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Abstract: The last three decades have witnessed an increasing demand for novel analytical tools for
the analysis of gases including odorants and volatile organic compounds (VOCs) in various domains.
Traditional techniques such as gas chromatography coupled with mass spectrometry, although very
efficient, present several drawbacks. Such a context has incited the research and industrial commu-
nities to work on the development of alternative technologies such as artificial olfaction systems,
including gas sensors, olfactory biosensors and electronic noses (eNs). A wide variety of these
systems have been designed using chemiresistive, electrochemical, acoustic or optical transducers.
Among optical transduction systems, surface plasmon resonance (SPR) has been extensively studied
thanks to its attractive features (high sensitivity, label free, real-time measurements). In this paper, we
present an overview of the advances in the development of artificial olfaction systems with a focus
on their development based on propagating SPR with different coupling configurations, including
prism coupler, wave guide, and grating.

Keywords: surface plasmon resonance; olfactory sensors; electronic noses; volatile organic com-
pounds; odorants

1. Introduction

Over the last few decades, the detection of gases including odorant molecules and
volatile organic compounds (VOCs) has attracted great interest and has become increasingly
in demand in various field. VOCs constitute a large class of low-molecular-weight (<300 Da)
carbon-containing compounds. They can exhibit odorous properties and are characterized
by a high vapor pressure (≥0.01 kPa at 20 ◦C) and a high-to-moderate hydrophobicity [1].
These small volatile molecules have a wide range of sources, both natural (plants, animals,
bacteria etc.) and anthropogenic (fossil fuels, automobile exhaust gas etc.). The majority
of VOCs have inimical effects on human health such as headaches and nose, eye and
throat irritation [2]. Consequently, monitoring the nature and concentration of these
compounds in indoor or outdoor environments can be very important, and sometimes,
vital. Additionally, they can be considered as chemical messengers. In fact, their analysis
has been shown to reveal a considerable amount of information. For instance, studies
in medical diagnostics have identified gases associated with different diseases such as
rheumatoid arthritis, cancer, and schizophrenia [3]. Furthermore, a recent study showed
the possibility of detecting viral infections such as COVID 19 through exhaled breath
analysis [4]. VOC and odor analysis can also have applications in the food, beverage and
fragrance industries for quality assessments. Finally, gas sensing can be very useful for
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security applications (detection of drugs, explosives etc.), environmental monitoring or
other usages under development such as augmented/virtual reality [5]. Nowadays, the
gold standard for VOC detection involves the use of trained human or canine noses or
gas chromatography coupled with mass spectrometry (GC-MS). Indeed, to control the
quality of raw materials or final food and perfume products, industries often have recourse
to human sensory panels. Trained dogs are commonly employed for security controls
or even for the detection of diseases such as prostate and breast cancers [6,7]. Although
very sensitive and efficient for field studies, the use of the biological nose presents several
drawbacks. For instance, human panels may yield biased subjective results and are prone
to fatigue. Dogs require expensive training and their application fields are limited and
sometimes risky. The second method, namely, GC-MS, is a highly sensitive and accurate
analytical technique that allows separating, identifying and quantifying different VOCs
in a mixture. However, analyses require skilled operators and are time consuming and
expensive [8]. Therefore, there is a need for an affordable, reliable, portable and sensitive
device that allows for a rapid analysis of gases including VOCs. Such a context has
prompted many researchers to work on the development of alternative technology such as
artificial olfaction systems that overcome the various drawbacks mentioned above.

Herein, artificial olfaction systems include gas sensors, olfactory biosensors and an
electronic nose (eN). A gas sensor or olfactory biosensor is a single-sensor device which
is able to detect gases and that consists of a receptor coupled with a transducer and a
data processing system. Olfactory biosensors use biomaterials as receptors. On the other
hand, as stated by Julian W. Gardner and Philip N. Bartlett in 1994 [9], an eN is “an
instrument, which comprises an array of electronic chemical sensors with partial specificity
and an appropriate pattern-recognition system, capable of recognizing simple or complex
odours”. By its very nature, the eN is, in fact, a biomimetic device that replicates the
odor discrimination principle of the mammalian olfactory system. Thanks to considerable
research efforts on natural olfaction, and especially, the Nobel prize winning work of Linda
B. Buck and Richard Axel (1991) [10], we know that, in order to distinguish among a
myriad of odors, the biological nose uses cross-reactive olfactory receptors (ORs) (about
400 different types in the human nose). This particular feature of ORs (i.e., cross reactivity
or partial specificity) allows each receptor to interact with different odorant molecules
with differential affinities. Therefore, in the same manner as barcodes, odors are encoded
by a combination of olfactory receptors, which consequently allows the nose to have this
large detection spectrum. Moreover, to transduce an olfactory stimulus, the biological odor
sensor uses an extensively studied “molecular switch”: the G protein. Indeed, Buck and
Axel showed that ORs belong to the large family of G protein coupled receptors (GPCRs).
They are located in the plasma membrane of the cilia, i.e., the dendritic extrusions of the
olfactory neurons projected into the mucus covering the olfactory epithelium. When a
VOC binds to an OR, the G protein transduction cascade is initiated and the binding event
is converted into an electrical signal processed by the olfactory bulb and deciphered by the
olfactory cortex. Figure 1 shows the analogy between biological and electronic noses.
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Figure 1. Analogy between the biological and the electronic nose (eN). Figure adapted from [11].

The history of artificial odor detection starts in 1920. In their work on spray electricity
and waterfall electricity, Zwaardemaker and Hogewind [12] found that the addition of
odorant molecules (e.g., phenol, thymol, citrol) to water markedly raised the spray electric-
ity which could therefore be used to detect these molecules. Subsequently, in 1950, Tanyolac
and Eaton [13] attempted to detect air contaminants by measuring variations in the surface
tension of a liquid drop. They showed that when contaminated air was in contact with a
drop of distilled water, mineral oil or water-stabilized mercury, a considerable change in the
surface tension of the drop could be observed. Based on their results, they suggested that
an instrument able to classify and measure air contamination at low concentrations could
be developed. The first prototype of an electronic device capable of detecting odorants was
introduced by Hartman in 1954 [14]. The system was based on polarized microelectrodes
as sensing elements. Following this, in 1961, using a thermistor as a transduction device,
Moncrieff [15] investigated various coating materials (e.g., polyvinyl chloride, cellulose
acetate, milk casein) which interacted differently with odorants. He claimed that using
an array of sensors with different coatings could broaden the detection spectrum and,
thus, allow for the discrimination of a large number of odors. In 1962, Seiyama et al. [16]
developed a gas sensor using semiconductive thin films. The gas detection principle of
their system was based on changes in electrical conductivity. A similar study was published
in 1965 by Buck et al. [17]. In the same year, Dravnieks and Trotter [18] developed a vapor
detector based on the thermal modulation of contact potential. Shaver [19] described a
method to enhance the sensitivity of a tungsten oxide gas detector by the addition of a
catalytic material such as platinum in 1967. The following year, Taguchi fabricated the first
metal oxide semiconductor (MOS) gas sensors for home and industrial usage employing
tin oxide as sensitive coating material, which he subsequently patented in 1971 [20]. His
company, Figaro Engineering Inc., became the main manufacturer of MOS gas sensors.
In 1979, Wohltjen and Dessy [21] introduced the first surface acoustic based gas sensor.
However, it was not until 1982, with Persaud and Dodd [22], and then in 1985, with Ikegami
and Kaneyasu [23], that the first electronic nose systems based on an array of intelligent
chemical sensors emerged. In order to understand the discrimination mechanism of the
sense of smell, Persaud and Dodd designed a model of the nose using three Figaro sensors
with a differential response spectrum. As a result, their device was able to distinguish
among a wide variety of odors, and highlighted the importance of nonspecific interac-
tions in the odor discrimination mechanism. As shown in Figure 2, over the following
decades, an exponential number of studies were carried out in order to develop gas sensors
and electronic noses. Different sensor systems employing chemiresistive, electrochemical,
piezoelectric, and optical transducers [24] have been deployed and assembled in an array
to construct eN systems.
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To date, most eN systems have used chemical layers (metal oxide semiconductor,
polymers, etc.) as sensing elements. However, these systems suffer from limited diversity
of sensor coatings and poor selectivity. To improve the odor sensing performance, the
latest trend consists of using natural biological elements such as ORs and odorant binding
proteins (OBPs) or their analogues, such as peptides as sensitive materials [25,26]. Indeed,
the sensitivity and selectivity of such receptors have been naturally improved and opti-
mized by millions of years of evolution, making them ideal candidates for odor detection.
However, integrating them into an electronic device and maintaining their bioactivity in
nonoptimal conditions is very challenging. Promisingly, great improvements have been
made in this novel field of olfactory biosensors and electronic noses [25–30].

A large number of reviews have presented the operating principles of the various
sensor systems that have been developed so far for VOC and gas detection [8,24,31–36]. In
addition, several reviews have focused on the development of gas sensors and eNs based
on the main techniques, namely, chemiresistive [11,37–41], gravimetric [42,43], amperomet-
ric [44], optical fibers [45], colorimetric and fluorometric [46]. However, to the best of our
knowledge, no review has emphasized the development of gas sensors, olfactory biosensors
and eNs based on another popular technique, namely, surface plasmon resonance (SPR).
Indeed, SPR offers many advantages compared to other techniques, including label free
measurement with quantitative and qualitative data, real-time monitoring with informa-
tion on the affinity and the kinetics of the studied interaction, compatibility with multiplex
and high-throughput analyses, reusable sensor chips, and repeatable measurements. Ac-
cordingly, in this review, we aim to first give a brief overview of artificial olfaction systems
based on various sensor systems, and then a focus on the advances made using SPR.

After this introduction, the second section will review the most common sensing
systems currently employed for VOC and gas detection. The third part will be dedicated
to advances in SPR-based gas sensors, olfactory biosensors and eNs. It includes a brief
description of the theoretical principles of the SPR technique followed by an overview of
research works using SPR with different coupling configurations.
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2. Gas Sensors and Electronic Noses Based on Various Sensing Systems

As stated, many ingenious systems with different types of sensing materials and
transduction techniques have been devised and studied. In the following section, we
present a brief overview of the most commonly used sensing platforms for VOC and
gas detection. For each system, we will underline the transduction principle, strengths,
weaknesses, and present some illustrative examples from the literature.

2.1. Chemiresistive Sensors

This category mainly includes three types of gas sensors, i.e., using MOS, conducting
organic polymers (CP) and carbon-based materials [47]. These sensors have a common
operating principle whereby the binding of VOCs induces a variation in the electrocon-
ductivity. They also have a similar structure that essentially consists of an active layer
deposited on a substrate with two electrodes to measure changes in resistance upon ex-
posure to target molecules [39,40,48]. In the following part, popular MOS sensors and
CP-based sensors will be discussed more in detail. Gas sensors using carbon material
(graphene, carbon-nanotubes, etc.) are not discussed here. More information can be found
in recent reviews [49,50].

2.1.1. MOS Sensors

MOS-based sensors are the most commonly used systems for gas and VOC detection
among all the sensing technologies [39]. They were first manufactured and marketed
by Taguchi in 1968 for gas leak detection [31,35]. These sensors are typically made of
a ceramic substrate coated with either n-type (mainly SnO2, TiO2, ZnO) or p-type (e.g.,
NiO) metal-oxide semiconducting film between two electrodes. The ceramic substrate
usually contains a heating element that allows the device to reach its operating temperature,
generally ranging between 200 and 500 ◦C [32]. The transduction mechanism of these
sensors is based on variations in their conductivity or resistance upon gas molecule binding,
which was well addressed in a recently published review [51]. Various factors, such as the
bulk resistance, surface effect, grain boundary and contact between the grain interface and
the electrode, can affect the electrical properties of gas sensing materials in MOS-based
sensors. The detection spectrum and sensitivity of the sensors can be tuned by doping
the semiconductor film with noble catalytic metal (e.g., Pt, Pd) [52] or by modifying the
working temperature. The grain size, the thickness, and the microstructure and morphology
of the coating film can also affect the binding affinity of the device [32,40,53].

These sensors are attractive candidates for eN as they offer high sensitivity with fast
response and recovery times. They are also robust and easy to use. Moreover, advances in
micro- and nano- fabrication technologies have enabled low-cost production of miniatur-
ized sensor arrays [41,54]. The major drawbacks of these sensors are the lack of selectivity,
their susceptibility to humidity and the high operating temperature which leads to high
power consumption and reduced lifespan [39,55]. Nevertheless, great efforts have been
made to overcome these drawbacks. Low-power microheaters have been designed and new
porous structures have been explored [39,54,55]. Moreover, room temperature operating
MOS sensors have been developed following different strategies, and involve the use of
metal oxide nanostructures such as nanowires, nanotubes and nanobelts [56,57]. MOS sen-
sors and particularly SnO2-based systems have been extensively studied, miniaturized and
combined into arrays for the detection of a large panel of VOCs. Hundreds of outstanding
works on experimental and commercial eN systems can be cited. However, this not being
the subject of the present review, more details about these systems can be found in the cited
reviews [11,34,39,41,54,55,58].
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2.1.2. Conducting Organic Polymers Sensors

CP based sensors have received considerable attention since the early 1980s [59]. They
are probably the most widely used systems for VOC detection after MOS sensors, and were
used in the earlier generations of electronic nose systems [35,36]. CP based sensors are gen-
erally composed of a substrate (e.g., glass microscope slide, silicon wafer), on which a film
of conducting polymer is deposited between two parallel or interdigitated electrodes [31].
Intrinsic conducting polymers (ICPs) such as polypyrrole, polyaniline, polythiophene and
their derivatives have been typically employed for sensor applications [37]. They are
usually deposited by electro-polymerization [35]. As for MOS sensors, the transduction
principle of these devices relies on variations in the conductivity of the sensors in the
presence of VOCs. Several studies have investigated the interaction between the ICPs and
the target molecules and suggested different mechanisms [37,38,60]. Reversible modulation
of conductance is detected by measuring variations in the current flowing through the poly-
mer when a voltage is applied across the electrodes [31]. The sensing performance of the
CPs can be adjusted by modifying the polymer molecular structures, changing the dopants
and incorporating a second component into conducting polymers [37]. The addition of
a second component gives rise to an original new category of sensing elements called
hybrid or composite conducting polymers (CCPs). Further information and examples of
CCP-based sensors can be found in the following reviews [37,61].

