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SUMMARY

Cysteine cathepsins play roles during development and disease beyond their function in lysosomal 

protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track 

cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of 

mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity 

of several cathepsin proteases. The data support a pathogenic mechanism where TGF-β signals 

enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-

sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-β-mediated increases in chst11 
expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII 

phenotypes. These findings uncover a regulatory loop between TGF-β signaling and Ctsk 

activation that is altered in the context of lysosomal disease. This work highlights the power of 

ABPs to identify mechanisms underlying pathogenic development in living animals.
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In Brief

Chondroitin sulfate is a known regulator of cathepsin protease activity. Flanagan-Steet et al. 

identify a positive feedback mechanism whereby cathepsins secreted from chondrocytes upon loss 

of lysosomal targeting activate TGF-β signaling in developing cartilage. This increased signaling, 

in turn, stimulates chondroitin-4 sulfation and enhances cathepsin activity.

Graphical Abstract

INTRODUCTION

Cysteine cathepsins play essential roles in biological processes beyond lysosomal protein 

turnover (Reiser et al., 2010). Studies of cellular and developmental systems identified 

numerous functions for these proteases, including hormone and neuropeptide processing, 

antigen presentation, and growth factor activation and stability (Flanagan-Steet et al., 2016; 

Honey and Rudensky, 2003; Hook et al., 2008). Inappropriate expression or loss of 

cathepsins are associated with metastatic cancer, atherosclerosis, neurodegenerative diseases, 

rheumatoid arthritis, chronic inflammatory lung disease, and lysosomal storage disorders 

(Ketterer et al., 2017; Liu et al., 2004; Lutgens et al., 2007; Olson and Joyce, 2015; Stoka et 

al., 2016; Vasiljeva et al., 2007; Wilson and Brömme, 2010; Zhang et al., 2011). Because 

cathepsins perform functions in and out of the lysosome, defining how their expression, 

intracellular sorting, and activation are regulated is essential to fully understand their 

biological function. Activity-based probes (ABPs) provide a powerful way to directly 

monitor protease activity in the context of living cells and organisms (Edgington-Mitchell et 

al., 2017; Kato et al., 2005; Sanman and Bogyo, 2014). ABPs are small-molecule reporters 

that covalently and irreversibly attach to the active-site nucleophile of target enzymes. When 

“unbound,” an intrinsic quenching group inhibits the fluorescence capacity of the probe. 

Interaction with the target enzyme’s active site displaces this group, causing the probe to 

fluoresce.

Mucolipidosis II (MLII) is a lysosomal storage disorder caused by mutations in the 

GNPTAB gene encoding the GlcNAc-1-phosphotransferase enzyme. The GlcNAc-1-

phosphotransferase catalyzes the addition of a mannose 6-phosphate (M6P) tag to the N-

glycans of newly synthesized hydrolases, directing their transport to lysosomes (Kollmann et 

al., 2010; Kornfeld and Mellman, 1989; Reitman et al., 1981; Tiede et al., 2005). Loss of 

this phosphotransferase enzyme impairs lysosomal targeting, causing the hydrolases to be 
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secreted from the cell. Intracellular hydrolase deficiency leads to tissue-specific 

macromolecular storage. Although profound lysosomal storage is the hallmark of MLII, 

recent data implicate a role for secreted cathepsins in early disease pathology (Flanagan-

Steet et al., 2016; Petrey et al., 2012). Studies in zebrafish demonstrate that, when 

mislocalized outside cells, cathepsin K (Ctsk) becomes hyperactivated and increases 

transforming growth factor β (TGF-β)-related signaling (Flanagan-Steet et al., 2016). 

Although inhibiting Ctsk improves MLII cartilage, it is unclear whether additional secreted 

cathepsins contribute to the MLII phenotypes. Moreover, the molecular mechanisms linking 

cathepsin activation to TGF-β signaling are unknown.

Taking advantage of a cathepsin-specific ABP (BMV109) (Verdoes et al., 2013), we 

assessed the breadth of protease activities in embryonic zebrafish during normal and 

pathogenic development. Our findings confirm MLII-increased Ctsk and identify additional 

cathepsins whose activities are altered when M6P biosynthesis is reduced. We further show 

that TGF-β signaling reciprocally regulates Ctsk activity. Inhibiting TGF-β signaling in 

either wild-type (WT) or MLII embryos impaired Ctsk processing, reducing its activity. 

TGF-β mediates its effect on Ctsk by increasing expression of the primary sulfotransferase 

(chst11) that generates chondroitin 4-sulfate (C4-S), a known Ctsk modulator (Lemaire et 

al., 2014; Li et al., 2000, 2004). This work identifies a regulatory loop between cathepsins 

and TGF-β signaling in developing cartilage that is disrupted when lysosomal targeting is 

impaired. The implications of these findings regarding protease-mediated tissue 

development and lysosomal disease pathogenesis are discussed.

RESULTS

BMV109 Uncovers Dynamic Cathepsin Activation during Development

To investigate cathepsin dynamics during development, we temporally tracked activity in 

zebrafish embryos using the ABP BMV109 (Figure 1A). BMV109 contains a Cy5 moiety 

whose fluorescence is quenched until the probe binds activated cysteine cathepsins (Verdoes 

et al., 2013). BMV109’s efficacy in zebrafish was demonstrated by microinjection into 

either the yolk or cell of 0 hours post fertilization (hpf) embryos (Figure 1B). In-gel analyses 

of Cy5 fluorescence from embryonic lysates revealed multiple probe-reactive bands. These 

bands not only spanned the predicted molecular weights of several mature cathepsins (15–30 

kDa) but were also all competitively inhibited by the cysteine cathepsin inhibitor E64d. 

