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Abstract 

Melanoma is an aggressive skin cancer that has gained attention worldwide. Growing evidence has highlighted 
that the tumor microenvironment (TME) is an important feature of carcinogenesis and contributes to 
therapeutic efficacy in melanoma. However, additional advances in melanoma immuno- 
oncology are necessary to achieve a comprehensive knowledge of the immune infiltrate population and to 
identify accurate and readily measurable biomarkers. In this study, we analyzed gene expression of 468 
melanoma cases from the TCGA database, which led to the identification of three melanoma clusters 
(representedby low, median and high infiltration) that display unique immune features. We found that the 
microenvironment clusters had substantial prognostic efficacy. The median cluster was characterized by an 
inability to draw immune cells, highlighting possible immune escape mechanisms, and lower CXCL9 and 
CXCL10 expression, which was correlated to poor prognosis. Deep molecular characterization of immune 
cells, cytolytic-activity and tumor-inflammatory status revealed diversity of the local immune infiltration 
landscape in the melanoma clusters. Differentially expressed genes related to TME were extracted from each 
infiltration cluster. Functional annotations revealed that these genes were mainly related to immune system 
activation and the processes of immunoreaction. The top ten hub genes in immune infiltration-related 
protein-protein interaction (PPI) networks were selected for further prognostic investigation. Further 
validation showed that five of ten hub genes were good prognostic biomarkers for melanoma in two 
independent groups from the Gene Expression Omnibus database. In brief, these data highlight that systemic 
characterization of melanoma could uncover tumor infiltrate characteristics, which can help select the most 
adequate treatment and identify consistent and important indicators of the local immune tumor 
microenvironment in melanoma patients. 
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Introduction 
Melanoma is an aggressive cancer that accounts 

for more than 160,000 new cancer cases and more than 
80% of skin cancer–related deaths worldwide every 
year [1, 2]. Although significant advances in 
metastatic melanoma treatments have demonstrated 
some level of success in the last several years, 
melanoma patients with metastatic lesions still exhibit 
poor prognosis with a five-year overall survival that 
ranges from 45% for stage III to 18% for stage IV [3]. 
Over the last decade, tumor microenvironment (TME) 
studies have already led to variations in treatment 
methods and have raised hopes for improved 
treatment of melanoma patients, particularly for 
patients in the advanced stages [4]. Previous studies 

have shown that increased density of tumour- 
infiltrating lymphocytes (TILs) are associated with 
better patient prognosis, as well as a reduced 
occurrence of lymph node metastasis and a lengthier 
disease-free survival (DFS) [5, 6]. An innovative study 
by Thomas et al. of thousands of melanoma patients 
suggested that the degree of lymphocyte infiltration 
was an independent prognosticator of DFS, such that 
a lesser grade was associated with a reduced DFS [7]. 
These studies implied that assessing the diversity of 
the TME and transforming the immune micro-
environment can be promising strategy for melanoma 
therapy. 

Immunotherapy was considered to be the 
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foundation in melanoma treatment, and is proposed 
to regulate host immunity against the tumor [8]. 
Immunotherapeutic strategies have demonstrated 
success and enhanced patient survival [9]. During 
2011-2014, up to seven new monoclonal antibodies for 
metastatic melanoma became FDA approved, such as 
Pembrolizumab (anti-PD1), Nivolumab (anti-PD-1) 
and Ipilimumab (anti-CTLA4) [4]. Despite the fact 
that immune checkpoint blockade is transforming 
treatment for advanced cancer, many patients that are 
being administered these therapies don’t demonstrate 
a long-lasting response and have poor prognosis [10, 
11]. Due to the complexity of the genomic landscape 
of tumor samples and the heterogeneity of the TME, it 
is imperative to characterize the TME in melanoma 
and to detect biomarkers capable of identifying 
patients with better prognosis after these treatments. 
Several studies have used these approaches to explore 
immune infiltrate characteristics of melanoma. 
Reuben et al. assess the relevance and relationship of 
genomic and immune heterogeneity to therapeutic 
responses [12]. Significant heterogeneity of targeted 
therapy as well as genomic and immune 
heterogeneity of patients was observed [12]. Wolf Y et 
al. explore the effects of intra-tumor heterogeneity on 
tumor aggressiveness and immunity using a mouse 
melanoma model [13]. However, a comprehensive 
landscape of the connections among melanoma and 
immune cells remains, and TME-related prognostic 
markers, are still not well-characterized. 