Unlike MOS sensors, CP-based systems can operate at room temperature, and thus,
consume less power. They also exhibit good sensitivity and have short response times [37].
In addition, they are easy to fabricate and resistant to poisoning [8,24]. However, these
devices suffer from a lack of selectivity and baseline drift. Moreover, their sensitivity can be
affected by humidity and temperature and they can be overloaded by some VOCs resulting
in a short lifetime [24,35,54]. Hundreds of papers about CP-based sensors and eNs can
be found in the literature [37,38,54]. CP-based gas sensor arrays have been developed for
many applications. For instance, Yu et al. have designed a portable array of polypyrrole
sensors for the analysis of diabetic patient’s breath [62]. Li et al. detected aromatic organic
compounds using nanofibers of conducting polyaniline [63]. CP have also been used as
sensitive coatings and combined with different sensing platforms such as quartz crystal
microbalance [64] and field effect transistors [65].

2.2. Electrochemical Sensors

This family of sensors includes three main categories classified according to their mea-
surement approaches: amperometric, potentiometric and conductimetric/impedimetric
sensors [44]. These electroanalytical techniques generally involve monitoring the modu-
lation of an electrical property (current, potential, conductivity or impedance) associated
with the interaction of odorant molecules with the working electrode [24]. The working
electrode is usually made of gold or platinum and covered with sensing materials, for
example, in certain cases, a porous membrane that acts as a transport barrier [35].

These sensors have the advantages of being robust and can function at room tempera-
ture [24]. They are also low cost, have low power consumption and can be miniaturized [66],
which are all suitable characteristics for eN systems. Additionally, the reactivity of these
gas sensors can be customized by adding metal layers, polymers or biological sensing
materials to the working electrode surface [34]. However, due to their sensing methodology,
some of these sensors have a narrow detection spectrum with a high sensitivity only to
a limited number of electrochemically active gases [36]. Several groups have explored
the potential of different categories of electrochemical sensors for the detection of VOCs
and odorant molecules. For instance, Buttner et al. [67] have demonstrated the usability
of an amperometric sensor for in situ detection of explosives in soil. Barou et al. [68]
presented a proof of concept for the detection of odorant molecules using square wave
voltammetry. Liu et al. [69] designed an olfactory biosensor based on electrochemical
impedance spectroscopy (EIS). Also using EIS technique, Hou et al. [70] were able to detect
odorant molecules by monitoring the electrical properties of a Langmuir-Blodgett film
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containing OBPs. In another study [71], employing the same electroanalytical method, the
team reported a novel odorant detection strategy using a rat olfactory receptor. As a part
of the European project SPOT-NOSED, Akimov et al. [72] worked on the development of
nanobiosensors that consist of a single olfactory receptor anchored between nanoelectrodes
that detects odorant binding using EIS.

2.3. Field Effect Transistor (FET)

There are several types of FET gas sensors, including thin-film transistor, catalytic
metal gate FET, suspended gate FET, capacitively coupled FET and horizontal floating-gate
FET. The transduction principle of these devices is mainly based on the modulation of
the threshold voltage or the drain source current. Each type of FET sensor has a specific
structure, sensing mechanism and characteristics with different advantages and drawbacks.
Hong et al. [73] recently published a paper that explains and reviews the operating principle,
features and performance of each type of FET sensor.

Many research groups have studied and explored this type of sensor for VOC detec-
tion applied to different areas and using various types of sensing materials. For example,
Haick’s group has extensively worked on the development of silicon nanowire field ef-
fect transistors (SiNW FET). The SiNW FET surfaces were modified with different types
of organic molecules in order to detect different kinds of VOCs and specially disease
biomarkers [74–76]. Park’s team developed a highly sensitive FET based bioelectronic
noses using single walled carbon nanotubes or polypyrole nanotubes conjugated with
human ORs [65,77]. Johnson’s group designed and studied VOC sensor arrays using DNA-
decorated carbon nanotubes FETs [78–80] and graphene FETs [81]. Kotlowski et al. [82]
described an olfactory biosensor employing reduced graphene oxide FET functionalized
with OBPs. Liao et al. [83] demonstrated that organic thin-film-transistors are suitable for
electronic nose development.

2.4. Gravimetric or Piezoelectric Sensors

Two types of piezoelectric sensors are mainly used for VOC and gas detection: surface
acoustic wave (SAW) sensors [8,35] and bulk acoustic wave (BAW) also called quartz crystal
microbalance (QCM). A SAW sensor, in delay line configuration, basically consists of two
inter-digitated transducers (IDTs) placed on top of a piezoelectric substrate such as quartz
or Lithium niobate. To detect target molecules, a sensitive membrane (e.g., conducting
polymers, lipids, biomolecules, etc.) is deposited between the IDTs [8]. A QCM sensor
comprises a quartz disc coated with two gold electrodes connected to either side of the disc
and a layer of sensitive material [35]. Despite their structural differences, both sensors have
similar transduction principles. They detect odorant molecules by measuring variations
in the resonant frequency caused by a change in mass after VOCs adsorption [8,31,32].
When an alternating voltage is applied across the piezoelectric element, it oscillates at a
specific frequency driven by its mechanical properties [31]. This produces 2-dimentional
acoustic waves (Rayleigh waves) that propagate along the surface at a frequency between
100 and 400 MHz in SAW sensors. Whereas, in QCM devices, 3-dimentional waves that
travel through the bulk at a frequency of 10 to 30 MHz are generated [31].

QCM and SAW sensors have short response time and they are able to work at room
temperature. Moreover, the detection spectrum of these devices can be tailored by mod-
ifying their sensitive membrane (the sensing materials) [8]. However, they suffer from
complex circuitry and limited multiplexing capacity for large sensor array system. Addi-
tionally, the coating technologies are poorly controlled resulting in sensors having poor
batch-to-batch reproducibility [31]. To tackle this issue, Chevalier et al. [84] showed that di-
amond nanoparticles can promote homogenous and reproducible coating of SAW sensors.
A large number of studies have focused on the development of SAW and QCM based gas
sensors and eNs using various sensitive materials. Rapp et al. [85] presented an improved
array of eight SAW sensors for the detection of organic gas and an in-built multiplexing
technique that allows an easy optimization of signal to noise ratio. They expanded the
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choice of coatings for the SAW sensors and improved the sensor to sensor reproducibility
for a certain coating material. Matatagui et al. [86] recently designed a portable low-cost eN
based on SAW sensors and using ferrite nanoparticles as sensing materials for the detection
of BTX (benzene, toluene and xylene), which are hazardous gases. Panigrahi et al. [87]
worked on the detection of a VOC associated with Salmonella contamination in meat using a
QCM system coated with synthetic polypeptides. Compagnone et al. reported a QCM sen-
sor array using peptide modified gold nanoparticles for the detection of food aromas [88].
In another study [89], they have investigated the use of metallo porphyrins coated QCM
platform for quality control of chocolate. Likewise, Di Natale et al. [90] designed an array of
eight QCM sensors coated with metallo porphyrins for the detection of lung cancer. Park’s
group [91] and Wang’s group [92,93] have developed QCM and SAW olfactory biosensors
by employing ORs as sensing materials. Furthermore, several studies have explored the
performance of QCM based sensors coupled to molecularly imprinted polymers (MIPs) for
the detection of VOCs [30].

Other types of gravimetric sensor systems based on film bulk acoustic resonator [94–96],
cantilevers [97–101], capacitive micro-machined ultrasonic transducer [102,103] have also
been explored and optimized for the detection of VOCs. The following reviews [34,42,43,104]
provide more details about these sensors and bring together different research articles that
focus on the development of this technique.

2.5. Optical Sensors

This category of sensors detects odorants by measuring variations in the optical
properties (e.g., refractive index, fluorescence, absorbance) of the sensing material by
monitoring light properties modulation (e.g., wavelength, intensity, phase). They involve
the use of a large assortment of techniques including different categories of optical fibers
and a diversity of light sources and light-sensitive photodetectors [24]. Depending on the
operating principle (i.e., the optical property that is monitored), it is possible to distinguish
among several types of optical sensors, each having advantages and drawbacks. It is
important to mention that optical spectroscopy (near infrared, infrared, Raman, etc.) is also
very promising for gas sensing. Herein, it is not in the scope of this paper and thus will not
be considered. More information can be found in a recently published review [105].

The simplest optical sensors effective for electronic nose development are colorimetric
sensors. These sensors are based on the measurement of UV−vis absorbance or reflectance
and involve the use of chemoresponsive dyes (chromophore) such as metalloporphyrins
that will change color upon exposure to VOCs [106]. They have the advantages of being low
cost, easy to manufacture and allow real-time multiplexed monitoring of VOCs. However,
their main drawback is that they do not offer quantitative measurements [107]. Suslick’s
group pioneered this technique. They have extensively developed this type of sensors
with a large number of published articles where they showed efficient detection of VOCs
with very low detection limit for different applications [46]. Hou’s group also developed a
colorimetric sensor array for the detection of aldehydes and lung cancer biomarkers [108]
and for the discrimination of Chinese liquors [109].

Fluorometric or fluorescent sensors are more sensitive than colorimetric sensors and
involve the use of fluorophores. They can be categorized into different types based on
the fluorescence parameter that is measured (e.g., fluorescence intensity, anisotropy, life-
time, emission and excitation spectra, fluorescence decay, and quantum yield) [24,46,110].
Walt and co-workers pioneered multiplexed fluorescent sensors combined with optical
fibers [111]. Indeed, fiber optic platforms are widely used for optical sensor development
thanks to their attractive features, including remote and multiplexed sensing capabil-
ity, biocompatibility, miniaturized structure, light weight, flexibility and immunity to
electromagnetic interference [112]. Another main advantage of these systems lies in the
temporal response obtained with the kinetic information compared to the equilibrium
response obtained with most other sensing technologies. In the field of VOC detection,
Walt et al. [111,113] developed an array of optical fibers with a solvatochromic dye (Nile



Biosensors 2021, 11, 244 9 of 43

red) encompassed in different polymer matrices with diverse polarity, flexibility, hydropho-
bicity, pore size and swelling tendency in order to obtain sensors that interact differently
with VOCs. The sensitive polymer/dye combinations were deposited at the distal end of
the fiber. Changes in the fluorescence intensity at a given wavelength upon the exposure to
VOCs were recorded over time thanks to a CCD camera. In another study [114,115], they
developed an array of fluorometric fiber optic-based sensors (FOS) where the fluorescent
dyes were incorporated into different classes of microbeads. The beads were then immo-
bilized in microwells at the tip of the imaging fiber. Kang’s group also developed fiber
optic-based fluorometric sensors for VOCs detection [107,116,117]. In particular, the team
presented an array of five FOSs using four different types of solvatochromic dyes and two
different polymers to form sensitive membranes. The sensing materials were deposited on
side-polished optical fibers and pulse width modulations were measured as a response to
VOCs [116]. More details and examples about colorimetric and fluorometric sensors can be
found in the following reviews [35,46,114,118].

Another important family of optical sensors is based on surface plasmon resonance
and involves the excitation of surface plasmons that are extremely sensitive to variations
in the refractive index of the sensing materials. In 1982, Nylander et al. [119] investigated
the possibility of employing SPR as a transduction technique for gas detection. Using an
organic film as a sensing material, their system demonstrated a sensitivity to halothane in
the parts per million (ppm) range. Since then, this optical sensing technique has gained
substantial popularity. Owing to its prominent attractive features, namely, high sensi-
tivity, label free detection and real time measurements, SPR constitutes a very powerful
tool for sensor development comparing to other optical techniques. It has proven to be
very useful for monitoring and studying interactions and affinities especially between
biological elements (e.g., antibody-antigen, ligand-receptors). Consequently, SPR has been
extensively employed for a large number of applications including diseases diagnosis,
drug discovery and other bioanalysis [120,121]. Additionally, SPR sensors have been used
for the detection of chemical species such as VOCs. Indeed, many research groups have
developed efficient gas sensors, olfactory biosensors, and electronic nose systems using
SPR as sensing technique. This will be the focus of the following section of the review. To
illustrate the progress in this domain, examples of studies with different SPR coupling
configurations will be presented and discussed.

3. Propagating SPR-Based Gas Sensors and Electronic Noses

The SPR phenomenon was first observed by Wood [122] in 1902. In his study, he
pointed out inexplicable peculiarities in the spectrum of light diffracted by a diffraction
grating. To understand this phenomenon, in 1941, Fano [123] re-examined Wood’s observa-
tions and showed that the anomalous diffraction pattern was caused by the excitation of
“polarized quasi-stationary waves” present at the surface of the metallic gratings. In 1952,
Pines and Bohm [124] suggested that the energy losses of fast electron passing through foils
were caused by the excitation of plasma oscillations or “plasmons” i.e., oscillations of the
electronic density in the conducting media. Hereafter, this energy loss and its association
with surface plasma oscillations were studied by Ferrell and Stern [125,126], Ritchie [127],
Powell [128] and many others. In 1968, Otto [129] presented a method for the excitation of
nonradiative surface plasma waves and showed that it resulted in a strong attenuation of
the reflected light intensity. Moreover, in the same year, Kretschmann and Raether [130]
described another configuration that enabled the excitation of the nonradiative surface
plasmons (SPs).

A plasmon corresponds to the collective oscillation of the free electrons in a noble
metal [131]. Surface plasmons are collective oscillations of electrons that take place at the
interface between two media having dielectric constants of opposite signs typically a metal
(e.g., gold, silver) and a dielectric (e.g., air, water) [132]. The SPs are not arbitrary events,
they occur upon the excitation or coupling to an electromagnetic photon wave (i.e., light).
In fact, when a photon beam interacts with the free electrons of a metal, these electrons will
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respond by coherently oscillating in resonance with the light wave. This phenomenon is
known as surface plasmon resonance and corresponds to the excitation of the SPs.

