matrix. (A) is the initial

adjacency matrix of the SEED data set, (B) is the adjacency matrix learned from SEED dataset. (C) is the initial adjacency matrix of the SEED-IV data set, (D) is the

adjacency matrix learned from SEED-IV dataset.
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TABLE 4 | The SEED data set and SEED-IV data set are compared by using

different adjacency matrix A initialization methods.

Method SEED SEED-IV

ACC(%) STD(%) ACC(%) STD(%)

PCC 95.08 6.12 85.52 11.58

RGNN 91.98 7.21 84.16 10.93

PLV 92.04 7.56 80.92 13.48

Random 91.83 8.47 82.39 11.74

Bold represents the best result.

TABLE 5 | The results of ablation experiments on SEED and SEED-IV (mean/std),

“∼” represents the module is removed.

Model SEED SEED-IV

MDGCN-SRCNN 95.08/6.12 85.52/11.58

∼SRM 93.36/6.49 83.63/10.20

∼SRCNN 91.38/7.74 81.15/10.89

One-layer GCN 89.72/6.52 79.73/9.61

Bold represents the best result.

and the learned connection selected on the SEED data set,
respectively. Figures 5C,D show the initial connection and
the learned connection selected on the SEED -IV data set,
respectively. It can be seen from Figures 5A,C that the initial
connection between the left and right hemispheres of the brain
is symmetrical and concentrated in the occipital lobe, while
the subjects’ movie clips are mainly visual stimulation, and the
visual information is mainly processed in the occipital lobe,
which is in line with the common sense. After learning, the
connection between the left and right hemispheres of the brain
becomes asymmetric, as shown in Figures 5B,C, especially in
the temporal lobe, frontal lobe, and parietal lobe, where the
asymmetry is the strongest, indicating that these regions are
crucial to emotional activity. Among the local connections, (FT7-
T7), (FP2-FPZ), (FP2-AF4), and (T7-TP7) are the strongest
connections, and in the global connection (FP1-FP2), is the
strongest connection. It shows that emotional activities in the
brain are mainly local connections, and global connections are
complementary connections. In addition, the more complex
emotions are, the more brain areas need to be used. The more
complex the connections between brain areas, the greater the
strength of local connections.

In order to explore the impact of the initial method of
the adjacency matrixAon the performance of the model, we
chose the common initial methods, such as phase locking
(PLV), Pearson correlation coefficient (PCC), local, and global
connections used in RGNN and in [0,1] and random values. We
extracted DE features in the SEED data set and SEED-IV data
set for comparison. Table 4 shows the effect of using different
initial methods of adjacency matrix on the performance of the
MDGCN-SRCNN model on the SEED dataset and the SEED-
IV dataset. The results show that using PCC as the initialization
method of the adjacency matrix achieves the best performance.

In RGNN, a global connection is added on the basis of relative
physical distance, and a great improvement has beenmade on the
SEED-IV data set. The performance of PLV as an initialization
method of the adjacency matrix is equivalent to that of random
value selection.

Ablation Results
In order to verify the contribution of each module of our
proposed model, we conducted a series of ablation experiments.
The results are shown in Table 5. After removing the SRCNN
module, the performance is significantly reduced. The accuracy
on SEED and SEED-IV decreased by 3.7 and 4.37%, respectively,
indicating the importance of CNN in extracting deep abstract
features related to emotion. In addition, the accuracy on SEED
and SEED-IV decreased by 1.72 and 1.89% respectively after
removing the SRM module, which proved that the attention
mechanism such as SRM module can effectively emphasize
emotion related features and abandon useless features, so as to
improve the recognition performance of the model. Compared
with the one-layer GCN, the recognition performance of two-
layer GCN on SEED and SEED-IV is improved by 1.66 and1.42%,
respectively, indicating that there is a certain complementarity
between global features and local features.

CONCLUSIONS

In this paper, we propose a multi-layer dynamic graph
convolutional network-style-based recalibration convolutional
neural network (MDGCN-SRCNN) model for EEG-based
emotion recognition. In our model, EEG data is considered to
be non-Euclidean structure, and dynamic graph neural network
is used to learn the connection relationship between each channel
of EEG signal as a shallow layer feature. Because analyzing
emotions through EEG signals is very complicated. We use a
style-based recalibration convolutional neural network to further
extract abstract deep layer features. Finally, the fully connected
layer is used to search for the features most relevant to emotions
in the shallow layer and deep layer features for recognition.
We conducted systematic experimental verification on the SEED
data set and the SEED-IV data set. MDGCN-SRCNN model
has achieved better performance on the two public data sets,
surpassing the state-of-the-art RGNN. The recognition accuracy
on the SEED data set and SEED-IV data set is 95.08 and 85.52%,
respectively, and the standard deviation is 6.12 and 11.58%,
respectively. Based on using PCC as the initialization method
of the adjacency matrix, the MDGCN-SRCNN model is used
to learn the local connections and global connections that are
most relevant to emotions, such as (FT7-T7), (FP2-FPZ), (FP2-
AF4), (T7-TP7), and (FP1-FP2), these connections are mainly
distributed in the temporal lobe, frontal lobe, and parietal lobe,
proving that these brain regions play a vital role in inducing
emotions. In addition, we also found that the more complex
emotions are processed, the more brain regions are involved, the
more complex the connections, and the greater the strength of
local connections.

It is worth noting that using different initial methods of
adjacency matrix has a great influence on the connection
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relationship between graph neural network learning and task.
Therefore, it is very important to build the initial connection
relationship related to the task. In the future, our main work
direction is to build more complex network based on GCN to
solve the differences between subjects. And further explore the
differences of adjacency matrix under different emotional states,
and then analyze the differences of brain activity under different
emotional states.
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