
biosensors

Article

Color-Coded Droplets and Microscopic Image Analysis for
Multiplexed Antibiotic Susceptibility Testing

Yunjin Jeong 1,† , Haewook Jang 2,†, Junwon Kang 2,3, Juhong Nam 4, Kyoungseob Shin 4,
Sunghoon Kwon 1,2,4,5,6,7,* and Jungil Choi 8,*

����������
�������

Citation: Jeong, Y.; Jang, H.; Kang, J.;

Nam, J.; Shin, K.; Kwon, S.; Choi, J.

Color-Coded Droplets and

Microscopic Image Analysis for

Multiplexed Antibiotic Susceptibility

Testing. Biosensors 2021, 11, 283.

https://doi.org/10.3390/bios11080283

Received: 4 August 2021

Accepted: 16 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Bio-MAX Institute, Seoul National University, Seoul 08826, Korea; jeancompany@snu.ac.kr
2 Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea;

royjang12@snu.ac.kr (H.J.); jwon225@snu.ac.kr (J.K.)
3 Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Korea
4 Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea;

njh1103@snu.ac.kr (J.N.); arquina94@snu.ac.kr (K.S.)
5 Institute of Entrepreneurial Bio Convergence, Seoul National University, Seoul 08826, Korea
6 Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
7 Center for Medical Institute, Seoul National University Hospital, Seoul 03080, Korea
8 School of Mechanical Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
* Correspondence: skwon@snu.ac.kr (S.K.); jchoi@kookmin.ac.kr (J.C.)
† These authors contributed equally to this work.

Abstract: Since the discovery of antibiotics, the emergence of antibiotic resistance has become a
global issue that is threatening society. In the era of antibiotic resistance, finding the proper antibiotics
through antibiotic susceptibility testing (AST) is crucial in clinical settings. However, the current
clinical process of AST based on the broth microdilution test has limitations on scalability to expand
the number of antibiotics that are tested with various concentrations. Here, we used color-coded
droplets to expand the multiplexing of AST regarding the kind and concentration of antibiotics. Color
type and density differentiate the kind of antibiotics and concentration, respectively. Microscopic
images of a large view field contain numbers of droplets with different testing conditions. Image
processing analysis detects each droplet, decodes color codes, and measures the bacterial growth in
the droplet. Testing E. coli ATCC 25922 with ampicillin, gentamicin, and tetracycline shows that the
system can provide a robust and scalable platform for multiplexed AST. Furthermore, the system can
be applied to various drug testing systems, which require several different testing conditions.

Keywords: droplet; color code; antibiotic resistance; image processing; multiplexed