SPs can be classified into two categories: propagating or localized.
Propagating SPs, also known as surface plasmon polaritons (SPPs) or surface plasma

waves (SPWs), are typically produced at the surface of thin metallic layers. SPPs can be
considered as electromagnetic waves that propagate along the planar surface of a metal
interfacing a dielectric (Figure 3a). The excitation of the SPs in such structures requires the
use of coupling elements (e.g., prism, waveguide, gratings) that allow to achieve resonance
or matching conditions leading to SPR.
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Figure 3. Schematic representation of (a) propagating surface plasmon (SP) and (b) localized surface plasmon.

On the other hand, localized surface plasmon resonance (LSPR) occurs when light
interacts with metallic nanostructures (e.g., gold nanoparticles) that are smaller than the in-
cident wavelength [133,134]. The electric field of the light causes the localized free-electrons
in the nanostructure to oscillate with a specific frequency. When the electron cloud is dis-
placed relative to the nuclei a restoring force, generated by the Coulomb attraction between
the electrons and the nuclei causes the electron cloud to oscillate relative to the nuclear
framework [135] (Figure 3b). This has three main consequences: an enhancement in the
local electromagnetic field near the particle’s surface and a strong light scattering as well as
a sharp spectral absorption with a maximum at the plasmon resonant frequency [136]. For
gold nanoparticles (size ranging from few to hundreds of nanometers), a strong absorption
pic is observed in the visible light leading to their red color in solution [136]. Unlike
the SPR phenomenon, which takes place at the surface of a metallic film, LSPR does not
require coupling elements and does not propagate hence its localized character. However,
it is likewise sensitive to changes in the local dielectric environment. In particular, the
extinction peak (namely the resonance wavelength) is highly affected by the refractive
index of the surrounding. Thus, for sensing applications, molecular interactions occur-
ring at the surface of the nanoparticles are typically detected by monitoring shifts in the
LSPR wavelength [137]. LSPR sensing platforms consist of either metallic nanoparticles
(e.g., nanospheres, nanorods, nanostars), suspended in solution or deposited on a solid
support, or micro- and nano- fabricated metallic structures arrays on a solid support (e.g.,
nanopillar array) [138]. The LSPR peak wavelength can be tuned corresponding to the
desired application by modifying the size, shape and material of the nanostructures, which
represents an advantage for sensor development [137]. Thanks to the improvement in
nanofabrication, various LSPR-based nanosensors have been developed for diverse appli-
cations including the detection of various biomolecules such as DNA, disease biomarkers,
hormones, amino acids etc. [137,139–141], and different chemical compounds such as
inorganic gases [142,143] and VOCs [2,144–146].
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In the present review, we will exclusively focus on propagating SPR-based sensor
developed for the detection of VOCs. In the literature, a considerable number of reviews
and articles that describe and explain the theory behind this phenomenon (propagating
SPR) as well as its application for sensor devices can be found [121,147–154].

In the following sections, we will first present a brief theoretical overview of prop-
agating SPR. Then, we will make a comprehensive review of the progress made in the
development of gas sensors and electronic noses that employ this technique. In particular,
the different systems will be classified based on their coupling configuration.

3.1. The Theory of Propagating SPR

Let us consider a semi-infinite metal with a frequency dependent complex permittivity
or dielectric function εm and a semi-infinite dielectric with a permittivity εd, separated
by a planar interface. The solution of Maxwell’s equations under appropriate boundary
conditions suggests that s-polarized surface oscillations cannot be supported by this type
of interface. Consequently, SPWs are transverse-magnetic (TM) or p-polarized waves, i.e.,
their magnetic field vector is parallel to the interface and perpendicular to the propagation
direction [121,154]. Moreover, the existence of surface plasmon requires that the real part
of εm is negative and its absolute value is greater than εd. At optical wavelength (visible
and near infrared), this condition is satisfied for various metals including gold which is
commonly used for sensor applications [153]. From the analysis of Maxwell’s equations, it
is also possible to derive the frequency dependent wavevector also called the dispersion
relation or propagation constant of the SPW on a smooth surface that is given by [151,155]:

kSPP =
ω

c

√
εdεm

εd + εm
(1)

where ω/c is the free space wave vector of an optical wave.
The propagation of SPWs along the interface undergoes strong attenuation due to

high Ohmic losses in the metal which, consequently, limits the propagation length [149].
This damping is associated with the imaginary part of the wavevector that depends on
the metal’s permittivity at the oscillation frequency of the SPW [121,149]. The propagation
length along the interface is a few microns or even a few tens of microns depending on the
metal and the excitation wavelength used [147]. This length can be expressed as [149]:

LSPP =
1

|2Im{kSPP}|
(2)

Confined at the vicinity of the interface, the electromagnetic field associated with the
wave decays evanescently into the metal and the dielectric. However, as shown in Figure 4a
the distribution of this field is asymmetric and mostly concentrated in the dielectric [148].
This disparity in the penetration depth is due to the fact that the dielectric constant of
the metal is greater than that of the dielectric. The field decay from the surface in the
adjacent medium is determined by the dispersion relations of the SPW in the direction
perpendicular to the interface (i.e., in the dielectric kzd and in the metal kzm) [155]:
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in dielectric;
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m
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in metal.
(3)
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The decay length also called penetration depth or skin depth of the SPW in the adjacent
medium corresponds to the distance from the interface at which the intensity of the field
falls to 1/e of its maximum value [148,155]. This value can be expressed as [155]:

Lzi =
1

|Im{kzi}|
with i = metal or dielectric (4)

To give an order of magnitude, the penetration depth is a few hundred nm (~200 nm)
in the dielectric and a few tens of nm (~25 nm) in the metal [147].

The excitation of surface plasmons or the generation of SPWs at the planar interface
requires special configurations. Indeed, for the same frequency, the propagation constant
(the wavevector) of the surface plasmon at the metal-dielectric interface (black solid line) is
higher than the wavevector of photons in the dielectric (blue solid line) (Figure 4b). This
mismatch has two consequences. First, the SPPs cannot radiate in light, and are bound
to the surface. Second, they cannot be directly coupled or excited by a conventional light
illuminating the metal/dielectric interface. Attenuated total reflection (ATR) or diffraction
endows the excitation wave with additional momentum to overcome the mismatch and
excite SPPs. In practice, this can be achieved using different coupling systems (couplers)
such as prim, waveguide and grating couplers [121,147–149]. The excitation of the SPPs
manifests itself by a resonant transfer or absorption of the incident light energy resulting
in SPR.

As mentioned earlier, SPR is extensively used as transduction technique for optical
sensor development and enables the detection of analytes by monitoring changes in the
refractive index (nd) or permittivity (εd with εd = n2

d) of the dielectric where the sensing
material is deposited. Indeed, since the electromagnetic field of the SPWs is mostly con-
centrated in this medium, the propagation constant of the wave is strongly affected by its
optical properties, namely, its refractive index. The characteristics of the exciting light (i.e.,
its intensity and phase), are altered upon the interaction with the SPPs and, thus, variations
in these parameters can be correlated with changes in the propagation constant of the SPWs
and thus the refractive index of the dielectric. In other words, binding-induced modulation
in the refractive index at the sensor surface and, consequently, the propagation constant of
the SPWs can be detected by measuring changes in the output light properties. Finally, it is
worth noting that, since the penetration depth of the field in the dielectric is few hundreds
of nm (~200 nm), the SPR can only detect binding events taking place below this limit.

In the following parts, we present the different coupling strategies and review the
various studies that employed SPR for the detection of odorant molecules.
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3.2. Prism Coupler-Based Sensors

The excitation of SPPs via ATR and prism coupler was first demonstrated by Otto then
by Kretschmann and Raether. The Kretschmann configuration is the most commonly used
method. This configuration consists of a thin metal film usually gold (about 50 nm thick)
deposited on the surface of a prism on top of which the sensitive material is deposited. As
shown in Figure 5a, to provoke the coupling, the prism is illuminated with a p-polarized
light wave (since the SPW are p-polarized) at an incident angle greater than the critical
angle. When the light reaches the prism-metal interface, it is totally internally reflected
and an evanescent photon wave is generated at the interface [147]. The high refractive
index or permittivity εp of the glass prism allows to enhance the momentum or wavevector
of the evanescent wave that can thus excite the SPPs [156]. Resonance occurs when the
in-plane component of the incident light (photon) wave vector kph,x (red solid line), which
corresponds to the propagation constant of the evanescent wave, matches that of the SPWs.
Consequently, a transfer of energy from the incident light to SPWs occurs and is manifested
by a sharp dip in the intensity of the reflected light. To satisfy the matching conditions,
the angle of incidence or the wavelength of the exiting light can be adjusted since the
propagation constant of the evanescent wave is dependent on these parameters. The terms
resonance angle and resonance wavelength correspond to values of incident angle and
wavelength at which almost 100% efficient coupling and energy transfer are achieved [156].
The resonance condition can be expressed as [121]:

kph,x =
ω

c
√

εp sin θ = Re
{

kspp
}

(5)
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The same resonant conditions apply for the Otto configuration. The only difference is
that, in this configuration the metal film is separated by a small gap from the surface of the
prism [129].

In practice, for sensing applications, the sensitive materials are deposited on top of the
metal layer, which allows to customize the sensitivity and selectivity of the sensor. Four
main measurement methodologies are employed to detect the kinetic interaction of target
molecules with the sensitive materials: intensity interrogation, spectral or wavelength
interrogation, angular interrogation and finally phase interrogation [157].

In the first method (namely intensity interrogation), variations in the intensity of the
reflected light are monitored over time at a fixed wavelength (i.e., using a monochromatic
light source) and fixed incident angle (known as the working angle) (Figure 5). The work-
ing angle is usually chosen close to the resonance angle (θres) where small variations in
θres caused by modulation of the surface refractive index will result in large shifts in the
intensity of the reflected light. On the other hand, for spectral/wavelength interrogation,
a broadband or polychromatic light source is used to excite the SPPs at a fixed incident
angle and modulations of the resonance wavelength are monitored. Conversely, in the
case of angular interrogation, variations in the resonance angle are measured at a fixed
wavelength. Finally, for phase interrogation, shifts in the relative phase difference between
p- and s-polarization components are monitored at a specific wavelength and angle. This
last interrogation technique offers the highest sensitivity but suffers from a narrow dy-
namic detection range [158]. The different interrogation methods and especially intensity
interrogation allow for simultaneous monitoring of binding events occurring on multiple
sensors which is particularly beneficial for electronic nose systems. This multiplexing
technique is called surface plasmon resonance imaging (SPR imaging) [159].

Many gas sensors and eN systems can be found in the literature based on this con-
figuration and using a large diversity of sensitive materials including biological elements
(e.g., olfactory receptors, odorant binding proteins and peptides) and chemical elements
(e.g., polymers and calixarenes). The different systems can be classified into two categories
depending on the detection medium, i.e., in the liquid or in gas phase.

3.2.1. Detection of VOCs in Liquid Phase

Prism coupler-based SPR has been widely employed to develop biosensors/biochips
for the analysis of large biological molecules. However, it is often considered unsuitable or
limited for the analysis of low weight molecules such as VOCs (molecular mass < 300 Da)
in the liquid phase. To overcome this limitation, it is essential to couple the optical trans-
duction systems with appropriate sensitive materials in order to generate detectable signals
upon their interaction with VOCs. Different biological sensing materials (ORs, OBPs, etc.)
have been used for such applications. Very often, signal amplification strategies are needed
to obtain reliable SPR signals, which will be highlighted in this review.

Selected and improved by natural evolution, olfactory receptors are very attractive
candidates. Since their identification and isolation by Buck and Axel, these proteins have
been extensively studied [10]. Great research efforts has been made to deorphanize these
receptors [160] and improve their large-scale production that was found to be challenging
in some early works [161,162]. The use of OR as sensing materials for the development
of olfactory biosensor and eNs presents many assets including high sensitivity and se-
lectivity. In addition, they can be genetically modified to facilitate their purification and
immobilization. However, being transmembrane proteins, the presence of a lipid bilayer
environment is crucial to maintain their three-dimensional structure and retain their activ-
ity when immobilized on sensor chips. This task has been a major drawback and challenge
for the development of OR-based olfactory biosensor. Nevertheless, several ingenious
strategies have been employed to provide the lipidic environment such as the use of plasma
membrane fractions, nanovesicles and nanodiscs [26]. Consequently, OR-based sensors
were proven to be effective for the detection of VOCs using different transduction systems
including QCM [92], FET [163], electrochemical [71].
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SPR platforms have also been associated with ORs. Pajot-Augy’s group [164] demon-
strated the possibility of using mammalian OR as sensing elements for highly sensitive
olfactory biosensors. In their study, they first co-expressed rat ORI7 and human OR17-40
and their associated Gαolf subunit in yeast cells. To maintain their structure, the ORs were
encompassed in membrane fractions that formed nanosomes with a diameter of approxi-
mately 50 nm. The nanosomes were then immobilized on a Biacore sensor chip L1, which
consisted of a gold-coated glass support functionalized by a covalently linked carboxylated
dextran polymer hydrogel grafted with long alkyl chains (Figure 6). Nanosomes were effec-
tively bound by those alkyl anchors. A BIAcore 3000 was used to perform measurements.
This type of setup allows the measurement of resonance angle shifts and consists of a
near-infrared LED light source for SPR excitation and a linear array of light sensitive diodes
to monitor the reflected light. As reported, no SPR signal was observed when VOCs were
injected alone due to poor signal/noise ratio. To solve the problem, an indirect ingenious
amplification strategy was designed. It consists of taking advantage of the presence of
Gαolf anchored to the nanosomes to monitor receptor activation by an odorant ligand,
through the desorption of Gαolf subunit from the lipidic bilayer. In such a way, when a
target odorant binds to the OR, the subunit is activated and then desorbs from the lipidic
membrane, resulting in a much stronger SPR signal, as illustrated in Figure 6. To trigger
this mechanism, VOCs were injected in the presence of guanosine-5′-triphosphate (GTP).
The study demonstrated that ORs retained their functionality in membrane fractions even
after immobilization and the obtained olfactory biosensor exhibited high sensitivity and
selectivity. The sensor chip kept the same activity level for up to eight injection cycles.
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Figure 6. (a) BIAcore sensor chip L1 functionalized with nanosomes. No surface plasmon resonance
(SPR) response was observed when nanosomes were stimulated either with odorant alone (b), or
guanosine-5′-triphosphate (GTP) alone (c), as compared to the control stimulated with water. The
SPR signal was only observed when odorant and GTP were injected simultaneously (d). The signal
relative to the release of the Gα subunit can be further enhanced four-fold by replacing GTP by
GTPγS (e) [164].