Comparison of embryos harvested 1 and 2 days post-injection (dpi) showed that the 

reactivity of several lower-molecular-weight proteins increases after longer incubation 

periods. These analyses also revealed differences in labeling efficiency between yolk- and 

cell-injected samples, with cell-injected samples being more efficiently labeled.

When bound, BMV109 is an irreversible inhibitor. Therefore, to maximize probe delivery in 

older embryos and minimize the effect on cathepsin-dependent biological processes, 

additional labeling strategies were evaluated. BMV109 was injected either into the yolks or 

bloodstream of 1-day-old (24 hpf) embryos (Figures 1C and 1D), and the extent of labeling 

was analyzed in gels and by live confocal microscopy. Delivering the probe into the 

bloodstream via pericardial injection consistently increased reactivity with several proteases 

(arrowheads, Figure 1C). Although only 30% of yolk-injected embryos showed labeling in 
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distant structures like craniofacial cartilages or the forebrain, 92% of the embryos injected 

pericardially had strong labeling in all embryonic tissues within 15 hr (Figure 1D). When 

injected pericardially, BMV109 reactivity was noted in the craniofacia and jaw (R1 and R2; 

Figure 1D), the brain (R3; Figure 1D), the heart (R4; Figure 1D), the myotomal segments, 

and the ventral tail (R5; Figure 1C). BMV109 delivery was analyzed with fli1a:EGFP in 

transgenic zebrafish, which labels multiple tissues with EGFP. Gross alterations in tissue 

morphology were never detected, suggesting that, at this concentration, BMV109 efficiently 

reports protease activity without completely inhibiting it. For subsequent analyses, BMV109 

was introduced into the cell (for 0- to 1-day embryos) or pericardium (for 1- to 5-day 

embryos).

Cts Activities Fluctuate during Development

ABPs covalently label their target, allowing tagged proteases to be identified. Using a 

combination of immunoprecipitation, morpholino knockdown, and cathepsin-specific ABPs, 

we determined the identities of several proteases labeled in 0- to 5-dpf embryos. 

Immunoprecipitation with protein-specific antibodies identified the ABP-reactive proteins 

cathepsin L (Ctsl) and Z (Ctsz). For Ctsl and Ctsz, immunoprecipitation yielded single bands 

of similar molecular weight (MW) (Figure 2A). Although immunoprecipitation of Ctss 

yielded a 16-kDa band (the predicted MW of mature protease), several other Cy5-reactive 

bands were also pulled down (Figure S1A). The validity of these bands was assessed with a 

second ABP (BMV157) that predominantly recognizes Ctss (Oresic Bender et al., 2015). 

Both BMV109- and BMV157 labeled the 16-kDa band (mature Ctss) noted in 

immunoprecipitated samples (Figure 2B). Both probes also labeled one higher band, likely 

corresponding to a less processed form of mature Ctss. For Ctsk, a previously validated 

morpholino was used to reduce ctsk expression in developing embryos (Petrey et al., 2012). 

Comparison of BMV109-labeled WT and ctsk morphant embryos highlighted a 26-kDa 

protein that was specifically reduced following morpholino knockdown (Figure 2C). 

Reactivity with this band was also reduced when BMV109 was co-injected with the Ctsk-

specific inhibitor odanacatib (Gauthier et al., 2008). These analyses established a set of MW 

standards for use in subsequent assays (Figure 2D). In-gel analyses of BMV109 reactivity in 

0- to 5-day WT embryos revealed dynamic fluctuations in the activities of most bands 

(Figure 2E). Reactivity with the Ctsl/z band is fairly constant for the first 3 dpf but 

dramatically spikes 4 dpf and ultimately wanes 5 dpf. The spike in the Ctsl/z activity 

corresponds with a drastic reduction in Ctsk activity, which is typically undetectable by 4 

dpf. In contrast, active Ctss increases substantially by 5 dpf.

Several Cts Activities Are Altered in MLII Embryos

Previous analyses with peptide-based substrates showed that Ctsk and Ctsl are increased in a 

zebrafish model of MLII (Petrey et al., 2012). To globally assess the degree to which these 

and other cathepsins are affected in MLII, we introduced BMV109 into WT and MLII 

embryos 0–4 dpf. BMV109 labeling showed minimal differences in protease activity 

between WT and MLII embryos 1 and 2 dpf (Figure 3A). By 3 dpf, however, the activity of 

Ctsl/z and Ctsk was increased in MLII (Figure 3B). Increases were sustained at 4 dpf, a time 

point when several WT activities (including Ctsk) typically wane (red arrow, Figure 3B). 

Quantitative analyses show that Ctsk and Ctsl/z activities are 50%–60% higher in MLII 
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embryos 2–3 dpf, with Ctsk nearly 100% higher 3–4 dpf (Figure 3C; Figure S1B). By 3 and 

4 dpf, MLII embryos show a 40%–60% decrease in Ctss activity (green arrow, Figures 3B 

and 3C). Decreased activity is also noted with the Ctss probe BMV157 (Figure S1C). For all 

experiments, MLII embryos were generated using a previously validated morpholino to 

reduce gnptab expression (Flanagan-Steet et al., 2009). The BMV109 profiles noted in 

morphants were also confirmed in two different lines of stable transcription activator-like 

effector nuclease (TALEN)-generated gnptab knockout animals (Figure 3D). The details of 

this mutant are described elsewhere (unpublished data).

Confocal analyses of BMV109-labeled WT and MLII fli1a: EGFP-positive cartilages further 

showed several qualitative differences in cathepsin activity (Figure 3E). First, the majority of 

activity in WT tissues localized to discrete puncta in the mesenchyme adjacent to cartilage. 

