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Accurate models of the cross-talk between signaling pathways and transcriptional regulatory networks within cells are
essential to understand complex response programs. We present a new computational method that combines condition-
specific time-series expression data with general protein interaction data to reconstruct dynamic and causal stress re-
sponse networks. These networks characterize the pathways involved in the response, their time of activation, and the
affected genes. The signaling and regulatory components of our networks are linked via a set of common transcription
factors that serve as targets in the signaling network and as regulators of the transcriptional response network. Detailed
case studies of stress responses in budding yeast demonstrate the predictive power of our method. Our method correctly
identifies the core signaling proteins and transcription factors of the response programs. It further predicts the in-
volvement of additional transcription factors and other proteins not previously implicated in the response pathways. We
experimentally verify several of these predictions for the osmotic stress response network. Our approach requires little
condition-specific data: only a partial set of upstream initiators and time-series gene expression data, which are readily
available for many conditions and species. Consequently, our method is widely applicable and can be used to derive
accurate, dynamic response models in several species.

[Supplemental material is available for this article.]

Perturbation of the cellular environment typically incites a vast

and complex reaction that involves a multitude of proteins oper-

ating together to respond to the new condition. Although the

widespread availability and falling costs of microarray technolo-

gies along with the rise of RNA-seq have made it easier to quantify

the transcriptional aspects of a cellular response, measurements of

gene expression alone represent only a limited glimpse of the

processes employed by a cell in order to adapt to an external or

environmental change. To fully explain and ultimately control the

response to environmental stress, it is necessary to construct end-

to-end models of both the signaling and regulatory mechanisms

that are activated.

A popular approach when using high-throughput data to

model the interplay between the signaling and regulatory net-

works is to rely on knockout (KO) experiments. Such experiments

provide both a starting point (the knocked-out or knocked-down

gene) and a set of endpoints (differentially expressed genes).

Computational methods have been developed to search for paths

linking the starting points and endpoints and to integrate paths

identified in the different KO experiments.

The physical network models (PNM) technique (Yeang et al.

2004) is a pioneering method for using the above strategy to re-

construct signaling and regulatory networks. PNM constructs a

skeleton network of physical protein–protein and protein–DNA

interactions and searches for directed pathways that connect de-

leted genes and their targets. SPINE (Ourfali et al. 2007) adopts a

similar strategy by relying on KOs as starting points but con-

centrates on the positive or negative regulatory effects of edges or

proteins as opposed to the orientation of protein–protein in-

teractions (PPIs). Peleg et al. (2010) proposed a ‘‘network-free’’

approach to the problem of explaining KO cause–effect pairs,

which operates on a functional network instead of explicitly

enumerating pathways.

Other methods have used additional types of perturbations as

starting points, including data from genetic screens. Motivated by

the vast discrepancy between hits in genetic screens and genes that

are differentially expressed in response to a stimulus, ResponseNet

(Yeger-Lotem et al. 2009) combines these two types of data to

generate integrated signaling and regulatory networks for a con-

dition of interest. A related approach combines the genetic hits

and differentially expressed genes as the relevant terminal nodes

in the network (Huang and Fraenkel 2009). However, this algo-

rithm and others derived from the Steiner tree problem (Yosef

et al. 2009; Bailly-Bechet et al. 2011) do not model redundant and

parallel pathways to the target nodes regardless of the type of

input data used.

Although KO-based methods proved successful in some cases,

there are several problems inherent in techniques that primarily

depend on gene KOs or other genetic perturbations. First, many

genes are essential (e.g., ;20% of yeast genes) (Giaever et al. 2002),

which prohibits their use as starting points even if they are known

to play an important role in the response. Second, genes must be

perturbed individually in the condition of interest. Due to the

large associated costs of profiling numerous deletion strains, the

resulting measurements and models are almost always static. Fi-

nally, backup mechanisms are employed by regulatory networks

(Kafri et al. 2005, 2008; Gitter et al. 2009). Thus, the stress response

pathways activated in one KO strain may differ from those acti-

vated in the wild-type strain and in other KOs. This makes it very

hard to recover the wild-type response pathways from a collection

of KOs. Vinayagam et al. (2011) avoided the complications of KOs

by orienting PPI with respect to shortest paths between all mem-

brane receptors and transcription factors (TFs). However, their

approach relies on general topological features and does not reveal

the pathways or regulators most relevant to a specific response.
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In addition to techniques proposed for integrating signaling

and regulatory networks, several approaches have been proposed

to reconstruct dynamic regulatory networks (Ernst et al. 2007; Lin

et al. 2007; Wei and Li 2008; for a review see, Gitter et al. 2010).

Either these focus on the regulatory network exclusively and thus

do not explain how the TFs regulating the response are activated,

or they only utilize known (database-derived) pathways. Depen-

dence upon known pathways limits their applications to well-

studied networks and species and prevents them from providing

new predictions regarding the members and interactions in the

signaling network portion of the integrated model.

To overcome the obstacles inherent in genetic perturbation

data, we developed the Signaling and Dynamic Regulatory Events

Miner (SDREM), which utilizes condition-specific time-series gene

expression to reconstruct the signaling and regulatory networks

that are activated during stress response. Similar to KOs, temporal

data provide causal information. However, unlike individual KO

experiments, time-series expression experiments often measure

wild-type response and provide information about all pathways

simultaneously. SDREM assumes that a small, possibly incomplete

set of upstream proteins that play a role in initiating the response is

known. SDREM uses the expression data to identify TFs that con-

trol the differentially expressed genes. These TFs serve as targets for

a network orientation algorithm that links the sensory proteins to

the active TFs. SDREM provides a complete picture of the stress

response, including directed pathways from upstream source pro-

teins to the TFs, the times at which those TFs are actively regulating

their bound genes, the primary temporal expression profiles that

characterize the response, and the genes that belong to them.