In a complementary study [165], using this SPR sensing strategy, they investigated
the molecular mechanisms underlying odorant detection, in particular, the role of OBPs
in the dynamic interactions between OR and odorant ligands. They showed that OBPs
play an active role in preserving the conformation and activity of OR especially at high
odorant concentration. This finding revealed another role of OBPs in olfaction, in addition
to their role in transporting odorants through the olfactory mucus. Importantly, their
study showed that SPR-based olfactory biosensors can be used not only for the analysis of
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odorant molecules, but also for the investigation of basic biologically relevant questions
in olfaction.

Furthermore, in collaboration with Jaffrezic-Renault’s team, they demonstrated the
importance of the surface chemistry on the performance of the system [166]. Human
OR17-40 modified with a cmyc tag on the N-terminus and its Gαolf subunit were co-
expressed in yeast cells (S. cerevisiae). The receptors carried by nanosomes were attached
to the sensor chip through specific antibody-directed immobilization using Anti-cmyc
monoclonal antibodies. Two strategies involving different biofilm architectures were
explored: one with controlled antibody orientation and the other with random orientation,
as illustrated in Figure 7. A Kretschmann-type SPR spectrometer NanoSPR-6 with two
optical channels and a diode light source (650 nm wavelength) was used to perform the
study. The response of the system was measured in terms of resonance angle modulation.
The setup included a double channel Teflon flow cell that allowed signal acquisition in
both custom and differential modes (delta between working and reference channels). They
showed that the density of nanosomes and the multilayer bulk thickness are crucial factors
for the performance of the olfactory biosensor. The biofilms prepared following the first
surface chemistry strategy had higher thickness and nanosome density. However, the
corresponding olfactory biosensor exhibited a lower sensitivity for the target odorant
molecules compared to the OS based on the second surface chemistry. Indeed, the second
strategy provided biofilms with lower thickness and higher porosity that allowed a better
accessibility of Gαolf to GTPγS, and thus, increased sensitivity.
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Another strategy to exploit the potential of OR for sensing applications is to use
so-called artificial olfactory cells, which are genetically modified cells that express olfactory
receptors. Park’s team developed a sensitive and selective SPR-based olfactory biosensor
using whole cells expressing olfactory receptors ORI7 as sensitive materials [167]. The
cells were attached to a gold-coated glass slide using poly-D-lysine. The slide was put into
optical contact with a prism using a refractive index matching fluid. A p-polarized laser
light with a wavelength of 670 nm was used as the probe beam. Thanks to a photodiode
detector, variations in the reflected light intensity were monitored as a response to analytes.

In this system, the SPR signal was not directly ascribed to the conformational change
of the OR or to the desorption of the Gα subunit. In fact, the olfactory receptors expressed
on the surface of the cell were not in the detectable range of the SPR (approximately 200 nm
above the gold surface), since the size of the cell was several micrometers. However, the
G-protein transduction cascade induced by odorant binding generated changes in the
intracellular components, mainly with an increase in Ca2+ ions. Such changes generated a
variation in the local refractive index consequently leading to an SPR signal. In a previous
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study [168], the group had already demonstrated the feasibility and effectiveness of such
a system (i.e., an SPR-based sensor with artificial olfactory cells expressing OR) for the
detection of odorants (Figure 8).
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Figure 8. Principle of cell-based measurement of odorant molecules using SPR. An olfactory cell
expressing OR was adhered to the gold surface of the sensor chip, and activated by odorant molecule
diacetyl. The specific binding of diacetyl to the OR triggered the G protein transduction cascade
inside the cell and thus an SPR signal [168].

Although the cell-based olfactory biosensor is very interesting, it is limited by the
short lifetime of the sensitive materials. In addition, the system is easily influenced by
environmental conditions. Therefore, in another work [169], Park’s team explored a
different strategy to provide a natural lipidic environment to maintain the stability and
biological function of ORs and that is to use liposomes (Figure 9). They controlled the
size of the liposome to 40–50 nm, making them fall within the detectable range of the
SPR. The liposomes were then immobilized on the poly-D-lysine-coated SPR sensor chip.
Their study demonstrated that the reconstituted ORs carried by liposomes were effective
sensitive materials for odorant detection.
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Figure 9. Schematic diagram of reconstitution of OR and SPR analysis. The partially purified OR
was reconstituted using lipid/detergent mixed micelle and immobilized on the gold surface of SPR
to detect the odorant binding [169].

In a similar work, Sanmartí-Espinal et al. [170] prepared nanovesicles from yeast mem-
branes, with a size of about ~100 nm in diameter, to carry ORs as sensitive materials. Their
SPR-based olfactory biosensor had good selectivity. Based on the SPR signal, they even
tried to quantify the number of odorants that interacted with a given olfactory receptor.
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In addition to ORs, odorant binding proteins also have great potential as sensitive
materials in the field of olfactory biosensors. OBPs are small proteins (~20 kDa) highly con-
centrated in the nasal mucus of vertebrates [171] and in the sensory lymph of insects [172].
Vertebrate OBPs belong to the lipocalin family, characterized by β-barrel structure with
eight antiparallel β-sheets that enclose a hydrophobic binding cavity for odorants also
known as calyx [173]. Thanks to their binding pocket, OBPs can reversibly bind odorant
with micromolar dissociation constant and a broad affinity spectrum (i.e., can interact with
different chemical classes) [173]. These proteins are thought to act as shuttles that facilitate
the transport and diffusion of hydrophobic odorants across the aqueous mucus to reach
the olfactory receptors [174].

Unlike ORs, OBPs are soluble proteins, and thus, do not require a lipidic environment.
This also facilitates their large-scale production and purification. They exhibit good sta-
bility to high temperature and pH variations, as well as low susceptibility to proteolytic
degradation [27]. Moreover, they have a broad specificity and can be genetically modified
to tailor their binding properties or facilitate their immobilization. Despite their high
stability, maintaining the activity of these proteins over time after their immobilization on
the sensor chip and/or after exposure to VOCs is challenging especially in a dry working
environment. Nevertheless, many studies have largely investigated the suitability of these
sensitive materials for the development of olfactory biosensors and eNs. Indeed, OBPs
have been coupled to different transduction platforms (e.g., SAW [175], FET [176]) and
their performance were evaluated in both liquid and gas phase [26].

Recently, our team successfully demonstrated the feasibility of a SPR-based OS with
OBPs as sensing elements [177]. For that study, three rat OBP3 derivatives with customized
binding properties were designed and produced, including OBP3-w, OBP3-a and OBP3-c.
The first protein corresponded to the wild type form while the two others were genetically
modified mutants. Thanks to site-directed mutagenesis, the binding affinities of the OBPs
were customized by varying certain amino acid residues of their binding site. OBP3-a was
tuned to have good affinity for aldehydes by introduction of a lysyl residue, while OBP3-c
was modified with bulky amino acids to block the binding pocket. Consequently, it could
no longer interact with VOCs and was used as negative control. The recombinant proteins
were all expressed in E. coli. They were immobilized by self-assembly on gold-coated
prism by means of a cysteine group that was introduced to their N-terminus, located
on the opposite side of the binding cavity. This functionalization strategy allowed easy
and orientation-controlled protein immobilization with the OBP at the vicinity of the
gold surface. The SPR measurements were performed using a commercial SPR imaging
apparatus (SRRiPlex from Horiba). The microarray was illuminated with p-polarized light
at 663 nm wavelength. The intensity modulation of the reflected light at a fixed working
angle of all the sensors was monitored simultaneously thanks to a CCD camera upon
addition of VOCs (Figure 10).

The obtained SPR-based olfactory biosensor had a very low detection limit (DL), e.g.,
200 pM for the odorant β-ionone. This result is among the lowest DL reported in the
literature. Moreover, the SPR system was able to detect odorants with a molecular weight
of 100 g/mol (hexanal) which is lower than DL in mass commonly admitted for commercial
SPR imaging, namely, 200 g/mol. Indeed, the intensity of the SPR signal obtained could
not be explained solely by the increase in mass after the binding of VOCs on the chip. It
is very likely that the binding of VOCs to OBPs induced a conformational change, which
led to a variation of the local refractive index with amplified SPR imaging signals. This
was possible thanks to our functionalization strategy that enabled the immobilization of
the OBPs at the vicinity of the gold surface. Moreover, at low VOC concentration, the
olfactory biosensor exhibited an extremely high selectivity with great potential for trace
VOC detection.
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Figure 10. Schematic representation of the SPR-based olfactory biosensor with odorant binding
proteins (OBPs) as sensing elements. The three rat OBP3 mutants were immobilized on the gold
surface of a prism and their interaction with volatile organic compounds (VOCs) was monitored by
SPR imaging.

Biomaterials unrelated to the olfactory system were also used as sensitive materials.
Dung et al. developed an efficient SPR-based olfactory biosensor for the detection of
toluene using the toluene binding domain (TBD) [178]. TBD belongs to the TodS protein
present in the bacterium Pseudomonas putida. In this study, a direct immobilization strategy
was also employed by introducing three cysteine residues to the N-terminus of the TBD
protein. This allows, on the one hand, to control the protein orientation to ensure good
accessibility of the binding pocket, on the other hand, to detect SPR signal induced by the
conformational change of TBD upon toluene binding. Shifts in reflected light intensity were
monitored by a photodiode receptor as a response to analytes. The TBD-based olfactory
biosensor showed not only good sensitivity for the target VOC, with DL at 15.62 µM, but
also high specificity, with no response for other aromatic hydrocarbons, such as p-xylene
and benzene.

The Table 1 summarizes the conditions for VOCs detection of SPR-based olfactory
biosensors and their performances in liquid phase.

3.2.2. Detection of VOCs in Gas Phase

The first studies showing the feasibility of prism coupler-based SPR for gas detection
date back to the early 1980s [119,179]. However, very few examples were reported in the
literature before 2000 [180–184]. These systems were limited in terms of sensitivity and
selectivity based on only one or few sensitive chemical layers. Since 2000, an increasing
number of articles can be found in the literature using both biological and organic sensitive
materials [185–204]. It has been demonstrated that SPR is very effective for sensing VOCs in
the gas phase. In fact, when using air as the analysis medium, the detection noise remains
relatively low thanks to the low optical index of this medium. Consequently, the binding
of the small VOCs can generate reliable SPR signal with very high signal/noise ratio.

For the development of SPR-based olfactory biosensors and eNs for VOC detection
in the gas phase, the use of biomolecules such as ORs and OBPs as sensitive materials is
limited by their stability under such conditions. Their peptide analogues are particularly in-
teresting alternatives. Indeed, peptides, and in particular, short ones, do not require specific
conditions (i.e., humidity, temperature, phospholipidic matrix) to maintain their activity.
Moreover, they are much easier to produce and immobilize onto a sensing platform.
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Table 1. SPR-based olfactory biosensors in the Kretschmann configuration for the detection of VOCs in liquid phase.

Interrogation Amplification Strategy Sensing Material Performance Refs.

Resonance angle
Desorption of the Gαolf

subunit and possible
conformation change

Rat ORI7
Human OR17-40

(Carried by nanosomes)

• Conservation of the binding affinity
=> high selectivity

• Repeatability: up to eight activation
cycles

[164]

Resonance angle
Desorption of the Gαolf

subunit and
conformational change

Human OR17-40
(Carried by nanosomes)

• Conservation of the binding affinity
=> high selectivity to helional

• Stability: two days
[166]

Reflected light
intensity

G-protein transduction
cascade

Rat ORI7
(Carried by artificial

olfactory cell)

• Conservation of the binding affinity
=> high selectivity to octanal

• Octanal detection limit: 0.1 mM
[167]

Reflected light
intensity

Possible
conformational change Three rat OBP-3 mutants

• Very low detection limit in
concentration: 200 pM for β-ionone
and in molecular weight of VOCs:
100 g/mol for hexanal

• Higher selectivity at low
concentration of VOCs

• Repeatability from measurement to
measurement and from chip to chip

• Lifespan up to almost two months

[177]

Reflected light
intensity

Possible
conformational change

Toluene binding domain
(TBD)

• High selectivity and sensitivity to
toluene (detection limit: 15.62 µM) [178]

Recently, our group developed an innovative optoelectronic nose using biomimetic
peptides based on SPR imaging for the detection of VOCs in the gas phase [185]. For this
purpose, a homemade SPR imaging system based on the Kretschmann configuration was
constructed, shown in Figure 11. A polarized LED light beam with a 632 nm wavelength
was used to excite SPs and a 16-bit CDD camera was used to simultaneously monitor the
reflectivity of all the sensors on the chip in real-time. Variation in the reflectivity at a fixed
working angle was measured over time upon the exposure of the sensor microarray to
VOCs, providing a temporal response.
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Figure 11. Schematic presentation of the home-made SPR imaging setup.

Such an SPR imaging system is very promising for the development of eN. First, a
chip consisting of a large sensor array can be easily prepared and used. The number of
sensors is only limited by the resolution of the microarray printing of the sensitive materials.
Second, thanks to the imaging mode, the interactions between VOCs and all sensors can be
simultaneously monitored using the same instrument. Finally, SPR imaging can provide
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temporal responses with additional kinetic information compared to a simple equilibrium
response obtained with most of the existing eNs.