In contrast, MLII embryos exhibited large irregular patches of activity found throughout 

chondrocytes and the mesenchyme. Second, magnified views showed several regions of 

cathepsin activity present outside of MLII (but not WT) cells (arrowheads, MLII-2, Figure 

3E). This is consistent with our previous study, where enzymatic analysis of isolated cells 

showed that the majority of mature active Ctsk and Ctsl exists outside of MLII chondrocytes 

(Flanagan-Steet et al., 2016). In the present study, we utilized a transgenic line expressing a 

membrane-bound form of red fluorescent protein (sox10:mRFP) to confirm the extracellular 

location of BMV109- labeled activity (Figure 3F). Third, 3%–5% of WT chondrocytes 

exhibited a pericellular pattern of activity that was never seen in MLII cells (white 

arrowheads, WT, Figure 3E). This pattern is reminiscent of secretory lysosomes. 

Collectively, these data reveal several differences in the quantity and character of cathepsin 

activity in MLII.

TGF-β Signaling Increases Cts Activation

Previous analyses of MLII cartilage demonstrated that increased Ctsk is associated with 

abnormally high levels of TGF-β signaling (Flanagan-Steet et al., 2016). Inhibiting Ctsk 

restored normal TGF-β signaling and ameliorated MLII cartilage pathology. These data 

suggest that Ctsk acts upstream of TGF-β. Here we show that directly inhibiting TGF-β 
signaling also restores normal morphology to MLII cartilages. This is evident in Alcian 

blue-stained embryos treated from 3–4 dpf with either SB505124 (an Alk5/TgfβRI inhibitor) 

or losartan (an angiotensin II inhibitor that indirectly block activation of TGF-β ligands) 

(Figure 4A; Cohn et al., 2007; Habashi et al., 2006; Hagos et al., 2007; Jaźwińska et al., 

2007). Pharmacological inhibition restored the shape and angle of articulation to several 

MLII structures, including the Meckel’s (M) and ceratohyal (CH) cartilages. Detailed 

analyses of the degree of rescue can be found in Figure S2A.

To assess whether TGF-β inhibition exclusively exerts its restorative effect downstream of 

the cathepsins or whether drug treatment also reciprocally affects protease activity, BMV109 

was injected into inhibitor-treated MLII embryos (schematic, Figure 4B). Surprisingly, TGF-

β inhibition also reduced protease activity, with Ctsk being particularly sensitive to 

diminished TGF-β signals. Densitometry-based quantitation of individual bands showed that 

Ctsk activity was decreased 25%–30% in SB505124-treated MLII embryos and 45%–60% 

in losartan-treated embryos (Figure 4C). Analyses of phosphor-ylated Smads confirm that 
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activation of the TGF-β effector Smad2 declines in MLII embryos following drug treatment, 

whereas bone morphogenetic protein (BMP) effector (Smad1,5,8) activation increases 

(Figure 4B). Increased activation of Smad1,5,8 is consistent with the earlier demonstration 

that these two pathways are imbalanced in MLII, with TGF-β signaling high and BMP 

signaling low (Flanagan-Steet et al., 2016). The pSmad data indicate that TGF-β inhibition 

not only reduces Ctsk activity, but it also rebalances the TGF-β and BMP signaling 

cascades. Although prior analyses of Ctsk inhibition suggested that the protease acts 

upstream of TGF-β signaling, the fact that TGF-β inhibition also restores WT levels of Ctsk 

activity to MLII embryos indicates a reciprocal relationship between TGF-β and Ctsk.

To explore this further, we assessed whether manipulating TGF-β signaling in WT embryos 

also affects cathepsin activity. Unlike DMSO controls, treatment with either SB505124 or 

losartan reduced overall cathepsin activity (Figures 4D and 4E). However, treatment with the 

EGFR inhibitor erlotinib did not reduce probe reactivity with any protease (Figures S2B and 

S2C). The efficacy of all three inhibitors was evaluated by western blot of downstream 

effector activation. In WT treatment with erlotinib substantially reduced phospho-ERK 

levels, whereas addition of either SB505124 or losartan reduced phosphorylation of the 

TGF-β effector Smad2 without affecting phosphorylation of Smad1,5,8. Confocal analyses 

of TGF-β-inhibited WT and MLII embryos confirm that the decreased activity detected in-

gel following SB505124 treatment corresponds to cartilage-localized changes in protease 

activity (Figures S2D and S2E). These data suggest a specific role for TGF-β-mediated 

regulation of cathepsin activity, a mode of action further supported by the fact that 

increasing TGF-β activation also increases cathepsin activity. This was shown using 

transgenic zebrafish that ex presses a constitutively active (CA) form of TgbrI controlled by 

the hsp70 heat shock-responsive promoter (hsp70:CAalk5) (Figure 4F; see Figure S2F for 

the heat shock strategy). Although heat shock did not affect cathepsin activity in embryos 

lacking the CAalk5 transgene, protease activity was increased 33% in transgenic embryos 

following heat shock (Figure 4G). Analyses of phosphorylated forms of the TGF-β effector 

Smad2 and the BMP effector Smad1,5,8 show that CAalk5 specifically enhanced TGF-β-

propagated signals.