In this study, we estimated the immune 
infiltration pattern of melanoma samples and 
computed heterogeneity across 428 patients from the 
TCGA database. These melanoma patients were 
grouped into three immunophenotypes according to 
the immune infiltration pattern using unsupervised 
clustering analysis. Further molecular 
characterization of immune cells cytolytic-activity and 
tumor-inflammation revealed diversity in the local 
immune infiltrate population in the different clusters. 
Finally, we identified potential immune related genes 
signatures that are significantly correlated with the 
patients’ prognosis. 

Materials and Methods 
Skin Cutaneous Melanoma (SKCM) datasets 
and preprocessing 

Publicly available SKCM gene-expression data 
sets with full clinical annotations were obtained from 
the TCGA database. Transcriptome raw counts of the 
TCGA-SKCM project were downloaded from GDC 
(https://portal.gdc.cancer.gov). For the project, the 
amount of samples, baseline data, and clinical 
endpoints of every appropriate GDC data set was 

assessed using R and R Bioconductor packages. 
Patients that didn’t have survival data were not 
included in further evaluation. Overall, 468 SKCM 
samples that had transcriptome profiling and clinical 
features available were included in this study. Also, 
two independent test datasets (GSE22155 and 
GES54467) were included. The detailed clinic 
parameters of enrolled patients were shown in Table 
S1. 

Calculation of microenvironment cell 
abundance 

The deconvolution algorithm CIBERSORT [14] 
was employed to calculate the proportion of immune 
cells in SKCM samples. The LM22 gene signature was 
used, which included specific markers of 22 human 
immune cell types, such as T-cells, B-cells, natural 
killer cells, DCs, macrophages and myeloid cells. 
CIBERSORT utilizes a database of reference gene- 
expression values, composed of 547 genes (a minimal 
representation for cell types). The data was used to 
infer proportion of cell types from bulk tumor 
samples with assorted cell types through the use of 
support vector regression. The algorithm with the 
LM22 sets and 1,000 permutations estimated the 
percentage of stromal cells by instituting the 
Microenvironment Cell Populations-counter method. 
This permits vigorous computation of the absolute 
number of eight immune and two stromal 
populations in diverse tissues from transcriptomic 
information [15]. 

Identification of immune subsets 
Unsupervised hierarchical agglomerative 

clustering was used to group tumor samples with 
qualitatively similar tumor immune cell infiltration 
patterns into immune subtypes (established using the 
Euclidean distance and Ward's linkage). We utilized 
clustering results to reorganize samples and scaled 
the CIBERSORT data prior to heatmap plotting 
(“pheatmap” function in R). 

To designate the relevant pattern (i.e. relative cell 
proportion) of immune cell subsets in three clusters, 
the tumor purity, immune score and stromal score 
were also calculated using “estimate” package [16]. 

Characterization of Immune Gene Signatures 
among the SKCM Immune clusters 

Cytolytic activity (CYT) was computed using an 
already validated gene expression signature using the 
geometric average of granzyme A (GZMA) and 
perforin-1 (PRF1) gene expression [17]. Tumor 
Inflammation Signature (TIS) was quantified using 
the average of continuous mean of log2-transformed 
normalized expression of known genes [18]. Relative 
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antigen presentation machinery (APM) was 
quantified using a validated gene expression 
signature [19]. Pathological assessment of the 
proportion of tumor infiltrating lymphocytes (TILs) 
[20] was also used. 

Prognostic analysis of immune clusters 
Both the univariate and multivariate Cox 

proportional hazard model was created to assess the 
predictive importance of immune clusters. Age, 
tumor grade and gender were first examined using 
the univariate Cox proportional hazards model. All 
factors of significance were encompassed as 
covariates in the multivariate Cox proportional 
hazards model. Survival outcomes modeled data in 
relation to disease-free survival (DFS). In particular, 
events were described as death according to any 
cause, with the time being precisely to the day. 
P-values were acquired from univariate Cox 
proportional-hazards regression models through the 
R package survival. All Kaplan–Meier survival curves 
were visualized through the use of the survfit 
function in the computational survival package. 