1. Introduction

Antibiotic resistance is an emerging issue in global healthcare [1,2]. Misuse and
overuse of antibiotics are the primary factors that are increasing the development of
antibiotic-resistant bacteria [3]. Governmental regulation of both antibiotic use and the
development of new antibiotics by pharmaceutical companies have been required to
address the antibiotic resistance problem. In the clinical environment, determining the
antibiotic resistance of bacteria from infected patients, through a process referred to as
the antibiotic susceptibility test (AST), is an urgent need to save patients. Current gold
standard methods of AST are broth dilution and disk diffusion tests [4]. In the broth
dilution test, bacterial samples are loaded into micro-well plates that contain antibiotics
and culture media [5]. The micro-well plate is then incubated at 37 ◦C for 16–20 h, and the
optical density of the testing well is measured to determine bacterial growth. Based on
the minimal inhibitory concentration (MIC), antibiotic resistance is then determined and
the antibiotics needed are prescribed to the infected patient. This gold standard method is
considered accurate and applicable in clinical settings. However, there are two limitations
of this gold standard method. One is the long incubation time required to differentiate the
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growth of bacteria in the testing well due to optical density measurement. The other is
the scalability of the system, as testing the number of antibiotics and their concentration
requires directly increasing the testing well, and the handling process requires a larger
system. To address the first limit, the limitation of time, many researchers have developed
rapid AST systems. First, single-cell image analysis in microfluidic channels has been found
to reduce the time of detection of bacterial growth [6–10]. Immobilization in hydrogel,
electrophoresis, and trapping narrow microfluidic channels captures bacterial cells in a
small view field that is required for single-cell imaging in high magnification [10–12].
Other methods for rapid AST include using a cantilever to monitor the behavior of the
cell, fluorescent imaging, and rotating microbeads [13–16]. These various approaches, in
addition to reducing AST time, have been successfully demonstrated, and commercial
devices have also been made available [17]. In the case of scalability, droplet microfluidics
is an appropriate solution. Droplet microfluidics enables high-throughput handling of
small-volume liquid from femto- to nanoliter, which is a useful tool for therapeutic drug
assays [18]. Up to 20,000 droplets can be generated per second [19]. The droplets, which
are produced by high-throughput screening, play a role in separated reaction chambers,
such as aliquoted liquid. To use this advantage of the high-throughput generation of
reaction chambers, methods to encode droplets are necessary. The encoding methods
have been well-developed in the field of encoded microparticles. However, in comparison
to methods to encode microparticles, methods to encode droplets are limited due to the
free rotation of droplets, free-floating of materials in droplets, and the limited injection of
additional materials [20,21]. Nevertheless, encoded droplets have advantages in acting as
tiny bioreactors because encoded microparticles can handle reactions of biomolecules with
similar functional groups. These groups are attached to the surface of microparticles [22]
or limited chemicals and undergo complicated experiments to calculate the absorbed
amount of chemicals [23]. The droplet-encoding methods have been developed using
fluorescence [24–26], color [27], magnetics [28], encapsulated beads [29], and encapsulated
DNAs [30,31]. The codes using magnetics beads or DNAs should be accompanied by
complicated decoding processes of hardware [31] or software [29]. The fluorescent or
color codes have advantages for assays, such as AST, where various concentrations of the
same molecules may be tested [32]. The density of the color codes can easily be used to
distinguish the concentration of antibiotics, and the concentration of the colors and the
matched molecules can easily be changed by altering the inputs of microfluidics. Besides,
the color codes derived from food dyes are compatible with the growth of bacteria and can
be easily imaged or viewed using microscopy without fluorescence screening.

Here, we propose a system to test AST in microdroplets with color codes in order to
provide the scalability of AST. Different colors of droplets and color densities represent
the type and concentration of antibiotics, respectively. The microfluidic droplet-generating
system produced many droplets and collected them into a single micro-well-provided
multiplexed AST. Images from a color charge-coupled device (CCD) in microscopy were
analyzed by image processing, which differentiated color codes and measured the bacte-
rial concentration in the droplet. Testing the clinically important pathogen, E. coli, with
tetracycline, ampicillin, and gentamicin validated the cultured bacteria in the droplet and
decoded color code before and after bacterial growth. Based on the results, color-coded
droplets could provide a solution to expand the scale of testing numbers in AST.

2. Materials and Methods
2.1. Design and Fabrication of Microfluidic Chip

A microfluidic chip was designed to produce water-in-oil droplets in a flow-focusing
geometry [26,33]. The width and the depth of the channel were both 200 µm. Two inlets
and one outlet were designed to generate droplets and handle the generated droplets,
respectively (Figure S1). A silicon wafer was patterned with a SU-8 photoresistor (SU-8 2100,
Kayaku Advanced Materials, Tokyo, Japan) using photolithography. Polydimethylsiloxane
(PDMS, SYLGARD 184, Dow Corning) was poured onto the patterned silicon wafer and
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thermally polymerized by heat for 20 min at 150 ◦C. After polymerization, the PDMS
polymer was peeled off of the silicon. The patterned PDMS was bonded to a PDMS-coated
glass after being oxidized in air plasma for 2 min (CUTE-MP, Femto Science, Hwaseong,
Korea) and heated thereafter for 20 min at 150 ◦C.