Ctsk Activity Is Post-translationally Regulated by TGF-β

To find out whether TGF-β signaling affects cathepsin expression, WT embryos were treated 

3–4 dpf with losartan or SB505124, and transcript abundance was assessed 4 dpf by qRT-

PCR (Figures 5 and S3A). Although inhibiting TGF-β signaling reduced the transcript levels 

of cathepsin B (ctsba) and one of the major isoforms of cathepsin L (ctsl1b) (Figure 5A), 

only the effects on ctsl1b were statistically significant. The transcript abundance of 

cathepsins H (ctsh), K (ctsk), S (ctss1), and Z (ctsz) was not affected by drug treatment 

(Figure 5B). The transcript abundance of ctsba, h, k, s1, and z was also unaffected when 

TGF-β signaling was inhibited in MLII embryos (Figure S3B). These data indicate that the 

TGF-β-mediated reductions in Ctsk activity may occur independent of changes in protease 

expression. To explore post-translational modes of regulation, we first analyzed Ctsk protein 

abundance across a developmental time course (Figures 5C–5E). This revealed several 

things about Ctsk processing in vivo. First, unlike the single intermediate noted by others in 
vitro (Lemaire et al., 2014), in developing tissue, we note multiple Ctsk forms. We detected 
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six high- and low-molecular-weight species in WT and MLII embryos 24 hpf. Second, 

although WT and MLII embryos express similar overall protein levels, they exhibit 

differences in the abundance of individual forms. In WT embryos, mature Ctsk (26 kDa) is 

present at 24 hpf, but, by 60 hpf, 65% of the enzyme is found in the inactive pro form (42 

kDa) (Figure 5D; see Figures S4A–S4C for the quantitative method). This shift in form 

corresponds with the decreased activity noted in WT embryos at 3 dpf. In MLII embryos, 

not only is more Ctsk (80%) present in the mature form, this highly active species persists 

until 80 hpf (Figures 5C, 5E, and 5F and S4D).

The sustained abundance of mature Ctsk explains its heightened activity and also suggests 

that TGF-β may affect Ctsk by altering enzyme processing. To test this, WT and MLII 

embryos were treated at 50 hpf with SB505124. This time point was chosen because earlier 

treatments adversely affect heart development. Samples were harvested at multiple time 

points following drug addition (Figure 5G; Figures S4E–S4H). If the reduced activity noted 

following TGF-β inhibition were due to decreased Ctsk expression, then we would see less 

pro-Ctsk following drug addition. To the contrary, by 55 h, we typically detected more pro-

Ctsk in drug-treated embryos. Increased levels of pro-enzyme were matched by a reduction 

in both the high-molecular-weight intermediate forms and the mature form of Ctsk (see 

enlarged gels and quantitation in Figures S4E–S4H). These data suggest that TGF-β signals 

regulate Ctsk activity by modulating enzymatic processing and activation.

C4-S Is Increased in MLII

Studies in vitro suggest that glycosaminoglycans (GAGs) modulate Ctsk activity (Lemaire et 

al., 2014; Li et al., 2000, 2004). In particular the 4-O-sulfated chains present on chondroitin 

sulfate proteoglycans (C4-S) can promote autocatalytic conversion of Ctsk to its mature 

form (Lemaire et al., 2014; Li et al., 2004). chst11, 12, 13, and 14 all encode 

sulfotransferases that synthesize C4-S, which is highly expressed during early 

chondrogenesis (Filipek-Górniok et al., 2013; Hayes et al., 2013; Holmborn et al., 2012). 

TGF-β has also been shown to stimulate chst11 expression in cultured cells (Bhattacharyya 

et al., 2015; Susarla et al., 2011; Tiedemann et al., 2005). To find out whether differences in 

C4-S could explain MLII-associated increases in Ctsk processing and activity, we first 

assessed the transcript abundance of chst11, 12, 13, and 14 as well as the 6-O sulfated 

chondroitin (C6-S) sulfotransferases chst3a and 3b and the C4-S sulfatase arylsulfatase B 

(arsb). Analyses of embryos 4 dpf demonstrate that, in MLII, the increased abundance of 

mature Ctsk is associated with more chst11, 13, and 14 mRNA (Figure 6A). chst12 mRNA 

was not detected 4 dpf. The transcript abundance of the C6-S sulfotransferases chst3a and 3b 
and the C4-S sulfatase arylsulfatase B (arsb) was also slightly (but not always significantly) 

altered in MLII embryos (Figure S5A; Figure 6A). Inhibiting TGF-β signaling in MLII 

embryos with SB505124 3–4 dpf significantly reduced the transcript abundance of chst11, 

13, and 14 as well as arsb (Figure 6A). In WT embryos, TGF-β inhibition only significantly 

reduced chst11 transcript abundance.

Increased chst11 enzyme expression was confirmed by western blot, which showed that 

Chst11 levels are not only higher in MLII from 2–4 days but also reduced following TGF-β 
inhibition (Figure 6B). Confocal analyses of fli1a:EGFP-positive cartilage stained 
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immunohistochemically for C4-S suggest that MLII chondrocytes also express more C4-S 

than WT chondrocytes. Further, as noted with both chst11 transcript and protein, addition of 

SB505124 to either WT or MLII fli1a:EGFP embryos reduced C4-S staining (Figures 6C; 

and S5B). Immunohisto-chemical analyses of additional GAGs show that, unlike C4-S, the 

abundance of C6-S is reduced in MLII, whereas heparan sul-fate (HS) abundance is 

unaffected (Figures S5C and S5D). These findings indicate that elevated Ctsk activity 

present in MLII cartilage may correspond to TGF-β-regulated increases in C4-S.

To find out whether 4-O sulfated chondroitin is indeed increased in MLII embryos or, 

alternatively, whether C4-S staining reflects differences in antibody access, we used strong 

anion exchange high pressure liquid chromatography (SAX HPLC) to quantitatively assess 

GAG content in 4-day-old embryos. These analyses showed that C4-S normally constitutes 

29% of total chondroitin sulfate (CS) (Figures 6D and 6E). Although the overall 

disaccharide weight was reduced by 33% in MLII, the relative level of C4-S to other forms 

of CS was globally increased 4%–5% (Figures 6E and S5E). This was matched by a 7% 

decrease in C6-S. The immunohistochemical data suggest that the bulk of increased C4-S 

may occur in craniofacial chondrocytes.