Differentially expressed genes (DEGs) 
between the tumor immune clusters 

To determine genes that are associated with 
different infiltrating patterns, DEGs amongst groups 
were identified using the R package limma [21]. Due 
to the significant survival difference and small sample 
size of low infiltration subtype, DEGs were calculated 
between high infiltration cluster and median cluster 
using the criteria of adjusted P value < 0.05 and 
logFC>1. The adjusted P-value for multiple testing 
was quantified utilizing the Benjamini–Hochberg 
correction. 

Enrichment analysis 
Genes that were differentially expressed 

between high and median subtypes were identified as 
DEGs and used for functional enrichment analyses. 
The analyses were performed using the online gene 
annotation and analysis tool Metascape (http:// 
metascape.org) [22]. Search Tool for the Retrieval of 
Interacting Genes (STRING, http://string-db.org) 
online database was utilized for prediction of PPI 
network of significant DEGs (combined score >0.9). 
Cytoscape 3.7.2 was utilized to visualize interactive 
network. 

Statistical analysis 
Statistical analysis was conducted through 

utilization of R version 3.5.0. Distribution of 
inflammatory markers within immune clusters were 
visualized using box plots and differences in median 
values were evaluated by ANOVA followed by post- 

hoc testing (*p-value < 0.05; **p-value < 0.005; 
***p-value < 0.0005; ****p-value < 0.00005). Unadjusted 
(crude) and age-adjusted odds ratios (ORs), with 95% 
confidence intervals (CIs), were quantified. 
Unsupervised clustering for tumor samples and 
immune cell types was conducted using hierarchical 
clustering. Correlation between immune factors was 
calculated using Pearson’s correlation coefficients. 
Survival analysis was conducted through the 
Kaplan-Meier technique. The survival of each cluster 
was compared through use of the log rank test. 

Results 
Microenvironment phenotypes in SKCM 

Heterogenous immune cell populations 
penetrate the tumor microenvironment and regulate 
the anti-tumor response. To assess the range of 
immune cell infiltration, 468 SKCM patients with 
available transcriptome data and clinical features 
were incorporated in our analyses. Using CIBERSORT 
results, we performed hierarchical agglomerative 
clustering of the 22 human immune cell phenotypes. 
All 468 patients were categorized into three 
heterogeneous clusters (cluster 1=264, cluster 2=177, 
cluster 3=27). A significant heterogeneity was 
observed with regards to infiltration of several 
immune cell types in the cohorts (Figure 1A). 
According to level of CD8+ T cell infiltration, the 468 
samples were classified into 3 immune clusters (low 
infiltration (27), median infiltration (264) and high 
infiltration (177); Figure 1A). Principal component 
analysis (PCA) exhibited vigorous variations in 
profiles among the three clusters detected using the 
hierarchical agglomerative clustering (Figure 1B). In 
three immune clusters, the aggregated macrophage 
(M0, and M2 populations) and CD8+ T cells 
population comprised the largest percentage of cell 
compartment (Figure 1C). After correcting for 
multiple comparisons, the average proportion of M0 
macrophages, M1 macrophages, CD8+ T cells, and 
CD4+ memory activated T cells, monocytes and 
plasma cells were significantly difference between the 
three heterogeneous clusters (P adjusted < 0.005 
respectively) (Figure 1D). We additionally assessed 
additional immune signatures to corroborate our 
immune clustering. The distribution of CD8+ T cells, 
resting dendritic cells, CD4+ memory activated T cells 
and M0 macrophages also coincided with our 
established microenvironment clusters (Figure 1E-H). 
Meanwhile, the ESTIMATE algorithm was employed 
to evaluate tumor purity, stromal and immune scores 
within the immune clusters and their relationships. 
We discovered significant variation in immune scores, 
stromal scores and tumour purity among the three 
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immune clusters (Figure S1 A-C). We also observed 
significant association of stromal and immune scores 
with tumour purity predictions (Pearson’s correlation 
coefficient: -0.86 and -0.93) (Figure S1D, E). 
Importantly, we found a positive correlation between 

stromal and immune scores (Pearson’s correlation 
coefficient: 0.74). ESTIMATE scores demonstrated a 
high correlation with tumor purity in comparison 
with stromal and immune scores (Figure S1G). 