2.2. Droplet Generation

Water-in-oil droplets were generated in a flow-focusing geometry of the PDMS mi-
crofluidic chip. The inner water of the droplet was a mixture of bacteria, antibiotics, food
dye, and bacterial culture media (Figure S2). After mixing with other solutes and sol-
vents, concentrated bacterial culture media with a single bacterial strain were prepared
to 106 CFU/mL and 1×, respectively. Food dyes for color codes and antibiotics were first
mixed so that color densities would indicate the concentrations of antibiotics. The final
concentration of the antibiotics was 0.5, 1, and 2 µg/mL for tetracycline, 0.25 and 1 µg/mL
for gentamicin, and 2, 4, and 8 µg/mL for ampicillin. To see if bacteria would grow well in
223–303 µm droplets, control droplets were generated to include only bacteria and culture
media without food dye and antibiotics. The outer oil was a mixture of HFE7500 and 1 wt%
008-FluoroSurfactant (RAN Biotechnologies, Beverly, MA, USA). The flow rate of the inner
bacterial solution and the outer oil solution were 100 and 1000 µm/h, respectively.

2.3. Bacterial Strain Preparation

A standard bacterial strain, E. coli ATCC 25922, of the Clinical and Laboratory Stan-
dards Institute (CLSI), was purchased from MicroBioLogics, Inc. (Saint Cloud, MN, USA).
We conducted all the experiments following the ethical standards from the American Type
Culture Collection and performed all the experiments in the biosafety cabinet. In total,
400 µL of a 50% glycerol-deionized water mixture was mixed with 800 µL of a bacterial
cation-adjusted Mueller Hinton Broth (CAMHB; BD Biosciences, San Jose, CA, USA) mix-
ture. These stock solutions were placed in microcentrifuge tubes (SPL Life Sciences, Seoul,
Korea) and cryopreserved at −70 ◦C in a deep freezer. For the AST, subcultures were
performed before the experiment. Stock solutions from aliquots were inoculated with one
loop on Luria–Bertani agar plates (Kisan Bio Co., Ltd., Seoul, Korea) and were incubated in
a 37 ◦C incubator overnight. After 20 to 24 h of incubation, several colonies were formed,
and these were used to generate the target concentration of bacteria.

2.4. Antibiotics

Gentamicin, ampicillin, and tetracycline were purchased from Sigma-Aldrich (St. Louis,
MO, USA). All antibiotics were dissolved in DI water to prepare a stock solution. The
antibiotic stock solution was diluted by MHB medium to the target concentration.

2.5. Broth Microdilution Test

As a gold standard method of AST, the broth microdilution test (BMD) test was con-
ducted, based on the CLSI’s recommendation, with the purpose of determining the effect of
food dye on AST results. Three antibiotics used in this study (ampicillin, gentamicin, and
tetracycline) were dissolved in MHB, respectively, and were serially diluted to the desired
concentrations from 0.25 to 8 µg/mL. Using a 96-well microtiter plate (BD Biosciences,
San Jose, CA, USA), 100 µL of diluted antibiotic solution and 10µL of the bacterial solution
were added to each well at a final concentration of 5 × 105 CFU/mL. In an experiment to
determine the effect of food dye on AST results, food dye corresponding to each antibiotic
was additionally added to each well. The final concentration of each food dye used was
consistent with the highest concentration of the food dye used in the color-coded droplet.
After 24 h of incubation at 37 ◦C, an unaided visual inspection determined the results of
each microdilution well by comparing the turbidity of the solution with positive control
with bacteria and negative control without bacteria.
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2.6. Microscopic Imaging and Image Processing