The peptides were all terminated by a cysteine for their direct immobilization on
the gold surface of prism. Thanks to their diverse physicochemical properties and cross-
reactivity for VOCs, the obtained eN was found to be very effective in sensing VOCs
of different families. In particular, it exhibited extremely high selectivity, capable of
discriminating between VOCs differing by a single carbon atom. Additionally, it showed
good repeatability and stability under repeated use and prolonged storage.

In order to improve the performance of our eN, in another study [186], we investigated
the influence of the wavelength of the LED on the sensitivity of the system by combining
numerical simulations with experimental validation. The results showed that the angular
sensitivity increased with the wavelength but the angular linearity range decreased due to
the narrowing of the plasmon resonance curve at high wavelength. Therefore, a compro-
mise must be made to choose the optimal wavelength depending on the study purposes.
Under optimal conditions, the detection limits of our eN reach low parts per billion (ppb)
range for VOCs such as 1-butanol.

Furthermore, we investigated the optical contributions to the sensitivity of the SPR
imaging [187]. For this, an original characterization method, which was independent of the
carrier gas, was established for the SPR prism sensitivity based on pressure jumps [205].
In this work, the impact of different adhesive layer (Cr, Ti) as well as surface topography
on the system sensitivity was evaluated. It was found that even though slightly higher
sensitivities were theoretically achieved using Ti/Au prism, Cr/Au prisms were more
suitable for eN applications since they showed lower sensitivity variabilities, noise, and
signal drift due to better adhesive properties. Furthermore, the sensitivity loss due to Au
grain-related SPP damping was fully characterized and numerically validated to be free
from additional fitting parameters. The adsorption of water vapor was later characterized
for such Au surfaces to understand humidity related effects on the eN system. Finally, our
study showed that prism sensitivity decreased with increasing temperature [206].

In order to diversify the sensitive materials for eN development, in collaboration
with Compagnone’s team [191], we tested six novel penta-peptides and nine hairpin DNA
selected by virtual screening. Thanks to the complementarity of their binding properties,
the obtained eN was able to discriminate not only between VOCs of different chemical
families, but also VOCs from the same family with only 1-carbon difference such as
1-butanol and 1-pentanol.

Considering the outstanding potential of our eN system and its great ability to detect
and discriminate VOCs, a miniaturized version, called NeOse Pro, was further developed
by the company Aryballe. Using the same biomimetic peptide-based chip, Maho et al. [188]
demonstrated that NeOse Pro was even able to discriminate between two chiral forms
((R) and (S)) of Carvone and Limonene (Figure 12). Such performance is exceptional for
eN system.
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Figure 12. (a) Portable NeOse Pro and the experimental set-up for VOC sampling, (b) working
principal and (c) raw image of the prism surface with each spot corresponding to a sensor [188].
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NeOse Pro is a very promising tool for field analysis, although, as with most eNs,
its use for the headspace analysis of highly humid samples remains a challenge, since its
performance may be deteriorated by the presence of a high background signal generated
by water vapor from aqueous samples. Slimani et al. [189] have tackled this issue by using
a miniaturized silicon preconcentrator packed with hydrophobic adsorbent coupled to
the NeOse Pro (Figure 13). As a result, the eN showed not only a great improvement in
the detection limit (lowered by 125-fold) for target VOCs, but also an enhancement in the
discrimination ability demonstrated by the analysis of eight different flavored waters.

Biosensors 2021, 11, x FOR PEER REVIEW 22 of 45 
 

and signal drift due to better adhesive properties. Furthermore, the sensitivity loss due to 
Au grain-related SPP damping was fully characterized and numerically validated to be 
free from additional fitting parameters. The adsorption of water vapor was later charac-
terized for such Au surfaces to understand humidity related effects on the eN system. 
Finally, our study showed that prism sensitivity decreased with increasing temperature 
[206]. 

In order to diversify the sensitive materials for eN development, in collaboration with 
Compagnone’s team [191], we tested six novel penta-peptides and nine hairpin DNA se-
lected by virtual screening. Thanks to the complementarity of their binding properties, 
the obtained eN was able to discriminate not only between VOCs of different chemical 
families, but also VOCs from the same family with only 1-carbon difference such as 1-
butanol and 1-pentanol. 

Considering the outstanding potential of our eN system and its great ability to detect 
and discriminate VOCs, a miniaturized version, called NeOse Pro, was further developed 
by the company Aryballe. Using the same biomimetic peptide-based chip, Maho et al. 
[188] demonstrated that NeOse Pro was even able to discriminate between two chiral 
forms ((R) and (S)) of Carvone and Limonene (Figure 12). Such performance is exceptional 
for eN system. 

 
Figure 12. (a) Portable NeOse Pro and the experimental set-up for VOC sampling, (b) working prin-
cipal and (c) raw image of the prism surface with each spot corresponding to a sensor [188]. 

NeOse Pro is a very promising tool for field analysis, although, as with most eNs, its 
use for the headspace analysis of highly humid samples remains a challenge, since its per-
formance may be deteriorated by the presence of a high background signal generated by 
water vapor from aqueous samples. Slimani et al. [189] have tackled this issue by using a 
miniaturized silicon preconcentrator packed with hydrophobic adsorbent coupled to the 
NeOse Pro (Figure 13). As a result, the eN showed not only a great improvement in the 
detection limit (lowered by 125-fold) for target VOCs, but also an enhancement in the dis-
crimination ability demonstrated by the analysis of eight different flavored waters. 

 

(a) (b) (c)

(a) (b)

Figure 13. NeOse Pro and µ-preconcentration system coupling. (a) Experimental setup, with the
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of the preconcentration chip on the metalized side [189].

In a recent study, Fournel et al. [190] compared the performance of the NeOse Pro with
human olfaction. They found that the responses of the eN were not a mere reflection of
the chemical space of odorants, but rather, that semantic dimensions were also prominent,
similar to natural olfaction.

Besides biomolecules, chemical sensitive materials such as cavitands (calixarenes,
cyclodextrins) were also used for the detection of gaseous VOCs with prism coupler-based
SPR. They are very interesting for trapping VOCs thanks to their molecular structures with
cavities, whose sizes, shape and physicochemical properties can be tuned using a wide
variety of functional groups.

Daly et al. [192] ingeniously designed new cavitands containing a carboxylic acid
group at the upper rim of the cavity for the detection of organophosphorus vapors, and
in particular, the sarin nerve gas stimulant dimethylmethylphosphonate (DMMP). The
formation of a hydrogen bond between the COOH moieties and P = O group of DMMP was
expected. Two different cavitands with four alkyl feet (five carbons long) were produced
and studied. Both molecules had similar cavities but with the carboxylic acid group
pointing either out of or into the cavity. Their sensitivity to DMMP was compared with
that of fluoropolyol, a commonly used polymeric sensing layer for DMMP detection.
Cavitands and fluoropolyol layers were deposited on gold-coated glass slide by spin
coating and Langmuir-Blodgett technique for comparison. Both techniques allow for
the preparation of uniform and homogeneous thin films with a controlled thickness. To
perform measurements, a variable wavelength SPR setup in the Kretschmann configuration
was used. The interaction between the DMMP and the sensing layers was monitored by
measuring the shift in the SPR wavelength at a fixed incident angle upon the exposure to
analytes. The results showed that both cavitand layers exhibited almost the same sensitivity
and were able to detect ppb levels of DMMP with a rapid and reversible response. The
orientation of the COOH group had no effect on DMMP binding, but had strong impact on
water uptake. The cavitand-based gas sensor outperformed the fluoropolyol-based one
in terms of DMMP sensitivity and with less interference from water vapor and alcohol.
Therefore, such a gas sensor is promising for sensitive and specific detection for nerve gas
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agents. Moreover, the use of cavitands as sensitive materials for SPR based detection of
aromatic vapors was also reported by Feresenbet et al. [193].

In a recent study, Şen et al. [194] worked on the development of gas sensor for the
detection of VOCs and in particular acetone using synthesized tetranitro-oxacalix[4]arenes.
To perform the study, three nitro-substituted heterocalix[4]arenes were synthesized. Thin
films of the three sensing materials were deposited on a substrate by spin coating. Their
sensing properties for acetone, chloroform, toluene, ethanol and benzene vapors were
evaluated by SPR. A BIOSUPLAR 6 Model spectrometer was used to perform SPR measure-
ments. A p-polarized light with a wavelength of 632.8 nm was used to excite the SP. The
intensity of the reflected light at a fixed working angle was recorded by a photodetector as
a function of time upon the injection of VOCs. The sensing performance of the three films
were investigated at room temperature and the VOCs were carried by dry air to avoid the
effect of water vapor. As a result, two of the three thin films showed high sensitivity and
selectivity to acetone with a detection limit of 3.8 ppm. The system also exhibited a fast
and reproducible response with short recovery times (few seconds).

Other chemical sensitive materials such as polymers were also explored and combined
with prism coupler-based SPR for the development of gas sensor. Capan et al. [195] investi-
gated the performance of poly(methylmethacrylate) (PMMA) film as a sensitive material
for the detection of BTEX (benzene, toluene, ethylbenzene and m-xylene). PMMA films
with different thicknesses were deposited onto gold coated glass substrates by spin coating.
The different films were obtained by varying the concentration of the polymer solution and
the spin speed. The SPR measurements were performed using a Kretschmann type optical
setup and a p-polarized monochromatic light at a wavelength of 633 nm was used to excite
the SPs. Optical contact between the substrates and a semicylindrical prism was achieved
using an index-matching liquid. Two interrogation methods were used to monitor the
response of the system upon VOC injection: modulation in the reflection intensity over
time at a fixed working angle and shifts in the resonance angle. As a result, among all
the BTEX gases, benzene produced the highest SPR response when exposed to PMMA
films. Moreover, the response to the other VOCs was very low which indicated that the
gas sensor had high selectivity to benzene. Additionally, the team studied other sensitive
materials such as calix-4-resorcinarene films [196] and poly[3-(6-methoxyhexyl)thiophene]
derivatives films [197] for sensing BTEX and other VOCs using SPR.

Nanto et al. [198] also used synthetic polymer thin films as sensing membranes for
the detection of harmful gases such as ammonia and amines with an SPR-based sensor in
the Kretschmann configuration. An LED emitting at a wavelength of 660 nm was used
as light source and the reflected light was measured by a CCD camera. The response of
the system was measured in terms of modulation of the resonance angle as a function
of time upon VOC injection. The sensitivity of two types of polymers was investigated:
acrylic acid and styrene. A thin film (several tens of nm) of each polymer was deposited on
the gold-coated surface of a prism using plasma chemical vapor deposition (CVD). The
response of both membranes was tested against eleven harmful gases: ammonia, acetalde-
hyde, propionaldehyde, xylene, toluene, trimethylamine, triethylamine, dimethyamine,
hormaldehyde, acetic acid and butyl acetate. As a result, the gas sensor with the acrylic
acid membrane responded only to the basic gases (i.e., ammonia and amines) with high
sensitivity and selectivity. In contrast, the OS with the styrene membrane exhibited a
200 times lower sensitivity. The system with the acrylic acid membrane also exhibited a lin-
ear response for ammonia in the range of 50–300 ppm and with an estimated detection limit
of several ppm. Finally, the study showed that the thickness of the sensing membrane can
be optimized to improve the sensitivity. In another study, using a similar system, Nanto’s
team [199] successfully demonstrated the feasibility of multiplexing with a two-channel
odor sensor able to simultaneously detect ammonia and acetic acid with high selectivity.
The sensor was based on the same SPR setup but with two sensing membrane, namely,
acrylic acid and N,N-dimethylacetamide thin films deposited on one chip by CVD. Two
channels of the CCD camera were used to monitor the response to VOCs.
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To improve the sensitivity of polymer-based gas sensors, one strategy is to introduce
nanoparticles (NPs) such as gold NPs. According to the literature the incorporation of
Au NPs in SPR sensors could enhance the sensitivity of the device [207]. Indeed, with a
rational design, coupling between the localized surface plasmons of the Au NPs and the
propagating surface plasmons of the Au substrate may take place, which can result in a
larger plasmon angle shift and changes in reflectivity.

Sih et al. [200] developed an SPR-based gas sensor for the detection of alcohol vapors.
In the study, the performance of polythiophene (PT) films as a sensing material was
compared with that of Au NPs thin films capped with conjugated oligothiophenes. SPR
measurements were performed using a Kretschmann configuration setup and a p-polarized
light at a wavelength of 632.8 nm was used to excite the SPs. To prepare the chips, the Au
NP/oligothiophene (NPOT) film (~60 nm thickness) was electrodeposited on a gold-coated
glass slide and the PT film (~7 nm thickness) was deposited by electropolymerization.
The response of the sensors was monitored by measuring the shift of the resonance angle.
The performance of the two sensitive materials was tested upon exposure to vapors of
five solvents: hexanes, toluene, ethanol, methanol, and water. As a result, the PT layer
responded to ethanol, methanol and toluene whereas the NPOT film responded exclusively
to alcohols. Therefore, there was an improvement in selectivity in incorporating Au NPs.
However, in this study no significant improvement in sensor sensitivity was observed.

Another advantage of nanostructures for gas sensor application is the high surface
to volume ratio. Alwahib et al. [201] tested the efficiency of a SPR-based OS with a
reduced graphene oxide/maghemite (rGO/γ-Fe2O3) nanocomposite film as sensing layer
for hydrocarbon vapor detection. They used a kretschmann-based SPR setup with a
helium-neon (He-Ne) laser at 633 nm emission wavelength. A chopper and a polarizer
were used to generate the p-polarized excitation beam and a photodetector to monitor
the reflected light (Figure 14). Trilayer and bilayer sensing membranes were prepared
and compared. The former consisted of a nanocomposite layer (3 nm thick) sandwiched
between two gold layers (bottom layer: 37 nm thick, top layer: 2.7 nm thick). For the
latter, the rGO/γ-Fe2O3 film (3 nm thick) was deposited on top of a gold layer (49 nm
thick). The sensing membranes were placed on microscope glass slides and then brought
into contact with a high index prism using an index-matching liquid. The response of the
system, upon the exposure to acetone, ethanol, methanol and propanol, was monitored in
terms of modulation of the resonance angle. The SPR signal resulted from the adsorption of
hydrocarbon vapors that diffused through the pores of the sensing layer inducing a change
of the refractive index. As a result, the trilayer-based gas sensor showed higher sensitivity
to acetone compared to the other hydrocarbons. Furthermore, it was more stable and had
shorter response time comparing to the bilayer-based gas sensor. The authors concluded
that this improvement was due to the presence of the third gold layer, which promotes
better interactions.