 

 
Figure 1. Microenvironment phenotypes in melanoma. (A) Hierarchical agglomerative clustering of melanoma microenvironment phenotypes established using 
predicted numbers of 22 microenvironment cell subsets computed using CIBERSORT. (B) Principal component analysis (PCA) of the immune clusters computed as a linear 
mixture of immune-related genes. Component 1 and 2 account for 100% of the variation. (C) Relative proportion of immune cell populations across each cluster. Bars 
demonstrate the average proportion of 7 aggregated immune cell populations. Clusters are on the x-axis, and the average composition of immune cells compartment is on the 
y-axis. Colors are exhibited by individual immune cell proportions. (D) Bars display the average proportion of 22 immune cell populations. Immune cell population is located on 
the x-axis while the y-axis shows the average proportion of the immune cell component, including the SEM. All cluster subtypes are incorporated. (E-H) Signature scores of 
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CD8+ T cells, resting dendritic cells, CD4+ memory activated T-cells and M0 macrophages among clusters. The boxplot is located within the violin plot. * P < 0.05; ** P < 0.005; 
*** P < 0.0005; **** P < 0.00005. 

 
Figure 2. Prognosis of immune cells in melanoma. (A) Kaplan–Meier curves for overall survival (OS) of 468 melanoma patients with the tumor microenvironment 
infiltration classes with log-rank test score. (B) Hazard ratios (HRs) and P values of the covariates in the univariate and multivariate Cox proportional hazard model for DFS. (C) 
Subgroup analyses approximating clinical prognostic value among CIBERSORT result cohorts in independent melanoma data. Horizontal line length exhibits 95% confidence 
interval for each cell populations. The hazard ratio (HR) is represented by the vertical dotted lines. The vertical solid line represents HR = 1. HR < 1.0 indicates if a cell population 
has a favorable prognostic biomarker. 

 

Prognostic significance of immune clusters in 
SKCM 

To investigate how tumor microenvironment 
affects prognosis, we determined the clinical 
significance of microenvironment clusters. 
Hierarchical clustering showed considerable 
differences in survival between the three clusters (log 
rank P = 0.004). High infiltration cluster had 
significantly better overall survival (OS) compared to 
the additional two clusters (Figure 2A). The 

multivariate Cox proportional hazards model showed 
that the high infiltration cluster independently 
forecasted improved OS in SKCM (HR = 1.5722, 95% 
CI: 1.2066-2.048, P = 0.000804, Figure 2B). Next, we 
conducted univariate Cox regression to identify 
whether the 22 human immune cell phenotypes 
affected patient outcomes. As expected, CD8+ T cells 
and gamma delta T cells were significantly correlated 
to overall survival, and high levels of these cell types 
related to better patient prognosis (CD8 T cells: P = 
0.009, HR = 0.27; gamma delta T cells: P = 0.03, HR = 
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0.00). At the same time, high levels of M0 
macrophages were associated with improved patient 
prognosis (M0 macrophages: P = 0.00, HR = 0.27) 
(Figure 2C). 

Tumor Immune-features between immune 
subtypes 

To determine if different immune subtypes 
established using gene expression are reminiscent of 
pathological assessments of tumor infiltrating 
immune cells, we investigated some tumor immune 
features (including the expression of interleukins and 
chemokines (Figure 3A), levels of CYT, TIS as well as 
the level of checkpoints) among the three immune 
subtypes. We found that most of the interleukins and 
chemokines were differentially expressed among the 
immune subtypes. We also determined the expression 
of several key immuno-checkpoints (PD-1, PD-L1, 
LAG3 and CTLA4) in three immune subtypes. These 
checkpoints were drastically increased in the high 
infiltration cluster, in comparison to the other two 
clusters (Figure 3B-E). Then, we found that the high 
infiltration cluster had the highest level of CYT, which 
served as a substitute for measuring the degree of 
antitumor response (P < 2.2e−16) (Figure 3D). 
Meanwhile, significantly higher APM, TILs and TIS 
were also observed in high infiltration cluster (Figure 
3F-I), as well as the IFN-γ (Figure S2). These results 
indicate that the high infiltration cluster is associated 
with active immunoediting process. These results 
were consistent with the expression of chemokines 
(Figure 3A). 