Microscopy (Nikon ECLIPSE Ti, Tokyo, Japan) with 4× and 10× objective lenses
captured the image through a color charge-coupled device (CCD, Nikon Digital Sight
DS-Ri1, Tokyo, Japan) of 2048 × 2048 pixels with 1.65 um and 0.66 um, respectively. Several
image processing steps were briefly used to obtain color code and bacterial growth data in
droplets from the raw CCD images (Figure 1). First, we used the shading compensation
method to compensate for the uneven image brightness. Then, to detect the color-coded
droplets in the images, we converted the raw images to grayscale and used the Hough
transform circle for droplet recognition (Figure 1B). By averaging the color of the rectangular
area at the center of the droplet, indicating the length of one side by the radius of each
droplet, the color code was analyzed to detect the antibiotics’ type and concentration. We
excluded the top and bottom 20% of the pixels based on brightness to minimize noise
data. To recognize the bacterial growth in the droplets, we used the Sobel filter, the
discrete derivative operator used to obtain image intensity gradient (Figure 1D). High
concentrations of bacteria create multiple bacterial swarming patterns in the droplet,
resulting in many noise patterns, but are rarely bacteria-free or contain bacteria at low
concentrations. Thresholding the Sobel-filtered image determines bacteria growth in
droplets through the proportion of areas higher than the threshold in droplets (Figure 1E).
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3. Results and Discussion
3.1. Color-Coded Droplet for Antibiotic Susceptibility Testing

AST determines the minimal inhibitory concentration (MIC) of specific antibiotics
to target bacteria, requiring testing with a few serial concentrations of antibiotics. To
differentiate the kinds of antibiotics and testing concentration simultaneously, two coding
systems are necessary. We used color type and density as coding methods for the antibiotic
type and concentration, respectively (Figure 2B). Bacterial samples mixed with antibiotics,
color dye, and oil with a surfactant flow into a junction in a cross-shaped microfluidic
channel that generates color-coded droplets (Figure 2A). Various color-coded bacterial
droplets are mixed in a single well in a micro-well plate and incubated in a 37 ◦C chamber.
If the bacteria are susceptible to antibiotics, it does not increase in number. In other cases,
bacteria proliferate, and the microscopic images identify the number of bacteria in droplets.
The raw images are analyzed by image processing to decode the type and concentration of
antibiotics and measure the bacterial growth. Afterward, the MIC values are derived in the
specific antibiotics (Figure 2C).

3.2. Measurement of Bacterial Growth in Droplet

Measuring the bacterial concentration in the droplet is necessary in order to determine
the antibiotic susceptibility of target bacteria. Microscopic imaging of bacterial droplets
and following image processing determined the bacterial growth. Previous research on
microfluidic AST performed microscopic single-cell analysis to determine bacterial growth.
However, in this research, a 10× objective lens was used to take the microscopic image to
obtain large numbers of droplets in a large field of view. Therefore, we used a different
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approach for image analysis. First, the raw image was taken using color CCD, and the
edge of the droplet was detected, capturing the inside image of the droplet (Figure 3A,B).
After the image was processed, the shadow of the bacterial cell generated different features
in the image, and this was transformed into the number of bacteria in the droplet. At
the initial point of the droplet, the actual bacterial concentration was 106 CFU/mL, and
only a small area was recognized as bacterial cells (Figure 3A,C). After 16 h of incubation,
bacterial cells were then detected in bright field images, and the area of bacterial cells
from image processing increased as well (Figure 3B,C). Statistical analysis of the droplets
at the initial time and 16 h after incubation was based on a T-test. When comparing the
difference in bacterial growth by selecting three color-coded droplets for each time point,
the quantitative analysis between the initial droplet and the incubated droplet showed a
significant difference statistically. Here, we set up the imaging time to 16 h of incubation.
To reduce detection time, higher magnification of imaging, such as 20× or 40×, is possible.

3.3. Differentiation of Color Code of Droplets

To demonstrate that color codes correspond to the type and concentration of an-
tibiotics, we measured the mean of RGB values from each droplet after incubating for
16 h (Figure 4A and Figure S3). All RGB values extracted from droplets in the image were
grouped with a similar range (Figure S3). Eighty droplets were randomly selected from a
microscope image with a 4× objective lens and clustered. The raw data of RGB values were
measured from the inner rectangular of each droplet, of which the length of a side is similar
to the radius of the droplet. The final RGB values were then calculated as a mean value of
low RGB values after removing the top and bottom 20% values. We coined the final mean
value of each color as red, green, and blue, respectively, and the relative luminance was
calculated using the following equation:

Relative luminance = 0.2126R + 0.7152G + 0.722B (1)

when clustering with relative luminance values, red, green, and blue values were distin-
guished into clusters based on 140 and 165, 140 and 105, and 140 relative luminance values,
respectively. As a result, the three types and concentrations of antibiotics were successfully
classified (Figure 4A). Measuring the bacterial growth of the color-coded droplet was
performed by an identical process as the control droplet of no antibiotics, as mentioned
in Section 3.3 (Figure 4B). For example, the bacterial growth curves were measured from
initial to final state at the cases of 0.25 and 1.0 µg/mL of gentamicin and 4 µg/mL of
ampicillin (Figure 4C–E). In all cases, the measured bacterial growth between the initial
and final states showed significantly different results. The data validated the feasibility of
image processing that measures bacterial growth within the color-coded droplets.

3.4. Differentiating Color Code of Droplets

For the multiplexed AST, color-coded droplets of three antibiotics with three concen-
trations were generated through the method mentioned before. Before the application of
color-coded droplets on AST, BMD tests with and without food dye in the testing well
showed no significant effect of food dye on the AST (Figure S4). All droplets with different
testing conditions were collected in a single well of the micro-well plate. Microscopy
captured the images of multiplexed droplets at the initial time and after incubation for 16 h
at 37 ◦C (Figure 5A). In the image, around 200 droplets were captured, including all cases
of testing conditions. Image processing detected the droplets’ edges, decoded the color
codes of the droplet, and differentiated them (Figure 5B,C). In the case of tetracycline with
red color, in all concentrations, no growth of bacteria concluded the MIC value as less than
or equal to 0.5 µg/mL. However, gentamicin with a green color code shows growth in all
concentrations, concluding the MIC value as greater than 1 µg/mL. In ampicillin with a
blue color, at 2 µg/mL, bacteria showed growth after 16 h. However, at 4 and 8 µg/mL, no
growth of bacteria was observed. Therefore, the MIC value of ampicillin was determined
as 4 µg/mL. In all cases, the difference in bacterial concentration between initial and incu-
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bated cases is significant. These data show that using color-code droplets equipped with
image processing is capable of multiplexed AST.
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tions; however, the limitation to our study was that only three antibiotics and concentra-
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erate many kinds of droplets. It is important to conduct further studies using droplet mi-
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Figure 5. Multiplexed color-coded droplets for antibiotic susceptibility testing. (A) Microscopy images of the color-coded
multiplexed droplet with bacterial cells. (B) Decoding color codes of droplets. #: control, N (low) � (medium) • (high)
concentration of tetracycline, N (low) � (medium) concentration of gentamicin, N (low) � (medium) • (high) concentration
of ampicillin. (C) The detected edges of the droplets. Differences in bacterial growth and interpretation of MIC results with
a time of incubation of (D) tetracycline, (E) gentamicin, and (F) ampicillin (standard deviations are indicated). Scale bars
represent 500 µm in subfigures (A–C).
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4. Conclusions

This research proposed color-coded droplets for the multiplexed AST platform. Dif-
ferent colors and their densities were able to differentiate the antibiotic type and its con-
centration, respectively. Image processing detected the droplet, differentiated the color
code, and measured the bacterial growth. A sample test of E. coli with three clinically im-
portant antibiotics and three concentrations validated the system’s feasibility. Combining
various color dyes and their concentrations could expand the number of testing conditions;
however, the limitation to our study was that only three antibiotics and concentrations
were tested. In addition, when this method is applied to AST, which requires many kinds
and concentrations of antibiotics, a long period of time is necessary in order to generate
many kinds of droplets. It is important to conduct further studies using droplet microflu-
idic technologies that can change the concentrations of antibiotics easily and in a timely
manner [32,34]. In addition, a microfluidic flow control platform, such as serial dilution,
could enhance the system’s scalability.
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.3390/bios11080283/s1, Figure S1: Design of a microfluidic chip to generate droplets. Figure S2:
Preparation of inner water solution to generate bacterial droplets for AST. Figure S3: Histograms
represent many droplets at each luminance. Figure S4: BMD test for validation of the effect of food
dyes on the results of AST.
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