Inhibiting C4-S Synthesis Reduces Ctsk Activity and Improves MLII Phenotypes

The Chst11 sulfotransferase is considered the major C4-S-synthesizing enzyme (Klüppel, 

2010; Klüppel et al., 2005). In situ analyses of sulfotransferase expression indicate Chst11 is 

the dominant form in developing zebrafish (Habicher et al., 2015). To functionally address 

the effect of C4-S on cathepsin activity, we inhibited chst11 in WT and MLII embryos using 

a previously validated morpholino (Mizumoto et al., 2009). Western blot analyses show that 

0.6 ng morpholino reduces Chst11 expression in WT and MLII embryos (Figures 7A and 

S6A and S6B). Immunohistochemical analyses confirm that chst11 inhibition also reduces 

C4-S in GFP-positive chondrocytes (Figures 7B and S5B). In-gel analyses of BMV109-

injected embryos show that chst11-inhibition also significantly reduces Ctsk activity. 

Reducing chst11 expression lowered Ctsk activity 50% in MLII and WT embryos (Figures 

7C and 7D) but only minimally affected Ctsl/z activity. Confocal analyses of BMV109 

reactivity show that reduced Ctsk activity corresponds with chondrocyte-localized decreases 

in protease activity (Figures 7E and S2D and S2E). As expected, this is most evident in 

chst11-inhibited MLII cartilages. chst11 inhibition also improved MLII craniofacial 

phenotypes (Figure 7F). Alcian blue-stained craniofacial cartilage show that chst11 
inhibition restores the shape and angle of articulation of the Meckel’s and ceratohyal 

cartilages in 21% of MLII embryos (see details of the rescue in Figure S2A). As expected, 

55% of chst11-inhibited WT embryos also exhibit alterations in these same cartilages 

(Figure 7F). These data show that chst11-driven C4-S synthesis affects Ctsk activity during 

both WT and MLII chondrogenesis.

chst11 Inhibition Impairs Ctsk Processing

To confirm that chst11 inhibition reduces Ctsk activity by altering enzyme processing, Ctsk 

protein was analyzed in chst11-inhibited embryos (Figures 7G and 7H). Although the full 

range of Ctsk bands was present in chst11-inhibited embryos 24 hpf, by 36 hpf, we primarily 

detected the pro and mature forms. Uninjected samples exhibited very little pro-Ctsk 
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between 36 and 52 hr, suggesting that chst11-inhibition indeed impairs the initial steps of 

Ctsk processing (Figures 7G and 7H and S7). The abundance of mature Ctsk was also 

reduced following chst11 inhibition, most notably in chst11-inhibited MLII embryos 

(Figures 7H and S7).

chst11 Inhibition Reduces TGF-β Signaling in MLII Cartilages

Several studies indicate that sulfated GAGs regulate growth factor bioavailability in 

developing tissues (Nandini and Sugahara, 2006). It was therefore unclear whether Chst11’s 

effect on MLII cartilage pathology involved its ability to directly affect TGF-β signaling or 

whether synergy between Chst11-increased C4-S and Ctsk activation collectively stimulates 

signaling. To address this, we used an Smad binding element (SBE):nucCherry transgenic 

line that expresses nuclear mCherry in response to TGF-β signaling and assessed pathway 

activation under various conditions (Figures 7J and S7G). We asked whether inhibiting 

either ctsk or chst11 expression similarly effected signaling in the WT and MLII 

backgrounds. As expected, treatment with SB505124 reduced the accumulation of nuclear 

localized Cherry in WT and MLII chondrocytes. chst11 inhibition, however, had opposing 

effects on signaling in WT and MLII cartilages. Reducing C4-S abundance increased 

nuclearly localized Cherry expression in WT chondrocytes but reduced it in MLII cells. If 

C4-S GAGs only function to sequester TGF-β, then reducing C4-S should also enhance 

TGF-β signaling in MLII. chst11 inhibition also decreased Ctsk activity in MLII, implying 

that Chst11 may also indirectly affect TGF-β by modulating Ctsk activity. The fact that 

direct inhibition of ctsk also reduced TGF-β signaling supports this (Figures 7J and S7G). 

Because morpholino inhibition of chst11 and ctsk does not fully eliminate their expression, 

the degree to which each enzyme independently controls TGF-β signaling during normal 

chondrogenesis is currently not clear.

DISCUSSION

Cysteine cathepsins have emerged as important regulators of numerous biological processes 

(Reiser et al., 2010). Prior studies in zebrafish demonstrated a central role for extracellular 

Ctsk and enhanced TGF-β signaling in MLII cartilage pathology (Flanagan-Steet et al., 

2016). This work suggests that extracellular Ctsk liberates TGF-β from latent complexes, 

sustaining its activity and impairing chondrogenesis. It further shows that Ctsk secretion is 

linked to its activation. Here we leverage an ABP to track cathepsins in normal and MLII 

zebrafish. We confirm that loss of lysosomal targeting alters cathepsin activity and uncover a 

regulatory mechanism whereby increased TGF-β signaling stimulates Ctsk activation. The 

data support a model in which TGF-β signals enhance the proteolytic processing of pro-Ctsk 

by modulating expression of C4-S-bearing GAGs. Increased Ctsk activation, in turn, drives 

sustained TGF-b signaling, creating a positive feedback loop that disrupts chondrogenesis 

(see Figure 7K for a model). Pharmacological intervention either at the level of Ctsk activity 

or TGF-β signaling short-circuits this loop, normalizing disease phenotypes. Prior studies 

have demonstrated that C4-S is highly expressed during early chondrogenesis, modulated by 

the TGF-β pathway (Carrino et al., 1983; Lincoln et al., 2006), and essential for Ctsk to 

degrade triple-helical collagen (Li et al., 2000, 2002, 2004). When combined with our data, 

this suggests that local GAG composition regulates Ctsk function in developing cartilage.
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Altered cathepsin activity is implicated in the pathology of many lysosomal and non-

lysosomal diseases (Bernstein et al., 1996; Bigg et al., 2013; Haque et al., 2008; Hua and 