Moreover, both the median and low infiltration 
clusters exhibited reduced MHC I–related 
antigen-presenting molecules compared to the high 
infiltration cluster (Figure 4A, all P < 0.05), which is 
likely attributed to their low immunogenicity. 
Additionally, we explored the association between 
immune infiltration (for example, TILs and CYT), 
immunogenicity, and immune checkpoint molecules. 
We found that immune infiltration and the majority of 
checkpoint molecules were positively correlated in 
the median and high infiltration cluster, whereas this 
correlation seemed to be diminishing in the high 
infiltration cluster (Figure 4B-D). 

DEGs screening and functional analysis of 
immune subtypes 

In this study, immune-related genes were 
identified and compared between the high and 
median infiltration clusters. A total of 813 genes 
including 16 downregulated and 797 upregulated 
genes were found in the high infiltration cluster. 
Furthermore, we conducted GO and pathway 
enrichment analyses of these genes using Metascape. 

We established that the genes are involved in the 
adaptive immune response, lymphocyte 
differentiation and cytokine-cytokine receptor 
interaction (Figure 5A and B). 

Identification and validation of hub prognostic 
genes 

A PPI network was established using STRING 
(Figure 6). A total of 291 DEGs connected by 1801 
edges were included in the network. The top ten hub 
genes were selected according to the degree of 
connectivity. In order to validate the hub genes 
determined by the TCGA analysis, we used additional 
melanoma cases obtained from two independent 
datasets (accession numbers GSE22155 and 
GES54467). Survival analyses were performed 
grouped by the expression level of ten hub genes. 
Table 1 shows the p-value of K-M analysis on the two 
cohorts. We found that majority of hub genes were 
significantly correlated to prognosis (Table 1). 
Increased expression levels of five of the 10 hub genes 
(HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-E, LCK) 
were related with improved overall survival of 
melanoma patients in both validation datasets (Figure 
7A–7E: GSE22155; 7F-7J: GES54467). 

 

Table 1. KM analysis P-value of hub genes in validated dataset 

Name degree P-value in GSE22155 P-value in GSE54467 
HLA-A 59 0.0013 0.58 
B2M 57 0.082 0.48 
HLA-DRB1 54 0.27 0.98 
HLA-DRA 54 0.0084 0.024 
HLA-E 52 0.0048 0.013 
HLA-B 50 0.2 0.16 
LCK 49 0.017 0.024 
HLA-C 49 0.074 0.32 
HLA-DQA1 48 0.0047 0.0062 
HLA-DQB1 48 0.032 0.02 

 

Discussion 
Intratumor and intertumor heterogeneity of 

melanoma had been considered as a major obstacle to 
the successful application of current therapies [23-27]. 
Gaining insights into the cellular and molecular 
context of melanoma heterogeneity will not only 
improved the diagnose markers but also promote the 
evolution of precision medicine. Especially, the 
studies of TME heterogeneity have raised hopes for 
improved treatment of melanoma patients [26, 28]. 
The emergence of some computational methods to 
predict the proportion of immune cells in tumors 
infiltrates can greatly improve the identification of 
TME heterogeneity [20, 29]. Also, the genomic and 
transcriptomic sequences of large groups of tumors 
produced by international projects, including The 
Cancer Genome Atlas (TCGA, http://cancergenome. 
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nih.gov/), have afforded a chance to determine the 
characteristic molecular attributes of cancer in 
unparalleled detail. Despite the fact that several 
studies have used these approaches to explore 