Apart from the improvements of the SPR sensitivity by the optimization of the optical
parameters and the use of NPs as described earlier, other approaches have been proposed in
the literature based on active plasmonics to add active functionalities to SPR-based devices.
For example, Manera et al. [202] reported a study where magnetic field was used to control
the SPR. They compared the sensing performance of a magneto-optical SPR (MO-SPR)
sensor with that of a traditional SPR sensor for the detection of alcohol. A home-made setup
with the Kretschmann configuration was employed to perform the measurements and a
p-polarized light with a wavelength of 632.8 nm was used to excite the surface plasmons.
To prepare the MO-SPR sensor, a multilayer of Cr/Au/Co/Au was deposited on a glass
substrate. Then, a nanoporous TiO2 thin film, used as sensitive material was deposited on
top of the multilayer by glancing-angle deposition (GLAD). For comparison, a substrate for
classical SPR was also prepared by depositing the TiO2 layer on top of a gold-coated glass
substrate. Three VOCs were analyzed, including ethanol, methanol and iso-propanol. The
MO-SPR based gas sensor exhibited a significant improvement in sensitivity. Furthermore,
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its sensitivity was also much higher than that of their previous SPR-based gas sensor using
TiO2 thin films [203] and nanometric polyimide films [204].
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Figure 14. (a) SPR setup for detection of hydrocarbon vapor using trilayer Au-rGO/γ-Fe2O3-Au
sensor. (b) SPR signals of the acetone vapor detection using the reduced graphene oxide/maghemite
(rGO/γ-Fe2O3) sensing layer. (c) its resonance angle shift for increasing concentrations of different
hydrocarbon [201].

The Table 2 summarizes the conditions for VOCs detection of SPR-based artificial
olfaction systems and their performances in gas phase.

3.3. Wave Guide Coupler-Based Sensors

The fundamental coupling principle using a waveguide is similar to that of the prism,
whereby the excitation of surface plasmons is achieved by an evanescent wave generated
by ATR. To clarify the terms, an optical fiber is a special type of waveguide, and one
that is widely used. Indeed, fiber optics are less expensive than waveguides and have
good flexibility, remote sensing capability and other important features presented earlier.
The VOC sensors systems that will be presented in the following section will exclusively
involve the use of fiber optic SPR (FO-SPR) sensing platforms.

Fiber optic-based SPR sensors can be elaborated based on either transmission or
reflection configuration. A typical fiber optic consists of high refractive index material
(the core) sandwiched with a lower refractive index layer (the cladding) which allows
light guidance through a succession of total internal reflections (TIRs). In the case of
an FO-SPR in transmission configuration, a small region of the optical fiber cladding
is removed and replaced by a metal layer where the SPR phenomenon will take place
(Figure 15). In the reflection configuration, a thick metal layer deposited at the end of
the fiber allows for the SPWs generation and plays the role of a mirror. In both cases,
the sensitive materials are deposited on top of the metal layers. As with prism coupling,
resonance occurs when the propagation constant of the evanescent wave generated by ATR
of the guided mode matches the propagation constant of the SPWs [156]. In SPR-based
optical fiber sensors, most of the interrogation methods are based on the detection of loss
in the transmitted/reflected light at the resonance. Spectral or wavelength interrogation
of the transmitted or the back-reflected light is the most commonly used measurement
method. However, fiber-optic sensors based on intensity or phase interrogation have
also been reported [208]. Theoretically, the sensitivity of waveguide-based SPR sensors is
approximately the same as that of the corresponding ATR configurations [147].
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Table 2. SPR-based artificial olfaction systems in the Kretschmann configuration for the detection of VOCs in gas phase.

Artificial Olfaction
System Interrogation Sensing Material Performance Refs.

Electronic nose Reflected light intensity
(Imaging) Small peptides

• octanol detection limit (DL): below
1 ppm

• High discrimination ability (one
carbon atom resolution)

• Stability: at least three months
• Good repeatability

[185]

Electronic nose Reflected light intensity
(Imaging)

Penta-peptides and
hairpin DNA

• High discrimination ability (one
carbon atom resolution) [191]

Gas sensor Resonance wavelength Cavitands • High selectivity and sensitivity to
DMMP (DL: 16 ppb) [192]

Gas sensor Reflected light intensity
Three nitro-substituted

heterocalix[4]arenes
thin films

• High selectivity and sensitivity to
acetone (DL: 3.8 ppm)

• Fast and reversible response (few
seconds)

• Repeatability: from chip to chip and
up to four injection cycles

[194]

Gas sensor Reflected light intensity
and resonance angle

Poly(methylmethacrylate)
film

• High selectivity and sensitivity
to benzene

• Fast and reversible response
[195]

Gas sensor Resonance angle Acrylic acid and styrene
thin film

• Acrylic acid film: good selectivity to
ammonia (DL: several ppm) and
amines (trimethylamine and
trimethylamine

• Styrene film: poor selectivity to
tested gases

[198]

Gas sensor Resonance angle

Films of polythiophene
(PT) or gold nanoparticles
capped with conjugated
oligothiophenes (NPOT)

• PT film: responded to alcohol
and toluene

• NPOT film: responded only to
alcohols => high selectivity

[200]

Gas sensor Resonance angle
Reduced graphene
oxide/maghemite

nanocomposite film

• High selectivity and sensitivity
to acetone [201]
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The first fiber optic based SPR sensor with a conventional geometry (as the one
presented in Figure 15) and using spectral interrogation as measurement methodology
was proposed by Jorgenson et al. [209] in 1993 for a chemical sensing application. Since
then, a large number of studies have experimentally and/or theoretically explored diverse
geometry-modified single mode or multimode fibers including side and tip implemented
FOS, fiber gratings (e.g., long period fiber gratings and tilted fiber Bragg gratings) and
specialty fibers [208] (Figure 16). Different plasmonic coatings (e.g., gold, silver) have also
been explored. Moreover, configurations involving the excitation of SPPs on continuous
thin metallic layers (i.e., propagating SPPs) as well as those involving LSPR phenomena in
metallic nanoparticles at visible and near-infrared wavelengths have been reported and
reviewed [210].
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Figure 16. Schematic representation of the different plasmonic fiber-optic sensors I: (a) Unclad/etched/tapered fiber SPR
probe; (b) Hetero-core structure; (c) Side-polished/D-shaped SPR probe; (d) U-shaped SPR probe. II: (a) Flat fiber tip SPR
probe with end mirror; (b) Angle polished flat fiber tip SPR sensor; (c) Tapered tip SPR probe; (d) LSPR fiber tip probe.
III: (a) Wagon-wheel fiber SPR sensor with triangular hole geometry; (b) Microstructured optical fiber SPR sensor with
crescent-shaped holes; (c) Photonic crystal fiber SPR sensor with circular holes; (d) Microcapillary fiber SPR sensor geometry.
IV: (a) Etched Fiber Bragg Grating SPR sensor; (b) Long Period Fiber Grating SPR sensor; (c) Tilted Fiber Bragg Grating SPR
sensor [208].
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The effectiveness of these sensors has been extensively investigated for physical (e.g.,
temperature, humidity), chemical (e.g., pH, gas, VOCs) and biological (e.g., DNA, proteins)
sensing applications [156,208,210–214]. In the following section, we will focus on the FO-
SPR sensors with different configurations developed for the detection of VOCs. Just like
prism-based SPR sensor systems, most of the studies on FO-SPR sensors for the detection
of VOCs have been reported after the year 2000 [2,215–225]. Only a few papers were
published in the 1990s [226,227].

With the aim of achieving simple, low-cost and selective detection of aldehydes
(known as cytotoxic and carcinogenic compounds) present in the environmental water,
Cennamo et al. [215] developed an SPR sensor using plastic optical fiber (POF). To perform
the study, butanal was used as the target VOC and porcine OBP (pOBP) as the sensing mate-
rial. A plastic optical fiber consisting of a PMMA core of 980 µm and a fluorinated polymer
cladding of 20 µm was used to elaborate the sensing platform. For that, the cladding of the
POF along half the circumference and about 10 mm in length was removed. The exposed
core was then coated with a photoresist buffer (1.5 µm thick) on top of which a 60 nm gold
layer was deposited (Figure 17). For signal amplification purposes, a competitive assay
was designed. For this, instead of OBP, butanal moieties were immobilized on the gold
surface of the POF. Then, to test the detection performance, the sensor was exposed to
OBPs pre-incubated with/without butanal. Binding events were detected by monitoring
variations in the resonance wavelength. A halogen lamp with a wavelength emission range
from 360 nm to 1700 nm was used as light source and the transmitted light spectrum was
measured using a spectrum analyzer with a detection range of 200 nm to 850 nm. In a first
step, the sensor was subjected to OBP (not pre-incubated with butanal), an increasing re-
sponse was observed for increasing concentration of OBP. This result confirmed that pOBPs
bind to the butanal moieties fixed on the chip, which is a prerequisite for the competitive
assay. Next, the sensor was exposed to different concentrations of butanal pre-incubated
with a fixed concentration of OBP. The results showed that the lower the concentration
of butanal (in the pre-incubation solution), the higher the optical signal obtained. Indeed,
the lower concentration of butanal resulted in more free OBPs available to bind to butanal
moieties on the sensor surface. The obtained olfactory biosensor was able to detect butanal
in aqueous solution for concentrations ranging from 20 µM to 1000 µM.
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In a previous study [216] the team combined the SPR based POF platform with MIP
as sensing material to achieve selective sensing of explosives such as 2,3,6-trinitrotoluene
(TNT) in aqueous medium. The system exhibited a detection limit of 5.1 × 10−5 M and a
sensitivity of 2.7 × 104 nm/M. The authors concluded that despite its limited sensitivity,
the sensor was suitable for the detection of TNT with good selectivity. Additionally, the
system was easy to prepare and suitable for rapid measurements that did not require any
particular skill.
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Vandezande et al. [217], designed a FO-SPR sensor for the detection of alcohol vapors.
The sensor consisted of an optical fiber with a diameter of 400 µm, from which the inner
technology enhanced clad silica (TECS) cladding and the outer protective cladding had
been removed from the end. The exposed glass core was then coated with a 39 nm thick
gold layer. Metal organic frameworks (MOFs) and more specifically zeolitic imidazolate
framework (ZIF) were used as sensing materials and deposited on top of the gold layer
Figure 18. MOFs consist of metal ions or a metal oxide cluster interlinked by polydentate
linkers into a crystalline 3D framework. These porous materials have large surface area and
tunable pore size, which are attractive features for gas and VOC sensing applications [228].
ZIFs were selected among other MOFs because of their high chemical stability and their
small pore sizes. In this study, the sensing ability of two ZIF materials: ZIF-8 and ZIF-93,
was explored for the detection of different alcohol vapors including methanol, ethanol,
isopropanol, and n-butanol. The response of the system was expressed in terms of changes
in the refractive index converted from the SPR response. This made it possible not only
to monitor the mass and density changes during layer formation of the ZIFs, but also to
investigate sorption behavior of VOCs on these layers. The obtained FO-SPR sensors were
able to detect VOCs with ppm concentrations and with a detection limit of 2.5 ppm for
methanol. However, a significant drift was observed after extended analysis periods. In this
study, the authors claimed that the difference in recognition behavior of the hydrophobic
ZIF-8 and more hydrophilic ZIF-93 could be exploited to generate qualitative information
regarding the vapor composition.
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Figure 18. Schematic representation of a metal organic framework FO-SPR probe, not drawn to
scale [217].

Gupta’s group published several studies on the detection of VOCs and other odorant
molecules using FO-SPR sensors [218–220]. In one of these studies [220], they explored the
sensing ability of graphene-carbon nanotubes/poly(methyl methacrylate) (GCNT/PMMA)
hybrid composites for the detection of methane gas. Their sensitivity and selectivity
were compared to that of three other sensing materials including reduced graphene oxide
(rGO), carbon nanotubes (CNT), reduced graphene oxide-carbon nanotubes (GCNT). To
fabricate different probes, 24 cm long plastic clad silica optical fibers (core diameter 600 µm,
numerical aperture 0.4) were used. About 1 cm length of the cladding was removed from
the middle portion of the fibers and the uncladded core was coated with a silver layer
via thermal evaporation technique. Finally, the sensing materials were deposited on top
of the silver by dip coating. To test the performance of the fabricated system, the probe
was installed in a gas chamber and a polychromatic light from a tungsten halogen lamp
was launched at the input end of the fiber. The spectrum of the transmitted light was
recorded with a spectrometer at the other end. The FO-SPR sensors were exposed to
different concentrations of methane (ranging from 10 to 100 ppm) and their performance
was analyzed in terms of resonance wavelength shift. To evaluate their selectivity, the
sensors were exposed to different gases: methane, ammonia, hydrogen sulfide, chlorine,
carbon dioxide, hydrogen, and nitrogen. The FO-SPR sensor based on (GCNT/PMMA)
hybrid composites showed the best sensitivity and selectivity to methane gas comparing to
the three others using rGO, CNT, and GCNT as sensing materials. The authors attributed
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this performance to the high aspect ratio and the large defect level in the nanocomposite
material, which could provide more active sites for VOC adsorption.