We applied SDREM to study the responses of Saccharomyces

cerevisiae to high osmolarity and rapamycin. Our method suc-

cessfully recovered the core signaling proteins and TFs that are

involved in these well-studied responses, and generated accurate

models of the known signaling and regulatory pathways. The

models also provide novel hypotheses implicating several addi-

tional TFs and proteins in the responses. We experimentally vali-

dated several of the osmotic stress model’s predictions, shedding

new light on the regulation of this response. In addition, we

studied the immune response of Arabidopsis thaliana to the path-

ogen Hyaloperonospora arabidopsidis (Hpa) to demonstrate SDREM’s

generality.

Results
We developed a new method for integrating time-series expression

data with static PPIs and protein–DNA interactions to infer dy-

namic regulatory networks and the signaling pathways that acti-

vate these networks. In addition to the general interaction data,

SDREM uses condition-specific time-series data and a small set of

proteins that are known to sense the environmental stress, interact

with the infecting agent, or play some other role in initiating the

response as input. In many cases, such proteins are either known

(Kanehisa and Goto 2000) or can be experimentally determined

using mass spectrometry or yeast two-hybrid experiments (e.g., in

the response to viral infection) (Chatr-aryamontri et al. 2009; Fu

et al. 2009; Mukhtar et al. 2011).

Reconstructing dynamic networks and orienting interaction
networks

SDREM builds upon two previously developed methods, the Dy-

namic Regulatory Events Miner (DREM) (Ernst et al. 2007) and

a network orientation procedure (Gitter et al. 2011). DREM uses

an input–output hidden Markov model (IOHMM) to reconstruct

dynamic regulatory networks by identifying bifurcation events,

places in the time series where a set of genes that were previously

coexpressed diverges. DREM annotates these split events with TFs

that are predicted to regulate genes in the outgoing upward and/or

downward paths, allowing us to associate temporal information

(the time of the splits) with the static protein–DNA interaction

data. DREM was successfully applied to reconstruct networks in

a large number of species, including yeast (Ernst et al. 2007),

Escherichia coli (Ernst et al. 2008), the fly (The modENCODE

Consortium et al. 2010), and humans (Gu et al. 2010). Although

DREM identifies the active TFs, it does not explain what activated

these TFs or consider whether the TFs are consistent with the sig-

naling pathways involved in the response.

The second component is a network orientation algorithm.

This algorithm is provided with a PPI data set, a small set of source

proteins (e.g., receptors or sensory proteins), and a small set of

targets (e.g., TFs). The algorithm then uses a search procedure that

orients the undirected protein interaction edges such that the

targets can be explained by relatively short, high-confidence

pathways that originate at the inputs. These objectives are derived

from several biological assumptions observed in reference signal-

ing networks. In studies of yeast pathways where the source and

target proteins were given, the orientation algorithm successfully

recovered known pathways better than previously suggested

pathway prediction methods (Gitter et al. 2011).

SDREM: Signaling and Dynamic Regulatory Events Miner

The network orientation algorithm discussed above can comple-

ment DREM by linking the identified TFs to the source proteins in

order to explain their activation. However, to accurately combine

the two, we need to address several computational challenges.

First, DREM is a probabilistic model, whereas the network orien-

tation method solves a combinatorial optimization problem. Thus,

values computed in one model cannot be directly transferred to

the other. In addition, DREM is unable to account for the network

connectivity of the TFs (i.e., prefer TFs that are well connected to

the upstream sources) because it considers all TFs to be equally

likely to be active in the response. Similarly, some active TFs in the

DREM model may be implicated more strongly than others in the

oriented network model, but the TF enrichment scores DREM

calculates cannot incorporate this prior information and are not

compatible with the network orientation objective function.

To address these issues, we developed SDREM, which itera-

tively combines the two methods (Fig. 1). SDREM uses a modified

version of DREM to infer the TFs that regulate genes as part of the

response, as well as the times at which this regulation takes place.

The identified TFs become targets for the network orientation al-

gorithm. The oriented network is then used to determine which of

the target TFs are supported by the discovered pathways. There is

reason to believe that the secondary TFs involved in stress response

or recovery are more likely to be transcriptionally regulated (Farkas

et al. 2006; Ernst et al. 2007) so we include both oriented PPI and

protein–DNA interactions in the ‘‘signaling’’ pathways. TFs that

cannot be explained by the signaling network are penalized so that

they are less likely to be selected in the subsequent DREM analysis.

This process repeats for a fixed number of iterations, which leads to

the final pathways and regulatory network.

In practice, unifying DREM and the network orientation al-

gorithm requires overcoming the aforementioned challenges. We
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implemented a strategy that allows SDREM to incorporate prior

(continuous-valued) information about the TFs during the analysis

of the gene expression data. In order to compute these TF activity

priors, we developed a method to assign a posterior score for each

target TF based on its dominance in the oriented network with

respect to random targets. To allow information to flow in the

other direction (from DREM to the network orientation), we ex-

tended DREM so that it outputs an activity score for each TF at each

regulatory path split. We further modified the orientation algo-

rithm to use these scores to prioritize the targets. These new DREM

scores provide a set of TFs that are believed to be active as well as

a quantitative measure of their activity level.

High osmolarity stress response

To test SDREM, we first applied it to study the response of S. cer-

evisiae cells to high osmolarity. This response is primarily mediated

by the high osmolarity glycerol (HOG) pathway, whose core

component is the mitogen-activated protein kinase (MAPK) Hog1.