Nair, 2015; Ketterer et al., 2017; Liu et al., 2004; Lutgens et al., 2007; Nixon, 2000; 

Vasiljeva et al., 2007; Wilson and Brömme, 2010). Because disrupted GAG profiles also 

characterize several lysosomal disorders, GAG-mediated differences in cathepsin activity 

could explain variability in bone and cartilage phenotypes. In mucopolysaccharidoses type I 

(MPSI), excessive buildup of HS and dermatan sulfate may reduce cathepsin K activity and 

inhibit collagen turnover, causing impaired osteoclast function, decreased cartilage 

resorption, and bone disease (Wilson and Brömme, 2010; Wilson et al., 2009). Conversely, 

as demonstrated in MLII zebrafish, increased chondroitin sulfate expression enhances the 

activity of extracellular cathepsin K. If operational in the bones of MLII patients, then 

increased cathepsin K activity could accelerate bone turnover, causing bone degeneration. 

Notably, the present work in MLII embryos also demonstrated decreased activity of 

cathepsin S. Unlike cathepsin K, C4-S is proposed to inhibit processing of pro cathepsin S, 

perhaps adversely affecting its function in S-expressing tissues, like macrophages or heart 

valves (Sage et al., 2013). Together, these findings reinforce the idea that disease-associated 

changes in GAG structure profoundly influence the activity and function of cysteine 

cathepsins, driving different phenotypic outcomes in developing tissue. The ability to 

faithfully monitor cathepsin proteases using ABPs provides numerous opportunities to study 

these important regulators of pathogenesis.

EXPERIMENTAL PROCEDURES

Zebrafish Strains and Husbandry

Animals were maintained according to standard protocols. Zebrafish strains were obtained 

from the Zebrafish International Resource Center (ZIRC, Eugene, OR) (TL, AB, and 

Tg(fli1a:EGFP)y1(Lawson and Weinstein, 2002). The hsp70:CAalk5 strain was kindly 

provided by Dr. Caroline Burns (Harvard Medical School) (Zhou et al., 2011). The 

SBE:nucCherry TGF-β reporter line was kindly provided by Dr. Enrico Moro (Moro et al., 

2013). All experiments were performed on synchronized populations, with collections and 

treatments performed at the same time point (i.e., 3 days = 72 hpf). To achieve this, fertilized 

eggs were recovered from mating chambers at 9 a.m. and immediately staged, and age-

matched embryos were collected. Embryo age was reassessed the following day, and the 24 

hpf (1 dpf) time point was assigned. Embryonic staging was performed according to 

established criteria (Kimmel et al., 1995). In some cases, 0.003% 1-phenyl 2-thiourea (PTU) 

was added to embryo medium to block pigmentation. Handling and euthanasia of fish for all 

experiments complied with the University of Georgia policies, as approved by the University 

of Georgia (UGA) Institutional Animal Care and Use Committee (permit A2015-07-003-

A2).

BMV109 Delivery and Embryo Labeling

For all experiments, embryos were staged and synchronized by age within the first several 

hours and again before 24 hpf. The BMV109 ABP was injected into embryos at the time 

points indicated. Unless otherwise noted, 1 nL of a 10 μM solution of probe was introduced 

pericardially via microinjection. For the egg stage and younger embryos, this equates to a 
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final global concentration of 10 nM. Local concentration in specific tissues is unclear. 

Unless otherwise noted, the probe was circulated overnight at the normal growth 

temperature(28.8°C), and embryos were harvested 15 h post-injection. Exceptions to this 

(i.e., labeling followed by heat shock) are indicated in the Results and figure legends.

In-gel Analyses of BMV109 Reactivity

Embryos were dechorionated and the yolks manually removed at the stages indicated. 25 

embryos per condition were collected and lysed in citrate buffer (50 mM citrate buffer [pH 

5.5], 5 mM DTT, 0.5% 3-(3-cholamidopropyl) dimethylammonio)-1-propanesulfonate 

(CHAPS), and 0.75% Triton X-100) by brief sonication. Samples were centrifuged for 15 

min at 15,000 × g, and the supernatant was collected. Protein concentration was determined 

via a micro-bicinchoninic acid (BCA) assay (catalog no. 23235, Thermo Fisher Scientific, 

Rockford, IL), and samples were run on 4%–20% precast gradient gels containing the 

“stain-free” tri-halo compound (Bio-Rad). UV light-activated tri-halo covalently binds 

tryptophan residues. Equivalent protein loads were evaluated on a Bio-Rad Chemidoc MP 

imaging system using this stain-free method. BMV109 Cy5 fluorescence was subsequently 

analyzed in-gel. Total protein load per lane and individual ABP-reactive bands were 

quantitated using Chemidoc MP software. Individual ABP-reactive bands were normalized 

to total protein load, and the fold difference was calculated between WT and MLII samples. 

Gel images were processed with Adobe Photoshop (CS6 extended, version 13.0).

Western Blot Analyses

Embryos were manually deyolked and harvested at the time points indicated. Western blot 

analyses for Ctsk were performed as described previously (Petrey et al., 2012). The western 

blots for pSmad2 and pSmad1,5,8 were blocked with 1% polyvinylpyrrolidone (PVP), 

followed by a 2-day incubation with the appropriate primary antibody (pSmad2 at 1/500, 

catalog no. 8828, Cell Signaling Technology; pSmad1,5,8 at 1/500, catalog no. 9511, Cell 

Signaling Technology). The western blots of Chst11 were performed using a zebrafish-

specific antibody (1:1,000, catalog no. PA5–72647, Thermo Fisher Scientific, Rockford, IL). 