Photonic crystal fiber (PCF) is a class of optical fiber characterized by a flexible struc-
ture design, which presents a unique light controlling capability with light confinement
characteristics not achievable using conventional optical fiber. Combined with SPR, PCF
can form a very attractive platform for optical sensing. Accordingly, Lui et al. [221] pro-
posed a novel PCF-SPR sensor to detect mixture of methane and hydrogen. As presented
in Figure 19, the PCF-SPR sensor consisted of four ultra-large side-holes symmetrically
introduced into the cladding layer. These holes allowed to improve the sensitivity to VOCs
since the refractive index variation due to concentration change is usually very low. In
practice, the two rows of smaller air-holes along the angle of 45◦ and 135◦ surrounding
the fiber enabled the introduction of the ultra-large side-holes much closer to the fiber
core, which, consequently, led to higher sensitivity. The inner surfaces of the left and
top ultra-large air-holes were coated with a gold layer on top of which a film of sensing
material was deposited. A film of Pd-WO3 deposited via the sol-gel scheme was used for
the detection of hydrogen. The methane-sensitive film consisted of a kind of ultraviolet
curable fluoro-siloxane nanofilm with the inclusion of cryptophane A. It was deposited
on the gold layer via a capillary dip-coating technique. The sensing performance and
response of the system were characterized by analyzing the confinement loss spectra. As a
result, the study showed that using polarization filtering, the concentration of methane
and hydrogen in a gas mixture could be accurately measured without interfering with each
other. The authors suggested that this approach could be broadened to achieve qualitative
identification of multiple gases.
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Arasu et al. [222] reported a single mode fiber Bragg grating (FBG)-based FO-SPR
sensor coated with graphene oxide (GO) layer for ethanol sensing in an aqueous medium.
To fabricate the sensor, a standard single mode FBG with a 9 µm core diameter and 125 µm
cladding diameter was used. The polymer coating directly over the Bragg grating was
removed. Then, a 45 nm thick gold layer was deposited over the grating area without
removing the cladding. Finally, a nanostructured GO layer was put on top of the gold
surface by drop-casting technique. A tungsten halogen white light source was employed to
generate the input signal and the output light was analyzed by a spectrometer. Wavelength
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interrogation was used to monitor the response of the system upon the addition of different
concentrations of ethanol in water.

In order to make sure that the FBG was effective for SPR sensing without the removal
of the cladding layer, the team compared the beam profile of a gold coated FBG to that of a
standard gold coated single mode fiber (SMF). The results confirmed that, in contrast to the
standard SMF, the FBG was able to scatter the light from the fiber core into the cladding,
producing TIR at the cladding-air interface and, thus, an evanescent wave that could be
exploited for SPR. They also compared the intensity spectrum of a bare FBG, a gold coated
FBG and a gold coated FBG with the GO layer, as well as the sensing performance of the last
two for ethanol. It was clear that the GO layer enhanced both the sensitivity and accuracy
of the FO-SPR sensor thanks to its excellent electrochemical and physical properties.

Wei et al. [223] proposed a long period fiber grating (LPFG) SPR sensor combined with
a monolayer of graphene as sensing material. To fabricate the sensor, a single mode fiber
with a core diameter of 10 µm, a cladding diameter of 125 µm, and a numerical aperture
of 0.22 was used. The long period grating was first inscribed on the fiber core by a CO2
laser and then the SiO2 surface of the fiber was coated with an Ag film (50 nm thick) on top
of which a monolayer of graphene was deposited by CVD. A schematic representation of
the sensor structure is given in Figure 20a,b. To test the performance of the sensor chip, an
experimental setup (Figure 20c) comprising a gas flow control system, a wide spectral range
light source and a spectrometer was used. The LPFG SPR sensor was exposed to different
concentrations of methane carried by a nitrogen gas flow. Wavelength interrogation was
employed to monitor changes in the refractive index and thus detect variations in the
concentration of VOCs in contact with the sensor. The obtained graphene coated LPFG SPR
sensor exhibited a dose dependent linear response to methane and improved sensitivity
compared to an uncoated LPFG sensor and an Ag-coated LPFG SPR sensor. The sensor
also demonstrated good response repeatability and a baseline recovery (with a recovery
time of 65 s). Finally, using finite element simulation, the team showed that the graphene
layer enhanced the intensity of the electric field surrounding the sensing layer, which could
explain the sensitivity enhancement observed in the presence of this layer.
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The Table 3 summarizes the conditions for gas or VOCs detection of fiber optic SPR-
based artificial olfaction systels and their performances in liquid and gas phase.

Table 3. Fiber optic SPR-based artificial olfaction systems for the detection of VOCs in liquid and gas phase.

Artificial
Olfaction System Fiber Type Sensing Material Performance Sensing

Medium Refs.

Olfactory
biosensor Plastic fiber Pig odorant binding protein

• High selectivity and to
butanal sensitivity
(detection limit (DL): 25 µM)

Liquid [215]

Gas sensor Glass fiber Zeolitic imidazolate
framework (ZIF-8 and ZIF-93)

• ZIF-8: high sensitivity to
methanol (DL: 2.5 ppm) Gas [217]

Gas sensor Plastic clad
silica fiber

Graphene-carbon
nanotubes/poly(methyl

methacrylate)
(GCNT/PMMA) hybrid

composites, reduced
graphene oxide, carbon

nanotubes, reduced graphene
oxide-carbon nanotubes

• GCNT/PMMA exhibited
the highest sensitivity and
selectivity to methane
compared to the other
sensing materials tested

• DL: 10 ppm

Gas [220]

Gas sensor Photonic
crystal fiber

Pd-WO3 film and a kind of
ultraviolet curable

fluoro-siloxane nanofilm with
the inclusion of cryptophane A

• The concentration of
methane and hydrogen in a
gas mixture could be
accurately measured using
polarization filtering

Gas [221]

Gas sensor Fiber Bragg
grating Graphene oxide (GO)

• The GO layer enhances the
sensitivity to ethanol
compared to bare gold

Liquid [222]

Gas sensor
Long Period
Fiber Grating

(LPFG)
Graphene

• In presence of graphene, the
sensitivity to methane is
improved 2.96 and
1.31 times with respect to the
traditional LPFG sensor and
Ag-coated LPFG SPR sensor,
respectively

• Fast response (50 s) and
recovery (65 s) times

• Good repeatability

Gas [223]

3.4. Grating Coupler-Based SPR Sensors

Based on light diffraction effects, the grating coupler is another approach to excite
surface plasmons. This method was first observed and described by Wood [122] in 1902.
Basically, when a light wave reaches a periodically distorted metal-dielectric interface,
it is diffracted into a series of beams that propagate away from the surface at different
angles [147] (Figure 21). Coupling occurs when the momentum component along the
interface of a scattered order is equal to the propagation constant of the SPPs. The coupling
condition can by expressed as [121]:

2π

λ

√
εd sinθ+ m

2π

Λ
= ±Re

{
kspp

}
(6)

where λ is the wavelength of the incident p-polarized light, θ the incidence angle, m the
diffraction order and Λ the diffraction grating period. To perform measurements using this
type of SPR sensors, angular, spectral, phase or intensity interrogation can be employed.
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This category of sensors is much less popular and poorly developed compared to those
presented above, because they are generally less sensitive than smooth metal-film coupling
based sensors (i.e., prism and optical fiber). Several theoretical and experimental studies
have been carried out in attempts to improve the performance of these sensors [132,229,230].
For instance, Nazem et al. [229] recently demonstrated (theoretically and experimentally)
the feasibility of a sensitive SPR sensor based on Ag-MgF2 grating. Similarly, Dai et al. [230]
experimentally demonstrated a high sensitivity of an SPR sensor with silver rectangular
grating coupling. A higher sensitivity than that of a prism-coupled SPR sensor was
obtained in the negative order diffraction excitation mode. Borile et al. [231] reported a
grating-coupled SPR senor integrated into a microfluidic chamber for label-free monitoring
of cell adhesion and cell-surface interaction. Cai et al. [232] worked on the improvement
of the sensitivity of grating-based SPR sensors by designing sharp dips of the higher
diffraction orders and developing double-dips method. Finally, in the field of VOC sensing,
Sambles’s group [233,234] presented a prototype gas sensor employing SPR on gratings in
the beginning of 1990s. Since then, this field has not been developed much further.

4. Conclusions and Outlook

The reliable analysis of VOCs is of great interest in various fields. To complement
traditional analytical methods (GC-MS) and biological noses, great progress has been
made in the development of artificial odor detection systems such as gas sensors, olfactory
biosensors, and eNs based on diverse sensing technologies. As demonstrated in this paper,
propagating SPR with different coupling configurations (prism coupler, wave guide, and
grating) is very efficient for such applications. In particular, prism coupler-based gas sen-
sors have been widely studied for sensing VOCs, either in the liquid or gas phase. For VOC
analysis in the liquid phase, as highlighted in this review, signal amplification strategies
are necessary by selecting appropriate sensitive materials and immobilization techniques
to generate reliable SPR signals. In contrast, in the gas phase, the binding of small VOCs
on the sensing materials can generate reliable SPR signals with good signal/noise ratios,
since the detection noise remains relatively low under such conditions. Moreover, based
on SPR imaging mode, a novel generation of eNs with large-scale multiplexed arrays has
been developed. Combined with peptides as sensing materials, such eNs offer exceptional
performance in terms of sensitivity and selectivity, with the ability to discriminate among
chiral forms of VOCs. Regarding wave guide coupler-based gas sensors, most systems use
optical fiber in different configurations. They are very interesting thanks to their remote
and multiplexed sensing capability, as well as their miniaturized structures. Finally, grating
coupler-based gas sensors are much less popular because their sensitivity is still limited.

Although the different systems that we have presented are efficient and sensitive for
the detection of VOCs, the current trend is toward the development of more miniatur-
ized sensors. Accordingly, nano plasmonic sensors based on localized SPR are attracting
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more and more attention, and are being developed for different nanoscale applications
including the detection of VOCs. Moreover, the sensing performance of these systems can
be optimized by simply varying the size and shape of the nanostructures, which is very
advantageous for sensor development. The improvement in nanofabrication processes has
made it possible to explore diverse nanostructured geometries to achieve optimal LSPR
nanosensors [137].

To further improve the performance (sensitivity, selectivity, and stability) of SPR-based
gas sensors, olfactory biosensors, and eNs, it is essential to design novel sensing materials
that are able to mimic the binding properties of biomolecules such as ORs and OBPs,
but with higher stability. One trend is to use peptides as alternatives. Indeed, peptides
are much more robust than proteins, cheaper to synthesize, and could potentially be
integrated into industrial devices. On top of that, their selectivity towards target VOCs can
be easily tuned through rational designs based on molecular modeling, virtual screening,
and phage display. Finally, eNs will benefit greatly from the accelerating growth of artificial
intelligence that will allow for more efficient data processing. There is no doubt that
novel SPR-based gas sensors and eNs will play a more important role in the field of VOC
detection and will find applications in various new domains.
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ATR attenuated total reflection
BAW bulk acoustic wave
BTEX benzene, toluene, ethylbenzene and m-xylene
CCP composite conducting polymer
CNT reduced graphene oxide-carbon nanotube
CP conducting polymer
CVD chemical vapor deposition
DL detection limit
DMMP dimethylmethylphosphonate
EIS electrochemical impedance spectroscopy
eN electronic nose
FBG fiber Bragg grating
FET field effect transistor
FO-SPR fiber optic-SPR
FOS fiber optic sensor
GC-MS gas chromatography-mass spectrometry
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GCNT reduced graphene oxide-carbon nanotubes
GLAD glancing-angle deposition
GO graphene oxide
GPCR G protein coupled receptors
GTP guanosine-5′-triphosphate
ICP intrinsic conducting polymer
IDT inter-digitated transducer
LPFG long period fiber grating
LSPR localized SPR
MIP molecularly imprinted polymer
MO-SPR magneto-optical SPR
MOF metal organic framework
MOS metal oxide semiconductor
NP nanoparticles
NPOT NP/oligothiophene
OBP odorant binding protein
OR olfactory receptor
PCF photonic crystal fiber
PMMA poly(methylmethacrylate)
POF plastic optical fiber
ppb parts per billion
ppm parts per million
PT polythiophene
QCM quartz crystal microbalance
rGO reduced GO
SAW surface acoustic wave
SiNW FET silicon nanowire FET
SMF single mode fiber
SP surface plasmon
SPP surface plasmon polariton
SPR surface plasmon resonance
SPW surface plasma wave
TBD toluene binding domain
TECS technology enhanced clad silica
TIR total internal reflection
TM transverse-magnetic
TNT 2,3,6-trinitrotoluene
VOC volatile organic compound
ZIF zeolitic imidazolate framework
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194. Şen, S.; Cömert, Ö.F.; Çapan, R.; Ay, M. A Room Temperature Acetone Sensor Based on Synthesized Tetranitro-Oxacalix[4]Arenes:
Thin Film Fabrication and Sensing Properties. Sens. Actuators A Phys. 2020, 315, 112308. [CrossRef]

195. Capan, R.; Ray, A.K.; Hassan, A.K.; Tanrisever, T. Poly (Methyl Methacrylate) Films for Organic Vapour Sensing. J. Phys. D Appl.
Phys. 2003, 36, 1115. [CrossRef]

196. Hassan, A.K.; Ray, A.K.; Nabok, A.V.; Wilkop, T. Kinetic Studies of BTEX Vapour Adsorption onto Surfaces of Calix-4-
Resorcinarene Films. Appl. Surf. Sci. 2001, 182, 49–54. [CrossRef]

197. Chaure, S.; Yang, B.; Hassan, A.K.; Ray, A.K.; Bolognesi, A. Interaction Behaviour of Spun Films of Poly[3-(6-Methoxyhexyl)Thiophene]
Derivatives with Ambient Gases. J. Phys. D Appl. Phys. 2004, 37, 1558–1562. [CrossRef]

198. Nanto, H.; Kitade, Y.; Takei, Y.; Kubota, N. Odor Sensor Utilizing Surface Plasmon Resonance. Sens. Mater. 2005, 17, 405–412.
199. Nanto, H.; Yagi, F.; Hasunuma, H.; Takei, Y.; Koyama, S.; Oyabu, T.; Mihara, T. Multichannel Odor Sensor Utilizing Surface

Plasmon Resonance. Sens. Mater. 2009, 21, 201–208.
200. Sih, B.C.; Wolf, M.O.; Jarvis, D.; Young, J.F. Surface-Plasmon Resonance Sensing of Alcohol with Electrodeposited Polythiophene

and Gold Nanoparticle-Oligothiophene Films. J. Appl. Phys. 2005, 98, 114314. [CrossRef]
201. Alwahib, A.A.; Sadrolhosseini, A.R.; An’amt, M.N.; Lim, H.N.; Yaacob, M.H.; Abu Bakar, M.H.; Ming, H.N.; Mahdi, M.A.

Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance.
IEEE Photonics J. 2016, 8, 1–9. [CrossRef]

202. Manera, M.G.; Montagna, G.; Ferreiro-Vila, E.; González-García, L.; Sánchez-Valencia, J.R.; González-Elipe, A.R.; Cebollada, A.;
Garcia-Martin, J.M.; Garcia-Martin, A.; Armelles, G.; et al. Enhanced Gas Sensing Performance of TiO2 Functionalized Magneto-
Optical SPR Sensors. J. Mater. Chem. 2011, 21, 16049–16056. [CrossRef]

203. Manera, M.G.; Leo, G.; Curri, M.L.; Cozzoli, P.D.; Rella, R.; Siciliano, P.; Agostiano, A.; Vasanelli, L. Investigation on Alcohol
Vapours/TiO2 Nanocrystal Thin Films Interaction by SPR Technique for Sensing Application. Sens. Actuators B Chem. 2004, 100,
75–80. [CrossRef]

204. Manera, M.G.; de Julián Fernández, C.; Maggioni, G.; Mattei, G.; Carturan, S.; Quaranta, A.; Della Mea, G.; Rella, R.; Vasanelli, L.;
Mazzoldi, P. Surface Plasmon Resonance Study on the Optical Sensing Properties of Nanometric Polyimide Films to Volatile
Organic Vapours. Sens. Actuators B Chem. 2007, 120, 712–718. [CrossRef]

205. Livache, T.; Gallat, F.-X.; Hou-Broutin, Y.; Herrier, C.; Rousselle, T. Method for Calibrating an Electronic Nose. International
Patent Application No. PCT/EP2018/055233, 7 September 2018.

206. Weerakkody, J.S.; Hurot, C.; Brenet, S.; Mathey, R.; Raillon, C.; Livache, T.; Buhot, A.; Hou, Y. Opto-Electronic Nose—Temperature
and VOC Concentration Effects on the Equilibrium Response. In Proceedings of the 2019 IEEE International Symposium on
Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019; pp. 1–3. [CrossRef]

207. Hutter, E.; Cha, S.; Liu, J.-F.; Park, J.; Yi, J.; Fendler, J.H.; Roy, D. Role of Substrate Metal in Gold Nanoparticle Enhanced Surface
Plasmon Resonance Imaging. J. Phys. Chem. B 2001, 105, 8–12. [CrossRef]

208. Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.; François, A. Plasmonic Fiber Optic Refractometric Sensors: From
Conventional Architectures to Recent Design Trends. Sensors 2016, 17, 12. [CrossRef] [PubMed]

209. Jorgenson, R.C.; Yee, S.S. A Fiber-Optic Chemical Sensor Based on Surface Plasmon Resonance. Sens. Actuators B Chem. 1993, 12,
213–220. [CrossRef]

210. Caucheteur, C.; Guo, T.; Albert, J. Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection. Anal.
Bioanal. Chem. 2015, 407, 3883–3897. [CrossRef]

211. Vindas, K.; Leroy, L.; Garrigue, P.; Voci, S.; Livache, T.; Arbault, S.; Sojic, N.; Buhot, A.; Engel, E. Highly Parallel Remote SPR
Detection of DNA Hybridization by Micropillar Optical Arrays. Anal. Bioanal. Chem. 2019, 411, 2249–2259. [CrossRef]

http://doi.org/10.1016/j.talanta.2020.120777
http://doi.org/10.1021/acs.jpcc.9b09973
http://doi.org/10.1016/j.bios.2020.112183
http://doi.org/10.3390/chemosensors8030060
http://doi.org/10.1016/j.snb.2020.128342
http://doi.org/10.1016/j.snb.2019.127188
http://doi.org/10.1039/b615516b
http://doi.org/10.1016/j.snb.2003.08.016
http://doi.org/10.1016/j.sna.2020.112308
http://doi.org/10.1088/0022-3727/36/9/309
http://doi.org/10.1016/S0169-4332(01)00435-4
http://doi.org/10.1088/0022-3727/37/11/009
http://doi.org/10.1063/1.2138373
http://doi.org/10.1109/JPHOT.2016.2577592
http://doi.org/10.1039/c1jm11937k
http://doi.org/10.1016/j.snb.2003.12.025
http://doi.org/10.1016/j.snb.2006.03.041
http://doi.org/10.1109/ISOEN.2019.8823292
http://doi.org/10.1021/jp003565q
http://doi.org/10.3390/s17010012
http://www.ncbi.nlm.nih.gov/pubmed/28025532
http://doi.org/10.1016/0925-4005(93)80021-3
http://doi.org/10.1007/s00216-014-8411-6
http://doi.org/10.1007/s00216-019-01689-2


Biosensors 2021, 11, 244 43 of 43

212. Sharma, A.K.; Pandey, A.K.; Kaur, B. A Review of Advancements (2007–2017) in Plasmonics-Based Optical Fiber Sensors. Opt.
Fiber Technol. 2018, 43, 20–34. [CrossRef]

213. Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE
Sens. J. 2007, 7, 1118–1129. [CrossRef]

214. Desmet, C.; Vindas, K.; Alvarado Meza, R.; Garrigue, P.; Voci, S.; Sojic, N.; Maziz, A.; Courson, R.; Malaquin, L.; Leichle, T.; et al.
Multiplexed Remote SPR Detection of Biological Interactions through Optical Fiber Bundles. Sensors 2020, 20, 511. [CrossRef]
[PubMed]

215. Cennamo, N.; Di Giovanni, S.; Varriale, A.; Staiano, M.; Di Pietrantonio, F.; Notargiacomo, A.; Zeni, L.; D’Auria, S. Easy to Use
Plastic Optical Fiber-Based Biosensor for Detection of Butanal. PLoS ONE 2015, 10, e0116770. [CrossRef] [PubMed]

216. Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors Based on Surface Plasmon Resonance in a
Plastic Optical Fiber for the Detection of Trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [CrossRef]

217. Vandezande, W.; Janssen, K.P.F.; Delport, F.; Ameloot, R.; De Vos, D.E.; Lammertyn, J.; Roeffaers, M.B.J. Parts per Million Detection
of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors. Anal. Chem. 2017, 89,
4480–4487. [CrossRef]

218. Semwal, V.; Shrivastav, A.M.; Verma, R.; Gupta, B.D. Surface Plasmon Resonance Based Fiber Optic Ethanol Sensor Using Layers
of Silver/Silicon/Hydrogel Entrapped with ADH/NAD. Sens. Actuators B Chem. 2016, 230, 485–492. [CrossRef]

219. Mishra, S.K.; Rani, S.; Gupta, B.D. Surface Plasmon Resonance Based Fiber Optic Hydrogen Sulphide Gas Sensor Utilizing Nickel
Oxide Doped ITO Thin Film. Sens. Actuators B Chem. 2014, 195, 215–222. [CrossRef]

220. Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. Surface Plasmon Resonance-Based Fiber Optic Methane Gas Sensor
Utilizing Graphene-Carbon Nanotubes-Poly(Methyl Methacrylate) Hybrid Nanocomposite. Plasmonics 2015, 10, 1147–1157.
[CrossRef]

221. Liu, H.; Wang, M.; Wang, Q.; Li, H.; Ding, Y.; Zhu, C. Simultaneous Measurement of Hydrogen and Methane Based on PCF-SPR
Structure with Compound Film-Coated Side-Holes. Opt. Fiber Technol. 2018, 45, 1–7. [CrossRef]

222. Arasu, P.T.; Noor, A.S.M.; Shabaneh, A.A.; Yaacob, M.H.; Lim, H.N.; Mahdi, M.A. Fiber Bragg Grating Assisted Surface Plasmon
Resonance Sensor with Graphene Oxide Sensing Layer. Opt. Commun. 2016, 380, 260–266. [CrossRef]

223. Wei, W.; Nong, J.; Zhang, G.; Tang, L.; Jiang, X.; Chen, N.; Luo, S.; Lan, G.; Zhu, Y. Graphene-Based Long-Period Fiber Grating
Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors 2017, 17, 2. [CrossRef] [PubMed]

224. Bharadwaj, R.; Mukherji, S. Gold Nanoparticle Coated U-Bend Fibre Optic Probe for Localized Surface Plasmon Resonance Based
Detection of Explosive Vapours. Sens. Actuators B Chem. 2014, 192, 804–811. [CrossRef]

225. Paul, D.; Dutta, S.; Saha, D.; Biswas, R. LSPR Based Ultra-Sensitive Low Cost U-Bent Optical Fiber for Volatile Liquid Sensing.
Sens. Actuators B Chem. 2017, 250, 198–207. [CrossRef]

226. Niggemann, M.; Katerkamp, A.; Pellmann, M.; Bolsmann, P.; Reinbold, J.; Cammann, K. Remote Sensing of Tetrachloroethene
with a Micro-Fibre Optical Gas Sensor Based on Surface Plasmon Resonance Spectroscopy. Sens. Actuators B Chem. 1996, 34,
328–333. [CrossRef]

227. Abdelghani, A.; Chovelon, J.M.; Jaffrezic-Renault, N.; Veilla, C.; Gagnaire, H. Chemical Vapour Sensing by Surface Plasmon
Resonance Optical Fibre Sensor Coated with Fluoropolymer. Anal. Chim. Acta 1997, 337, 225–232. [CrossRef]

228. Li, Y.; Xiao, A.-S.; Zou, B.; Zhang, H.-X.; Yan, K.-L.; Lin, Y. Advances of Metal–Organic Frameworks for Gas Sensing. Polyhedron
2018, 154, 83–97. [CrossRef]

229. Nazem, S.; Malekmohammad, M.; Soltanolkotabi, M. Theoretical and Experimental Study of a Surface Plasmon Sensor Based on
Ag-MgF2 Grating Coupler. Appl. Phys. B 2020, 126, 96. [CrossRef]

230. Dai, Y.; Xu, H.; Wang, H.; Lu, Y.; Wang, P. Experimental Demonstration of High Sensitivity for Silver Rectangular Grating-Coupled
Surface Plasmon Resonance (SPR) Sensing. Opt. Commun. 2018, 416, 66–70. [CrossRef]

231. Borile, G.; Rossi, S.; Filippi, A.; Gazzola, E.; Capaldo, P.; Tregnago, C.; Pigazzi, M.; Romanato, F. Label-Free, Real-Time on-Chip
Sensing of Living Cells via Grating-Coupled Surface Plasmon Resonance. Biophys. Chem. 2019, 254, 106262. [CrossRef] [PubMed]

232. Cai, D.; Lu, Y.; Lin, K.; Wang, P.; Ming, H. Improving the Sensitivity of SPR Sensors Based on Gratings by Double-Dips Method
(DDM). Opt. Express 2008, 16, 14597. [CrossRef] [PubMed]

233. Vukusic, P.S.; Bryan-Brown, G.P.; Sambles, J.R. Surface Plasmon Resonance on Gratings as a Novel Means for Gas Sensing. Sens.
Actuators B Chem. 1992, 8, 155–160. [CrossRef]

234. Jory, M.J.; Vukusic, P.S.; Sambles, J.R. Development of a Prototype Gas Sensor Using Surface Plasmon Resonance on Gratings.
Sens. Actuators B Chem. 1994, 17, 203–209. [CrossRef]

http://doi.org/10.1016/j.yofte.2018.03.008
http://doi.org/10.1109/JSEN.2007.897946
http://doi.org/10.3390/s20020511
http://www.ncbi.nlm.nih.gov/pubmed/31963277
http://doi.org/10.1371/journal.pone.0116770
http://www.ncbi.nlm.nih.gov/pubmed/25789470
http://doi.org/10.1016/j.snb.2013.07.005
http://doi.org/10.1021/acs.analchem.6b04510
http://doi.org/10.1016/j.snb.2016.02.084
http://doi.org/10.1016/j.snb.2014.01.045
http://doi.org/10.1007/s11468-015-9914-5
http://doi.org/10.1016/j.yofte.2018.05.007
http://doi.org/10.1016/j.optcom.2016.05.081
http://doi.org/10.3390/s17010002
http://www.ncbi.nlm.nih.gov/pubmed/28025483
http://doi.org/10.1016/j.snb.2013.11.026
http://doi.org/10.1016/j.snb.2017.04.171
http://doi.org/10.1016/S0925-4005(97)80010-X
http://doi.org/10.1016/S0003-2670(96)00419-9
http://doi.org/10.1016/j.poly.2018.07.028
http://doi.org/10.1007/s00340-020-07449-w
http://doi.org/10.1016/j.optcom.2018.02.010
http://doi.org/10.1016/j.bpc.2019.106262
http://www.ncbi.nlm.nih.gov/pubmed/31514114
http://doi.org/10.1364/OE.16.014597
http://www.ncbi.nlm.nih.gov/pubmed/18794995
http://doi.org/10.1016/0925-4005(92)80173-U
http://doi.org/10.1016/0925-4005(93)00871-U

	Introduction 
	Gas Sensors and Electronic Noses Based on Various Sensing Systems 
	Chemiresistive Sensors 
	MOS Sensors 
	Conducting Organic Polymers Sensors 

	Electrochemical Sensors 
	Field Effect Transistor (FET) 
	Gravimetric or Piezoelectric Sensors 
	Optical Sensors 

	Propagating SPR-Based Gas Sensors and Electronic Noses 
	The Theory of Propagating SPR 
	Prism Coupler-Based Sensors 
	Detection of VOCs in Liquid Phase 
	Detection of VOCs in Gas Phase 

	Wave Guide Coupler-Based Sensors 
	Grating Coupler-Based SPR Sensors 

	Conclusions and Outlook 
	References