Its main physiological function is to counteract the effects of in-

creased osmolarity, such as water loss and cell shrinking (Hohmann

2009). We collected general (noncondition-specific) PPI data (Stark

et al. 2006) and protein–DNA binding data for 117 TFs (MacIsaac

et al. 2006). The protein–DNA binding data set was complemented

with condition-specific TF–gene interactions for Hot1 and Sko1

(Capaldi et al. 2008). Both PPIs and protein–DNA interactions were

allowed in the source–target pathways that explain how TFs are

activated via chains of transcriptional and/or post-translational

events. In addition, we used condition-specific source proteins

(Cdc42, Msb2, Sho1, Sln1, and Ste50) from the Science Signaling

Database of Cell Signaling and two complementary time-series

gene expression data sets. The first expression data set (Romero-

Santacreu et al. 2009) measures gene expression up to 15 min,

leading to our short model. The second (Gasch et al. 2000) is used to

construct the long model (up to 90 min) because it includes the

recovery phase of the response.

Short osmotic stress model

We display the resulting networks in two parts corresponding to

the signaling and regulatory components of the reconstructed

networks (Supplemental Tables S1, S2). TFs serve as the interface

between these two models, and some of the connections between

the two components are highlighted in Figure 2. In the regulatory

network part of the short model, there are 10 distinct paths con-

trolled by a multitude of TFs (Fig. 2A). Figure 2B presents the high-

confidence paths leading from the sources to the targets in the

protein interaction network, including the inferred PPI orientation.

The model predicts that proteins along these paths play an impor-

tant role in the osmotic stress response. We emphasize that all tar-

gets in this network are the same active TFs that can be found along

the short model regulatory paths (Fig. 2A; Supplemental Fig. S1).

SDREM successfully recovered Hog1’s control of Hot1, Msn2,

Msn4, and Sko1 (Fig. 2C) as part of the core component of the

hyperosmotic response (Capaldi et al. 2008). The nodes and edges

immediately upstream of Hog1 (Fig. 2B) are consistent with HOG

pathway literature as well. The recovered edges Ste50!Ste11,

Sho1!Ste11, Sho1!Pbs2, Ste11!Pbs2, and Pbs2!Hog1 com-

pose the majority of the Sho1 input branch of the HOG pathway

(Krantz et al. 2009).

To assess the accuracy of the other predicted target TFs and

signaling proteins, it is necessary to consider known HOG path-

way models as well as other relevant osmotic and general stress pro-

teins that lie outside the HOG pathway. We compiled a gold stan-

dard of established HOG pathway members (Supplemental Table

S3; Supplemental Fig. S2) derived from KEGG (Kanehisa and Goto

2000), the Science Signaling Database of Cell Signaling, and recent

HOG literature and reviews (Hohmann et al. 2007; Hohmann

2009; Krantz et al. 2009; de Nadal and Posas 2010; Rodrı́guez-Peña

et al. 2010). Four of the seven TFs and six of the 30 other signaling

proteins in the gold standard were correctly identified by SDREM

(P-values 7.70 3 10�3 and 1.11 3 10�8, respectively), indicating

that the HOG pathway composes a significant portion of the short

model. To account for other proteins involved in the response, we

constructed a set of osmotic stress–related genes by incorporating

genetic screens (Hillenmeyer et al. 2008). Many of our predictions

that are not present in canonical HOG models are indeed sup-

ported by these additional data sources (21 predictions are HOG

pathway members or screen hits; P-value 5.88 3 10�3). Searching

the literature confirmed additional predictions, and in total, 12 of

the 19 TFs (63%) and 27 of the 39 predicted signaling proteins

(69%) were found to be associated with osmotic stress (Supple-

mental Tables S1, S2). SDREM’s predictions still significantly

overlap with prior osmotic stress models when protein–DNA in-

teractions are excluded from the signaling network (Supplemental

Fig. S3).

Long osmotic stress model

The model reconstructed from the longer time-series data set is

presented in Figure 3. As expected from the fact that it captures the

recovery phase and more transcriptional events (Fig. 3A; Supple-

mental Fig. S4), the long model identified 28 active TFs compared

with 19 active TFs in the short model. Many of these additional TFs

were determined to be active at the 30- and 45-min time points,

indicating their role in restoring gene expression levels to steady-

state. In addition, SDREM predicts that Gcn4, Pdr1, Phd1, Sok2,

and Swi5—TFs that are only active at the late time points—are

activated transcriptionally instead of by signaling cascades (Sup-

plemental Results).

Although the two expression data sets were collected in

diverse experimental settings and each contains many unique

differentially expressed genes (Supplemental Methods), there

Figure 1. Iterative model for integrating signaling and dynamic regu-
latory networks. The two components of SDREM iteratively refine an end-
to-end model of stress response. DREM identifies active transcription
factors (TFs) by analyzing divergence points in dynamic gene expression
profiles. Protein–protein interaction (PPI) network orientation is used to
connect those TFs to proteins that initiate the response by sensing or
interacting with the environment.

Linking signaling and dynamic regulatory networks
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was very good agreement between the networks reconstructed by

SDREM. Specifically, 16 of the 19 (84%) TFs identified in the short

model were also identified in the long model. Four of the long model

TFs (P-value 0.0161) and five signaling proteins (P-value 2.55 3 10�8)

are HOG pathway members, and 17 predictions are supported by the

HOG models or osmotic stress screens (P-value 0.0292). Including the

literature, the osmotic stress evidence supports 13 TFs (46%) and 17

signaling proteins (74%) identified in this model (Supplemental Ta-

bles S4, S5). In the long model, the network orientation procedure

again correctly orients the PPI Hog1-Hot1 and Hog1-Sko1 (Fig. 3B,C).