immune infiltrate characteristics of melanoma and its 
association with prognosis [30-32], a comprehensive 
landscape of the connections among melanoma and 
immune cells remains unknown. 
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Figure 3. Heterogeneous immune cell infiltration in melanoma. (A) Log2-fold change in gene expression of chemokines, ILs, IFNs, and other important cytokines and 
their receptors for each cluster. Molecules that were differentially expressed among the three heterogeneous clusters (P < 0.05) were illustrated. (B-E) Expression of PD-1, 
PD-L1, LAG3 and CTLA4 among immune infiltration clusters by overall immune cell infiltration. (F) Comparison of relative cytotoxic activity scores (CYT) between the three 
heterogeneous clusters of melanomas (p < 2.2e-16). (G) Relative T-cell infiltration score (TIS) between three heterogeneous clusters of melanomas (p = 3.7e-16). (H) Relative 
antigen presentation machinery (APM) between the three heterogeneous cluster of melanomas (p < 2.2e-16). (I) Pathological evaluation of the percentage of tumor infiltrating 
lymphocytes (TILs) between three heterogeneous cluster of melanomas (p = 5.9e-11). 

 
Figure 4. Possible extrinsic immune escape mechanisms of melanoma. (A) Log2-fold change in gene expression of chemokines, ILs, IFNs, and other important 
cytokines and receptors for every cluster. Molecules that are significantly differentially expressed between three heterogeneous clusters (P < 0.01) were illustrated. (B~D) 
Correlation matrix of local immune features and MHC-I molecules among three heterogeneous clusters, measured by Spearman R coefficients. CD8+: CIBERSORT result of 
CD8+ T cells term; TILs: Pathological evaluation of the percentage of tumor infiltrating lymphocytes. Cytolytic activity (CYT) was quantified using a validated gene expression 
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signature established using the geometric mean of gene expression of granzyme A (GZMA) and perforin-1 (PRF1). Pathological assessment of tumor infiltrating lymphocytes 
(TILs) proportion. 

 
Figure 5. Functional analysis of the DEGs between immune subtypes. (A) Top 20 Biological processes correlated to DEGs. (B) The network of the top 20 clusters of 
enriched terms. 

 
In this study, we assessed the immune states and 

diversity of infiltrating populations in melanoma 
based on TCGA data. The 468 melanoma samples 
were classified into three immune clusters (low 
infiltration (n=27), median infiltration (n=264) and 
high infiltration (n=177). Within the three immune 
clusters, the combined macrophage population (M0, 
and M2 populations) and CD8+ T cells population 
comprised the largest percentage of the cell 
compartment. Tumor-associated macrophages 
(TAMs) are the main components of TME [33]. 
Accumulating evidence has demonstrated that TAMs 
are associated with survival [34, 35]. Under differing 
stimuli, macrophages can be polarized into either the 
M1 or M2 macrophages. M1 macrophages 
demonstrate anti-tumor activity [36]. Conversely, M2 
macrophages have been shown to have pro-tumor 
activity through promotion of HCC cell proliferation, 

migration, angiogenesis, and immunosuppressive 
microenvironment [37, 38]. Interestingly, it is has been 
shown that the level of macrophages (M0 and M2) are 
inversely proportional to that of CD8+ T cells, 
suggesting that increased infiltration of CD8+ T cells 
and low M2 macrophages contributes to anti-tumor 
immunity. 

Considering the importance of the tumor 
microenvironment with regards to prognosis, we next 
examined the clinical significance of micro-
environment clusters. Median infiltration cluster had 
worse OS than the other two clusters (P-value = 0.004; 
Figure 2A), indicating that an increased infiltration of 
immune cells predicted better prognosis. The worse 
survival associated with median infiltration cluster 
might be due to the relatively higher infiltration of M2 
macrophages, which is reduced in the low infiltration 
cluster (Figure 1A), and lower expression of some 
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chemokines (Figure 3A). For example, the median 
cluster has lower expression of CXCL9 and CXCL10, 
which have been shown to be associated with TIL 
infiltration in human cancers and draw dendritic cells 
(DC) and CD8+ T cells [39-41]. Then, we investigated 
immune checkpoints expression, such as CTLA4, 
PD-1, LAG3, and PD-L1. We found that they were all 
significantly upregulated in the infiltration cluster 
(Figure 3B-E). CYT is an important index that delivers 
a possible way to evaluate the status of the immune 
microenvironment and immune checkpoints [42]. It 
was established that high levels of CYT value was 
correlated to enhanced prognosis [43]. Our results 
show that the high infiltration cluster has the highest 
expression of CYT (Figure. 3F). Meanwhile, APM, 
TILs, TIS and IFN-γ also show the highest level in the 
high infiltration cluster but lowest in the low 
infiltration cluster. (Figure 3F-I; Figure S2). The 
differences in the characteristics of immune 
infiltration across the three clusters indicated a 
distinct intrinsic microenvironment. 