The blots were developed using the Bio-Rad Clarity substrate as directed and analyzed using 

the Bio-Rad MP Chemidoc system.

Statistical Analyses

In cases where numerical or quantitative data were generated, SD and a two-tailed Student’s 

t test were used to assess statistical significance. Data were processed with GraphPad Prism 

(version 7.0a). In cases where staining patterns were assessed visually, representative 

embryos are shown, and the number of animals from multiple experimental samples that 

resembled those pictured was calculated. Embryo gender is not established until later in 

development; it is not a relevant consideration for these studies.

Additional methods (including use of morpholinos, pharmacological treatments, 

immunoprecipitations, and immunohistochemical analyses) are provided in the 

Supplemental Experimental Procedures.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cathepsin activities are altered without carbohydrate-dependent lysosomal 

targeting

• TGF-β signaling controls cathepsin K activity at the level of enzyme 

processing

• TGF-β promotes cathepsin K processing by enhancing expression of 

chondroitin-4-sulfate
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Figure 1. BMV109 Labels Cathepsin Proteases in Developing Zebrafish
(A) BMV109 ABP structure.

(B) Schematic of injection strategies. Shown are in-gel analyses of BMV109 reactivity. The 

bottom gel panels (outlined in red) are higher exposures of low-molecular-weight species; n 

= 4 experiments. For all gels, equivalence of protein loaded per lane was confirmed using the 

stain-free method (Experimental Procedures).

(C) BMV109 was injected into the yolk or pericardial space of 1 dpf embryos and incubated 

overnight (15 hr); n = 4 experiments.

(D) Live confocal analyses of 4 dpf fli1a:EGFP-positive embryos injected pericardially with 

BMV109 (red, imaging done 15 hr post injection [hpi]). The schematic shows 5 regions 

(R1–R5) spanning multiple embryonic tissues oriented head to tail. Meckel’s cartilage, 

lower jaw cartilage; BV, blood vessel. Scale bar, 10 μm. n = 30 embryos from 3 experiments. 

See also Figure S1.
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Figure 2. Biochemical Analyses Identify Cathepsin k, l, s, and z Bands
(A) Immunoprecipitation with antibodies for either Ctsl or Ctsz. Immunoprecipitated protein 

from two different loading concentrations (25% and 75% of total eluted protein, 

) is shown. To avoid saturation, for Ctsz, the BMV109 input lane is 

shown at a lower exposure than eluted lanes (outlined in red). n = 4 experiments.

(B) 2 and 3 dpf embryos labeled overnight (15 hr) with either BMV109 or BMV157. n = 3 

experiments.

(C) BMV109 in Ctsk-inhibited embryos. Ctsk expression was inhibited either by morpholino 

(MO) or the Ctsk inhibitor odanacatib (10 nM, Odana). n = 3 experiments.

(D) Schematic of BMV109-labeled cathepsins. Doublets 1 and 2 are highlighted.

(E) In-gel analyses of BMV109-labeled WT embryos. BMV109 was injected into the cell (c, 

0–1 day) or heart (pericardial [pc], 1–5 days). The bottom gel (outlined in red) is a higher 
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exposure of the low-molecular-weight species. Colored arrowheads denote individual 

cathepsins (see schematic). n = 4 experiments. See also Figure S1.
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Figure 3. Cathepsin Activities Are Altered in MLII
(A) In-gel analyses show Cts activities in WT and MLII embryos 0–1 and 1–2 dpf. n = 4 

experiments.

(B) Analyses of BMV109-labeled embryos 2–3 and 3–4 dpf. n = 4 experiments.

(C) Quantitation of the Ctsk, Ctsl/z, and Ctss bands from 4 experiments. Error bars, SD; 

***p < 0.001. For all gels, the equivalence of total protein loaded per lane was evaluated 

using the stain-free method described in the Experimental Procedures.
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(D) BMV109 labeling of gnptab TALEN-mediated stable knockout embryos 3–4 dpf. U, 

unaffected (gnptab+/+ and gnptab+/− embryos); (−/−), gnptab−/−from two null zebrafish lines. 

n = 3 experiments.

(E) Live confocal analyses of BMV109-labeled (red) fli1a:EGFP (green) WT and MLII 

embryos. White boxes indicate magnified views shown in the center (green and red) and at 

the right (red, BMV109). White arrows highlight pericellular puncta in WT and extra-

cellular activity in MLII. Dotted lines demarcate cell boundaries. n = 15 embryos from 3 

experiments.

(F) Live confocal analyses of BMV109-labeled activity (blue) in sox10:mRFP (red, 

membrane-bound) transgenic embryos. In the WT, BMV109 reactivity (blue) co-localizes 

with RFP-positive cellular regions (see RFP-negative inset, white arrows) but can be found 

extracellularly (white arrows) in MLII embryos. The insets represent magnified views of the 

boxed areas. Scale bars, 10 μm. See also Figure S1.
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Figure 4. TGF-β Inhibition Ameliorates MLII Pathology and Reduces Ctsk Activity
(A) Alcian blue stains of 4 dpf WT, MLII, and TGF-β-inhibited embryos. Shown are 

Meckel’s (M) cartilage and the angle of ceratohyal (CH) cartilages. The angle of cartilage 

articulation is illustrated by yellow dotted lines. Scale bar, 10 μm. Percent values are the 

number of embryos that resembled the picture (i.e., were rescued). n = 75–100 embryos 

from 3 experiments.