Thus, both models point to SDREM’s ability to correctly identify

HOG pathway members and osmotic stress responders while at the

same time reconstructing the networks by which they are activated.

Validating predicted osmotic stress TFs

Although many proteins in SDREM’s reconstructed networks were

supported by the HOG gold standard, they also included novel

Figure 2. Short osmotic stress model. (A) The regulatory part of the model contains 10 paths in the short time-series data, where each path represents
a collection of gene expression profiles. The x-axis displays the time points at which gene expression is measured. The y-axis shows log2 fold change in
expression. The nodes following a bifurcation event are annotated with the TFs that are predicted to control the split, providing temporal resolution to the static
protein–DNA interaction data. TFs are only shown the first time they are active along a regulatory path. (B) This subset of the oriented interaction network
contains three types of nodes: upstream proteins given as sources (red), predicted signaling proteins (blue), and active TFs from DREM (green). The blue nodes
consist of all proteins that appear in at least 1% of high-scoring paths and are not sources or targets. Dashed edges are protein–DNA interactions, and solid edges
are oriented PPIs. (C ) An enlarged view of a subsection of the interaction network identified shows that the core transcriptional unit of the HOG pathway was
recovered. These TFs were inferred in the regulatory component of the model, and the network displays SDREM’s explanation of how they are activated.

Gitter et al.
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predictions. To validate these predictions, we first focused on TFs

that were predicted to regulate either the response (in both

models) or the recovery (in the long model). We thus selected four

TFs from the short and long models—Cin5, Gcn4, Rox1, and

Spt23—that are absent from the HOG gold standard, as well as

Hog1 as a control.

We used fluorescence microscopy to determine whether these

proteins were differentially localized following sorbitol treatment

at the times predicted by our models. Cin5, Hog1, and Rox1 dis-

played significant nuclear localization patterns following treat-

ment with sorbitol (P-values of 1.87 3 10�11, 2.67 3 10�7, and 1.02 3

10�15, respectively, using a one-tailed t-test) as predicted by

SDREM (Fig. 4A; Supplemental Fig. S5; Supplemental Methods)

and in accordance with Hog1’s known rapid import into the nu-

cleus in osmotic stress (Hohmann 2009). In contrast, we did not

observe a significant change in localization for Gcn4 or Spt23.

In addition to microscopy, we also performed fluorescence-

activated cell sorting (FACS) to determine whether protein levels of

the four TFs and Hog1 increased following sorbitol treatment. The

levels of Gcn4 and Rox1 were found to increase significantly

(P-values 6.98 3 10�4 and 5.29 3 10�4, respectively, using a one-

tailed t-test) at times consistent with SDREM’s predictions (Fig. 4B;

Supplemental Results). Hog1, whose protein expression is stable

after sorbitol treatment (Westfall et al. 2008), served as a negative

control and was not significantly affected (P-value 0.185). In

summary, we validated that four of our five predicted osmotic

Figure 3. Long osmotic stress model. (A) The regulatory model for the long osmotic stress expression data contains nine paths. The initial splits overlap
with those in the short model in terms of the TFs predicted to control them. (B) The sources, signaling proteins, and active TFs in the long model are shown.
Again, there is a large overlap with the signaling model from the short time-series data set. (C ) The primary TFs of the osmotic stress response are recovered
in the long model as well. Hog1 and Sko1 are shown a second time along the uppermost regulatory path to emphasize the connection between the
signaling and regulatory components.

Linking signaling and dynamic regulatory networks
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stress–activated regulators (including the control Hog1) are indeed

activated following treatment with sorbitol.

KOs support signaling protein predictions

To validate predicted proteins that are not target TFs (which we

term signaling proteins regardless of their specific mechanistic

function), we used KO expression experiments. Because SDREM

produces an oriented network, each signaling protein has a well-

defined set of TFs that are downstream from it in the signaling

cascades. By comparing the genes predicted to be regulated by

these downstream TFs with those affected by the deletion, we can

determine whether the KO effects agree with the proposed SDREM

models.

We selected six genes that SDREM determined to be involved

in separate high-confidence paths: the nucleosome assembly fac-

tor ASF1, the cell polarity-related BEM1, the MAPK FUS3, Mediator

complex member GAL11, the cyclin PCL2, and the actin-associ-

ated RVS167 (Fig. 5A). All six are absent from the HOG gold stan-

dard. Microarrays were used to profile wild-type and KO strains

treated with sorbitol.

We compared the differentially expressed genes with the

short and long models to determine whether the KO-affected

genes significantly overlapped the genes assigned to the regulatory

paths in the SDREM models. In order to ensure that any observed

overlaps could be attributed to the osmotic stress response and

recovery as opposed to the general stress response, we analyzed

only osmotic stress–specific genes (Supplemental Table S21). For

the short model, we found that there was significant overlap

(P-value <0.05 using Fisher’s exact test with correction for multiple

hypothesis testing) for five of the six deletions: ASF1, BEM1,

GAL11, PCL2, and RVS167 (Fig. 5B; Supplemental Fig. S6). Seven of

the 10 paths in the regulatory network were significantly associ-

ated with at least one KO experiment (P-value <10�5 compared

with enrichment of random paths) (Supplemental Table S6).

Similar results were obtained for the long model, where BEM1,

FUS3, GAL11, and RVS167 KOs significantly overlapped one or

more regulatory paths (Supplemental Figs. S7, S8). Together, we

found significant overlap for all six genes in at least one of the two

models, although the support for FUS3 and PCL2 was weaker than

the others (Supplemental Table S21).