In 2009, Camus et al. first defined the three major 
immune coordination profiles (hot, altered and cold) 
in primary CRCs [44]. This immune categorization 

has been verified in additional cancer types [45]. 
However, there has been a lack of studies on the 
mechanisms of dysfunctional immune infiltration in 
melanoma. The hot tumors are characterized by 
specific features such as the presence of TILs, and the 
expression of checkpoints [46, 47]. We found that 
these features were present in high infiltration cluster. 
On the other hand, aside from having poor 
infiltration, cold tumors have been thought to be 
immunologically ignorant (a lack of PD- L1 
expression) and described by reduced expression of 
antigen presentation machinery markers including 
the major histocompatibility complex class I (MHC I) 
[47], which is consistent with results shown in Figure 
4A. These results indicate that the high infiltration 
cluster in our study might represent a “hot” tumor, 
whereas the low infiltration cluster represents a 
“cold” tumor. In addition, we speculated that low 
expression of MHC I molecules might be responsible 
for the intrinsic immune escape mechanism poor 
survival in the median cluster. Interactions amongst 
the immune system and cancer are governed by a 
complex interaction of biological pathways. We 
explored the relationship between immune 

 

 
Figure 6. PPI network of DEGs. The node size and color represent degree and fold change value. 
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infiltration factors across the three clusters. We found 
that immune infiltration and most checkpoint 
molecules, as well as the CYT, were positively 
correlated in the high infiltration cluster. Conversely, 
this was not seen in the low infiltration cluster, 

suggesting the interactions within this cluster are 
promiscuous. These results indicated dynamic 
changes in the immune infiltration stages of 
melanoma. 
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Figure 7. Survival analysis of five hub (HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-E, LCK) genes in two cohorts. (A-E) GSE22155, (7F-7J) GES54467. 

 
We then attempted to explore DEGs of 

significant prognostic value associated with TME to 
understand aggressive tumor progression in 
melanoma patients. A total of 813 DEGs were 
identified. Functional analysis suggested that they 
were part of the adaptive immune response, 
lymphocyte differentiation and cytokine-cytokine 
receptor connection (Figure 5A and B), which has 
been revealed to have an important function in 
activation and modulation of innate immune 
signaling in the host response to pathogens and 
cancer [48, 49]. In the PPI network, the top 10 hub 
nodes were extracted and were considered to be an 
immune-related prognostic marker. At last, upon 
cross‐validation with two GEO databases composed 
of data from two independent groups of melanoma 
patients, we found that five of the 10 hub genes were 
related to better overall survival of melanoma patients 
in both validation datasets. These genes were 
HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-E and 
LCK. The first four genes are MHC molecules, which 
have been shown to be related to the progression of 
melanoma [50, 51]. LCK, also known as 
lymphocyte-specific protein tyrosine kinase, is part of 
the Src family of non-receptor protein tyrosine kinases 
[52]. These functions have a vital role function in 
cellular processes such as cell cycle control, cell 
adhesion, motility, growth, and differentiation [52]. 
Lymphocyte-specific kinase (Lck) is a positive 
regulator of inflammatory signaling and a druggable 
target for treatment of cancer and neuronal diseases 
[53]. 

In summary, we characterized the TME of 
melanoma and identified five hub genes that were 
closely associated with prognosis in melanoma using 
a series of bioinformatics analyses. Our findings 
contribute more knowledge of the fundamental 
molecular mechanisms of how immune molecules 

and cells affect melanoma progression and therapy. 
However, additional studies are still necessary to 
determine the exact mechanism in detail. 
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