(B) Schematic illustrating the treatment regimen. Shown are in-gel analyses of BMV109 

reactivity (top), immunoblots of phosphorylated pSmad2 (TGF-β effector, center), and 

phosphorylated pSmad1,5,8 (BMP effector, bottom). n = 4 experiments.

(C) Quantitation of BMV109-labeled Ctsk in treated and untreated MLII embryos from 4 

experiments. Error bars, SD; *p < 0.05, **p < 0.01, ***p < 0.001.

(D) In-gel analyses of BMV109-labeled (top) WT embryos, immunoblots of phosphorylated 

pSmad2 (TGF-β effector, center), and phosphorylated pSmad1,5,8 (BMP effector, bottom). 

n = 4 experiments.

(E) Quantitation of BMV109-labeled Ctsk in treated and untreated WT embryos from 4 

experiments.
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(F) Gels of BMV109 labeling after TGF-β induction (top) and immunoblots for psmad2 and 

pSmad1,5,8 (bottom). n = 5 experiments.

(G) Quantitation of BMV109-labeled Ctsk before and after heat shock. Error bars, SD; ***p 

< 0.001. See also Figure S2.
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Figure 5. TGF-β Inhibition Impairs Ctsk Processing
(A) qRT-PCR of cathepsin B (ctsba), L1a, and L1b transcript abundance in 3–4 dpf WT 

embryos before and after TGF-β inhibition. Error bars, SD; *p < 0.05.

(B) qRT-PCR of cathepsin H, K, S (ctss1), and Z transcript abundance. Error bars, SD; n = 4 

experiments of 25 embryos per condition.

(C) Immunoblots for Ctsk in WT and MLII embryos 24–80 hpf. Shown are pro (P; 42 kDa) 

and mature (M; 26 kDa) Ctsk forms.

(D and E) WT (D) and MLII (E) graphs presenting relative abundances of 4 regions (R1–R4; 

see Figure S4 for a full description) encompassing pro, intermediate (both high [HMI] and 

low [LMI] molecular weight intermediate), and mature forms of Ctsk in WT and MLII. n = 

4 experiments. Error bars, SD.

(F) Table showing the fold difference of pro and mature forms 24–80 hpf from WT and 

MLII. *p < 0.05, **p < 0.01.

Flanagan-Steet et al. Page 24

Cell Rep. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(G) Immunoblot of Ctsk in WT and MLII embryos following treatment with SB505124 (see 

the schematic for the treatment regimen). Red asterisks highlight intermediate forms. Red 

arrows on the gels indicate the mature form. See Figure S4 for quantitation. n = 4 

independent experiments. See also Figures S3 and S4.
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Figure 6. TGF-β-Mediated Regulation of C4-S Controls Ctsk Activity
(A) qRT-PCR of chondroitin-4-sulfate biosynthetic enzymes (chst11, 13, and 14) in TGF-β-

inhibited WT and MLII embryos 4 dpf. n = 4 experiments. Error bars, SD; *p < 0.05, **p < 

0.01, ***p < 0.001.

(B) Western blots of Chst11 in WT and MLII embryos 2–4 dpf and in TGF-β-inhibited 

embryos. n = 3 experiments. d, dpf.

(C) Immunohistochemistry of C4-S (red) in fli1a:EGFP WT and MLII cartilage sections. n = 

15–20 embryos per condition from 3 experiments. Percent values are the number of embryos 

that resemble the picture. Scale bar, 10 μm.

(D and E) Traces of SAX HPLC for chondroitin sulfate forms in WT and MLII embryos 

(D). Table of SAX HPLC data (E). n = 3 technical replicates of 1 biological set with 1,200 

embryos per sample. A second biological sample is presented in Figure S6. Error bars, SD; 
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**p < 0.01, ***p < 0.001. Standards for additional sulfo-forms, including C2,6S (D2a6), 

were also used. Because of their late elution time and low detection levels, these data were 

not included in the raw traces. See also Figure S5.
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Figure 7. chst11 Inhibition Inhibits Ctsk Processing
(A) Immunoblot of Chst11 in MO-inhibited WT embryos 2–4 d. MLII data and quantitation 

are shown in Figure S6. n = 3 experiments. d, dpf.

(B) Immunohistochemistry for C4-S (red) in chst11 MO-inhibited embryos. n = 15–20 

embryos per condition from 3 experiments. Percent values are the number of embryos that 

resemble the picture. Scale bar, 10 μm.

(C) Gels of BMV109-labeled chst11-inhibited embryos. n = 4 experiments.

(D) Quantitation of the Ctsk band. Error bars, SD; *p < 0.05, **p < 0.01, ***p < 0.001.

(E) Live confocal analyses of the BMV109 label (red) in chst11-inhibited EGFP-positive 

chondrocytes. n = 10–15 embryos per condition. Percent values are the number of embryos 

that resemble the picture. Scale bar, 10 μm.
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(F) Alcian blue-stained WT, MLII, and chst11-inhibited embryos. n = 100–150 embryos per 

sample from 3 experiments. Percent values are the number of embryos resembling the 

picture. Scale bar, 10 μm.

(G and H) Immunoblot of Ctsk 24–80 hpf in chst11-inhibited WT (G) and MLII (H) 

embryos. n = 3 experiments.

(I) Table listing the abundance (relative to all Ctsk) of the pro and mature form.

(J) Live confocal analyses of cartilage-localized (green) TGF-β signaling using the 

SBE:nucCherry reporter. n = 10–15 embryos per condition from 2–3 independent 

experiments. Percent values are the number of embryos resembling the picture. Scale bar, 10 

μm.

(K) Schematic of the current model suggesting that TGF-β-mediated increases in C4-S 

promote increased activation of extracellular Ctsk in the lysosomal disease MLII. Although 

not currently known, it is also possible that reduced expression of inhibitory GAGs may 

contribute. See also Figures S5–S7.
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