We highlight the ASF1 KO to explicitly demonstrate how the

overlap with the SDREM regulatory paths confirms Asf1’s osmotic

stress involvement and the inferred network orientation. Asf1 is

downstream from the source Sln1 and upstream of numerous TFs

in the oriented network, including the crucial HOG pathway TFs

Hot1 and Sko1 (Fig. 5C). Our model predicts that ASF1 deletion is

likely to partially affect many of these TFs and consequently per-

turb the genes (and regulatory paths) they control in the osmotic

stress response. Indeed, we find that differentially expressed genes

in the asf1D mutant significantly overlap with regulatory path 1 in

the short model (Fig. 5B), and all seven TFs predicted to control this

path’s split from path 2 (Fig. 5D) are downstream from Asf1 (Fig.

5C), supporting the SDREM model. Similar explanations for the

BEM1, GAL11, and RVS167 overlaps are presented in the Supple-

mental Results. However, in general it is difficult to make any

broad claims about the specificity of the KO effects because there

are a large number of TFs downstream in the interaction network

for some of the deletions and many TFs that are active on each

regulatory path (Supplemental Table S21).

Rapamycin response

Although we have primarily focused on the osmotic stress re-

sponse, we also used SDREM to study the target of rapamycin

(TOR) response pathway in yeast using temporal expression data

(Urban et al. 2007), condition-specific TF binding interaction for

14 TFs (Methods), and the general PPI and protein–DNA interaction

network to demonstrate SDREM’s flexibility and generality. Similar

to its success in reconstructing the osmotic stress response, SDREM

Figure 4. Differential nuclear localization and protein expression after
treatment with sorbitol. (A) Each row corresponds to localization of the
predicted osmotic stress responder before and after sorbitol treatment.
The images were taken 50 min after treatment for Cin5, 21 min for Hog1,
and 26 min for Rox1. (B) FACS reveals increased protein levels for Gcn4
and Rox1. The y-axis is the protein level ratio relative to the level before sor-
bitol treatment. (Error bars) SD of the protein level ratios over all replicates.

Gitter et al.
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Figure 5. Knockouts affect downstream expression of genes on the recovered regulatory paths. (A) The six proteins from different regions of the
signaling network were selected for deletion. The short network model, reproduced from Figure 2B, is shown here, and the positions of knocked-out genes
are highlighted with red boxes. (B) Five knockouts significantly affected the genes assigned to the regulatory paths in the short model. Numbered paths are
annotated with the knockouts where we found significant overlap between path members and knockout-affected genes. (C ) The subnetwork affected by
the ASF1 deletion. Only the relevant subset of the downstream TFs is shown, and the edges connecting Asf1 to the TFs are omitted for clarity. (D) The seven
TFs predicted to control path 1’s split from path 2 are displayed above path 1. All seven are downstream from Asf1 in the oriented network.



recovers a detailed model of TOR signaling that agrees well with

previous experimental and literature evidence (Supplemental Figs.

S9, S10). We found support for rapamycin response involvement

for 74% of the predicted target TFs and 56% of the internal nodes,

and the overlap between SDREM’s model and a collection of

existing TOR evidence is significant (P-value 2.55 3 10�3). For a

detailed discussion of the rapamycin response model, including

the full list of predicted proteins and the degree of support for each

prediction, see the Supplemental Results and Supplemental Tables

S8 and S9.

A. thaliana immune response

Because SDREM requires relatively little condition-specific data, it

is readily applicable to higher-order species as well. We modeled

the A. thaliana immune response to Hpa infection by combining

PPI between Hpa effectors and Arabidopsis proteins (Mukhtar et al.

2011) with the Arabidopsis PPI network (Arabidopsis Interactome

Mapping Consortium 2011) and protein–DNA binding inter-

actions (Yilmaz et al. 2011). The Hpa effectors are used as the

sources because the downstream transcriptional changes (Wang

et al. 2011) are caused by the host’s detection and response to these

pathogen proteins. Despite the sparse plant interaction network

and the lack of a comprehensive gold standard, SDREM was still

able to correctly identify several important proteins in the recon-

structed networks (Supplemental Figs. S11, S12; Supplemental

Table S10). Of the 83 predicted signaling proteins and TF targets,

six have already been functionally validated as being relevant

to the specific Hpa infection response (P-value 7.29 3 10�8)

(Mukhtar et al. 2011) and another seven have been annotated with

the Gene Ontology term ‘‘defense response’’ (Supplemental Methods;

Ashburner et al. 2000).

Discussion
Approaches for the combined reconstruction of signaling and

regulatory networks that depend on KO data are susceptible to the

effects of redundancy, which may lead to models that do not ac-

curately represent wild-type behavior. In order to avoid the com-

plications of KOs, we employ condition-specific dynamic gene

expression data to infer causal relationships between TFs and dif-

ferentially expressed genes. Since most active TFs are influenced by

the upstream signaling mechanisms that initiate stress response,

we link the proteins that sense the environment with the down-

stream expression outcomes of these stresses. With very limited

condition-specific data as input, we were able to accurately re-

construct models for stress responses in yeast and A. thaliana. The

models identified both the core regulatory component and many

of the signaling cascades that are activated as part of these re-

sponses. By use of gold standard data and our own follow-up ex-

periments, we validated several of SDREM’s predictions, shedding

new light on the proteins and pathways involved in osmotic stress

response.

SDREM improves upon previously suggested methods

Neither component of SDREM on its own can accurately recover

the osmotic stress response network. By modeling the upstream

pathways, the set of TFs that DREM identifies improves sub-

stantially from the initial application (when the signaling network

is not yet utilized) to the final iteration. In the short model, there

were 17 TFs selected by DREM in the first iteration that were

dropped in subsequent iterations due to lack of support in the

oriented PPI network. Of these only one, Mcm1, is present in the

HOG gold standard, and even Mcm1 is considered a HOG pathway

member in only one of the seven gold standard sources (Supple-

mental Table S3). On the other hand, there were eight active TFs in

the final model that were missed in the first iteration. These eight

TFs include Cin5 and Rox1, TFs for which our experimental results

strongly support their role as active regulators in the osmotic stress

response. Thus the signaling network context leads to more accurate

regulatory models, which in turn provide new targets allowing for

better reconstruction of the signaling pathways.

Likewise, although the network orientation algorithm per-

forms very well when given a set of sources and targets, its appli-

cability and utility are greatly reduced if it is limited to conditions

in which the target TFs are completely known. In the osmotic stress

response, DREM detected active TFs such as Cin5, Gcn4, Nrg1,

Rox1, and Yap6 that play a role in the response and recovery but

are not included in canonical HOG pathway representations and

would not be included in the target set for the network orientation

algorithm. In the Arabidopsis immune response, there is even less

prior knowledge of which TFs should serve as targets.

We compared SDREM to two other methods for reconstructing

pathways; however, neither is intended to directly connect up-

stream proteins in a signaling network to temporal gene expression

changes. PNM (Yeang et al. 2004) infers directed, signed pathways

from KOs to affected genes, and ResponseNet (Yeger-Lotem et al.

2009) links genetic screen hits to differentially expressed genes.

Thus, comparing them to SDREM requires preprocessing and

transforming the input data (Methods). PNM and ResponseNet were

only able to identify one or two TFs involved in the HOG pathway,

which yielded insignificant overlaps (Table 1). Only SDREM cor-

rectly recovered all four core HOG TFs, demonstrating that model-

ing the dynamic transcriptional response enhances identification of

active TFs. PNM recovered Hog1 when run on the short expression

data, but ResponseNet omitted Hog1 in both models. Although

ResponseNet predicted Hog1 when nondefault settings were used

(Supplemental Results), it was still unable to recover a significant

portion of the HOG TFs under a variety of settings (Supplemental

Table S11).

A popular approach for identifying the important TFs in a

dynamic process is to search for time-lagged dependencies in the

expression data of regulator-target gene pairs (Schmitt et al. 2004;

Balasubramaniyan et al. 2005; Huang et al. 2010; Zoppoli et al.

2010). To emphasize the benefits of incorporating known physical

interactions, we compared SDREM’s TF predictions to those of

GeneReg (Huang et al. 2010), an algorithm that analyzes only

the temporal expression data. GeneReg identified TF–gene in-

teractions for 46 differentially expressed TFs in the long osmotic

stress data, but at each of three thresholds—top 10 TFs, top 28 (the

number of targets SDREM predicts), and all 46—the overlaps be-

tween the GeneReg TFs and the HOG gold standard are in-

significant (P-values 0.302, 0.249, and 0.194, respectively) (see

Supplemental Table S12). GeneReg and all other algorithms that

rely on expression alone are inherently limited because they can-

not identify TFs that are post-translationally activated and do not

exhibit changes in their own expression levels (e.g., Sko1 in this

particular response).

Limitations of the learned models

Although SDREM identified the majority of the gold standard

proteins, it missed two important HOG pathway proteins, Ssk1
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and Ssk2, that are present in all seven gold standard sources. The

most likely explanation for their absence is that both proteins have

a low degree in the protein interaction network. Consequently, it is

unlikely that these proteins will have a large number of source–target

paths through them in the directed network, which means that they

will have low connectivity scores and will not be recognized as im-

portant HOG members. This suggests a possible bias in our tech-

nique against low-degree proteins. The gold standard members Ctt1,

Glo1, Gpd1, and Msn1 were found to be left out of SDREM’s models

because they were not in the input interaction networks.

Source–target paths that include a protein–DNA interaction

imply that the bound gene is transcribed and translated in re-

sponse to the environmental perturbation and subsequently af-

fects the next protein on the path. To improve the biological in-

terpretability of SDREM models, future applications could filter the

protein–DNA edges in the network to retain only interactions

where the bound gene is differentially expressed in the time-series

expression data. SDREM could also be extended to automatically

predict which TFs are transcriptionally activated. In addition, a

coarse level of transcriptional feedback could be modeled by in-

tegrating the predicted TF activation times, the times at which

genes are differentially expressed, and the protein–DNA edges in

the network. However, many nodes in the signaling network are

not transcriptionally activated, and learning the full network dy-

namics would likely require including additional types of data such

as condition-specific measurements of phosphorylation dynamics

(Olsen et al. 2006).

Extending the algorithm for other species

SDREM’s success in reconstructing dynamic response networks in

yeast and A. thaliana opens the door to applications in other spe-

cies, including mammals. Recent studies provide information

about inputs to the signaling networks for a number of human

infections (Chatr-aryamontri et al. 2009; Fu et al. 2009), and cor-

responding temporal expression data are also available. Although

mammalian PPI networks are larger than the yeast network

(making it harder to search for high-scoring pathways), we can

incorporate additional data sources, including genome-wide RNA

interference screens (Karlas et al. 2010; König et al. 2010), to de-

termine which nodes in the network are relevant to the response.

The ability to reconstruct accurate, dynamic models of cellular

response networks helps reveal the components and mechanisms

involved in such responses. SDREM is a step in this direction,

allowing us to correctly reconstruct regulatory and signaling net-

works involved in stress response. The method is general and can

be used for any species for which PPI and protein–DNA interaction

data are available. An open source software implementation of

SDREM is available from http://sb.cs.cmu.edu/sdrem.

Methods

DREM: Dynamic Regulatory Events Miner
DREM uses protein–DNA binding interactions and time-series
gene expression data to learn which TFs control the differential
expression of their bound genes and the time(s) at which they do
so. DREM utilizes an IOHMM (Bengio and Frasconi 1995), which
unlike traditional HMMs also includes additional observed input
data that can influence transition probabilities. In DREM, protein–
DNA interactions serve as the static input data that influence
transitions between hidden states. An L1-regularized logistic re-
gression classifier is trained at all expression profile bifurcations to
assign transition probabilities to genes based on the set of TFs that
bind them. DREM searches the state space of possible splits in gene
expression profiles to predict a compact set of diverging regulatory
paths and the TFs that control them.

Network orientation

The network orientation algorithm directs all undirected edges in
a physical interaction network so as to optimally connect sources
to target proteins (in this case, TFs from DREM). All reasonably
short source–target paths (five or fewer edges here) are assigned
a weight wðpÞ, which is based on the confidence in each PPI along
the path. The objective is to maximize the function

+
p2P

Isð pÞwð pÞ;

where P is the set of all short paths between sources and targets,
and ISðpÞ is an indicator function that has the value 1 if path p is
satisfied. A path is satisfied if all of its edges are oriented toward the
target. The orientation procedure itself involves random restarts of
a local search technique, which has been shown to accurately de-
termine edge direction (Gitter et al. 2011).

Reconstructing signaling and dynamic regulatory networks
using SDREM

To link the two methods, we first extended DREM in order to make
it suitable for our iterative approach. Originally DREM only ac-
cepted either binary input for TF–gene binding interactions or

Table 1. Overlap significance for physical network models (PNM) and ResponseNet osmotic stress predictions and the HOG gold standard

Algorithm SDREM PNM ResponseNet SDREM PNM ResponseNet

Expression data Short Short Short Long Long Long
Total predictions 58 445 61 51 309 61
Predicts Hog1 Y Y N Y N N
Predicted internal 30 374 4 17 248 4
Gold standard internal 30 30 30 30 30 30
Internal overlap 6 9 1 5 7 1
Internal significance 1.11 3 10�8 1.61 3 10�4 0.0227 2.55 3 10�8 3.88 3 10�4 0.0227
Predicted TFs 28 71 57 34 61 57
Gold standard TFs 7 7 7 7 7 7
TF overlap 4 2 2 4 1 2
TF significance 7.70 3 10�3 0.770 0.632 0.0161 0.922 0.632

The sizes of the networks predicted by PNM and ResponseNet are shown alongside the SDREM (Signaling and Dynamic Regulatory Events Miner) models
for comparison. The five sources are not included in the counts.
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ternary input (�1, 0, 1) if the TFs are known to be activators or
repressors. We modified this so that continuous TF activity priors
can be accepted. Initially all priors are set to 0.5, but in subsequent
iterations, modified priors are derived from the oriented network
as described below.

The activity priors influence the transition probabilities in the
IOHMM as well as the new activity scores that DREM now calcu-
lates. The activity score is calculated for each TF at each bifurcation
point in the gene expression profiles. The score at a particular split
is the likelihood ratio

scoreðtÞ = Pða = 1jGt Þ
Pða = 0jGt Þ

;

where a reflects whether the TF t is active at this split, and Gt is the
set of genes bound by the TF that pass through the split. These
probabilities are calculated using the activity prior (which is de-
rived from the signaling network component) and the paths fol-
lowed by Gt out of the split, which tell how well the TF explains the
behavior at the split. The final activity score for each TF is the
maximum score for the TF across all bifurcation points. We use
a randomization procedure to determine the significance of a spe-
cific activity score (Supplemental Methods).

We also extended the network orientation algorithm so that
in addition to the edge weights, it incorporates the target (TF)
weights from DREM. Specifically, the modified path weight used in
the objective function for orientation is

wð pÞ= wðtÞ
Y

v2p

wðvÞ
Y

e2p

wðeÞ;

where p is a source–target path, t is the target on that path, v is
a vertex on the path, and e is an edge on the path. In our current
analyses, wðvÞ= 1 for all nodes in the network. However, the
SDREM software supports vertex-specific weights for studies in
which the user has prior knowledge that some proteins are more or
less likely to be involved in the stress response. wðtÞ is a normalized
version of the activity score from DREM that ranges from 0 to k, the
number of edges allowed in a source–target path. For the yeast
models presented here, we included protein–DNA interactions in
the interaction network, which have a known directionality
(TF!gene) and do not need to be oriented algorithmically.

We defined two types of connectivity scores: target scores and
node scores. Target connectivity scores are calculated by adding
random targets. Each random target has wðtÞ = 1, and the number
of random targets is equal to the number of real targets (active TFs
from DREM). Satisfied paths are ranked by path weight, and the top 5T
paths, where T is the number of real and random targets, are consid-
ered high-confidence paths. A target’s score is the sum of all path
weights of satisfied top-ranked paths that end at that target. These
target connectivity scores are averaged over 10 runs for the real targets,
and the scores of the random targets in all 10 runs are used to create
a target connectivity score distribution. Node connectivity scores are
obtained using a separate set of 10 orientations using the real targets.
The node connectivity score calculation sums over all satisfied paths
that include the node. The percentage of high-confidence paths that
contain a particular node is the node’s connectivity score.

Activity priors for the next iteration of DREM are then in-
creased or decreased according to both the target and node con-
nectivity scores. A TF’s activity prior is increased if its target score is
high (compared with the random distribution) or its node score is
high (i.e., it is involved in many high-scoring paths). Any target
that does not meet these criteria has its prior halved. The binding
priors of all other TFs that were not identified as active targets are
not changed. Sensitivity analysis indicates that SDREM is robust to

variations in the values of these and other parameters (Supplemental
Tables S13–S16; Supplemental Fig. S13).

SDREM settings

For all analyses here, we considered a maximum path length of 5,
and SDREM was run for 10 iterations. In practice, the TFs and
signaling proteins predicted in each iteration tend to converge
upon a stable, well-supported set as the iterations proceed (Sup-
plemental Tables S17, S18). Only binary splits were allowed in the
regulatory paths. Genes were filtered if they were missing data for
more than one time point or if they were not differentially
expressed after exposure to the external stimulus. The default
values were used for all other parameters (Supplemental Table S13).

Yeast interaction networks

All protein–protein interaction data were taken from BioGRID
(Stark et al. 2006) and weighted as previously described (Gitter
et al. 2011). We complemented a general genome-wide ChIP-chip
binding data set (MacIsaac et al. 2006) with condition-specific
binding data for osmotic stress (Capaldi et al. 2008) and rapamycin
(Harbison et al. 2004). For the weighting schemes and additional
details, see Supplemental Table S19 and Supplemental Methods.

Osmotic and rapamycin stress data

The osmotic stress response analysis source proteins were Cdc42,
Msb2, Sho1, Sln1, and Ste50 (Science Signaling Database of Cell Sig-
naling, http://stke.sciencemag.org/cgi/cm/stkecm;CMP_14620). The
osmotic stress validation data sets included the gold standard
(Supplemental Table S3), osmotic stress screens (Supplemental
Methods), and literature-based evidence (see Supplemental Tables
S1, S2, S4, and S5; Supplemental Methods). TORC1 complex
members were used as sources in our rapamycin response mod-
eling—Kog1, Lst8, Tco89, Tor1, and Tor2 (Zaman et al. 2008)—and
the SDREM predictions were again evaluated using literature
models (Supplemental Tables S8, S9) and screens (Supplemental
Results; Supplemental Methods). ChIP-chip data from rapamycin-
treated cells for 14 TFs (Harbison et al. 2004)—Dal80, Dal81, Dal82,
Fhl1, Gat1, Gcn4, Gln3, Gzf3, Hap2, Msn2, Msn4, Rtg1, Rtg3, and
Uga3—were merged with the noncondition-specific protein–DNA
interactions.

Strains

The S. cerevisiae single KO strains used in this study were taken
from the Yeast GFP Library and Yeast Deletion Library. These
strains were constructed from a BY4741 background (MATa his3-
D1 leu2-D0 met15-D0 ura3-D0).

Microscopy

Cells were grown to logarithmic phase in synthetic complete (SC)
medium, washed, and resuspended in SC medium with 1 M sor-
bitol. Pictures were taken before and after suspension in sorbitol.
Images were taken using DeltaVision system package (Applied
Precision). ImageJ (http://rsbweb.nih.gov/ij/) was used for all im-
age post-processing and analysis (see Supplemental Methods;
Supplemental Fig. S5).

Flow cytometry

FACS analysis was done by BD LSRII system (BD Biosciences). Flow
cytometry was conducted with excitation at 488 nm and emission
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at 525 6 25 nm for GFP samples. For each protein, we calculated
mean protein expression before (pControl) and after sorbitol
treatment (pSor) as well as the background before (bgControl) and
after treatment (bgSor). Fold change ( fc) was then calculated as

fc =
pSor � bgSor

pControl� bgControl
:

P-values were calculated using a paired one-tailed t-test on the log2

protein levels. For additional details, see Supplemental Methods
and Supplemental Table S20.

KOs and microarray analysis

The six genes we deleted were selected because they are non-
essential, are members of many high-confidence pathways, and
are predicted to belong to different levels of the signaling network
hierarchy (Supplemental Methods). Cells were grown to loga-
rithmic phase in SC medium (OD = 0.5). The cells were harvested,
pelleted, and frozen for further analysis. Sorbitol experiments were
similarly performed by growing to logarithmic phase in SC me-
dium and then washing and resuspending in SC medium with 1 M
sorbitol for 30 min. Total RNA was extracted using MasterPure
yeast RNA purification Kit (Epicentre). The samples were ampli-
fied, labeled, hybridized to yeast microarrays (Gene Expression
Omnibus platform GPL13340), and scanned using standard
Agilent protocols, reagents, and instruments.

To focus specifically on the osmotic stress response, we only
analyzed genes that were differentially expressed in the short and
long time-series expression data sets, and removed environmental
stress response genes (Gasch et al. 2000). Significance analysis of
microarrays (Tusher et al. 2001) was used to identify significantly
differentially expressed genes. We used the Bonferroni correction
to correct for multiple hypothesis testing when calculating regu-
latory pathway overlaps. For the overlaps between the regulatory
paths and KO-affected genes and the lists of osmotic stress–specific
genes, see the Supplemental Methods and Supplemental Table S21.

Comparison to benchmark algorithms

PNM was designed for gene KO data; thus, we transformed our data
to create a ‘‘pseudo-knockout’’ data set using the time-series ex-
pression data. The five HOG pathway sources were given as the
deleted genes, and each one was assigned identical transcriptional
effects in the form of P-values from EDGE (Leek et al. 2006). For
ResponseNet, we created weighted targets where the weight of a gene
was its maximum magnitude log2 fold change across all time points.
The default parameters were used (gamma = 10 and capping = 0.7).
GeneReg identified TF–gene interactions for 46 of the 47 TFs that
were differentially expressed. To evaluate the highest-confidence
predictions, we ranked these TFs by the strength of their predicted
involvement (i.e., the number of genes each TF was predicted to
control). For additional details, see the Supplemental Methods.

Network images

All signaling network images were generated using Cytoscape
(Shannon et al. 2003). Supplemental Data S1 contains Cytoscape-
formatted files that can be used to load and manipulate these
networks.

Data access
Gene expression data have been deposited in the NCBI Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE28213.
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