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Abstract
The capacity of an axon to regenerate is regulated by its external environment
and by cell-intrinsic factors. Studies in a variety of organisms suggest that
alterations in axonal microtubule (MT) dynamics have potent effects on axon
regeneration. We review recent findings on the regulation of MT dynamics
during axon regeneration, focusing on the nematode Caenorhabditis elegans.
In  the dual leucine zipper kinase (DLK) promotes axonC. elegans
regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon
regeneration. Both DLK and EFA-6 respond to injury and control axon
regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are
related is a topic of active investigation, as is the mechanism by which EFA-6
responds to axonal injury. We evaluate potential candidates, such as the MT
affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT
dynamics in regeneration.
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Introduction
More than a hundred years ago, Ramon y Cajal was the first to 
describe how individual axons respond to injury1. Many types of 
axons regenerate, including neurons in the peripheral nervous sys-
tem (PNS), re-forming growth cones similar to those that Ramon y 
Cajal had characterized during development. In contrast, neurons of 
the mammalian central nervous system (CNS) often fail to regener-
ate, and their damaged ends form swollen, non-motile structures 
later termed retraction bulbs. These fundamental observations set 
the stage for subsequent exploration of why regenerative capacity 
varies drastically between the CNS and PNS. Many studies have 
focused on the inhibitory environment of the adult mammalian 
CNS2–4. However, it is becoming evident that cell-intrinsic proc-
esses are also key determinants of axon regeneration5. Among these 
intrinsic factors, regulation of axonal microtubule (MT) dynamics 
has emerged as a major influence on the capacity of an axon to 
regrow effectively6–10. Most strikingly, pharmacological stabili-
zation of MTs by paclitaxel or related molecules enhances axon 
regeneration in vitro and in vivo, suggesting a potentially therapeu-
tically significant role for MT dynamics in axon regeneration11–13.

The nematode C. elegans has long been used for studies in neuro-
nal development and behavior, owing to its short life cycle, genetic 
tractability, and ease of in vivo imaging. The nervous system of an 
adult C. elegans hermaphrodite consists of 302 neurons of nearly 
invariant lineage14. A decade ago, a pioneering study showed that 
axons of mature C. elegans neurons can regenerate after precise 
laser axotomy15. Several kinds of neuron display robust axon regen-
eration; most work has focused on the mechanosensory and motor 
axons (Figure 1A)16,17. The genetic tractability and ease of imag-
ing in vivo have made C. elegans a rising star in axon regeneration 
studies. Several laboratories have used large-scale genetic18, 
chemical19, and RNA interference (RNAi)20 screens to identify 
genes or molecules that regulate axon regeneration. These studies 
have identified several new players in axon regeneration, including 
the dual leucine zipper kinase (DLK) and mixed lineage kinase 
(MLK) mitogen-activated protein kinase (MAPK) pathways21,22, 
Notch signaling pathway23, insulin signaling pathway24, and  
microRNA25. Some pathways, such as DLK signaling, have been 
shown to function in axon regeneration in vertebrates26–29, suggest-
ing that axon regeneration factors identified in C. elegans may be 

Figure 1. DLK-1 and EFA-6 regulate axon regeneration after injury in Caenorhabditis elegans. (A) Illustration of the positions of the 
mechanosensory neurons anterior lateral microtubule (ALM) and posterior lateral microtubule (PLM) cells (top) and the GABAergic motor 
neurons dorsal D (DD) and ventral D (VD) (bottom). (B) Examples of PLM axon regeneration in wild-type, dlk-1(lf), and efa-6(lf) at 24 hours 
post-axotomy. dlk-1(lf) mutant (middle) shows decreased axon regeneration, whereas efa-6(lf) mutant (bottom) shows increased axon 
regeneration upon axotomy, compared with wild-type (top). Scale bar, 20 µm. DLK, dual leucine zipper kinase.
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suitable for translational studies. Here, we review the role of MT 
dynamics in axon regeneration, primarily focusing on C. elegans.

Axonal microtubule organization before and after injury
MTs are among the major cytoskeletal structures in cells. MTs 
are cylindrical and polarized polymers formed by αβ-tubulin het-
erodimers arranged in a head-to-tail configuration30. In vitro and  
in vivo MTs undergo rapid growth (i.e. polymerization) and  
shrinkage (i.e. depolymerization) at their plus ends, a behavior 
known as dynamic instability31. Minus ends of MTs are relatively 
stable but can also undergo polymerization and depolymerization. 
MT dynamics in vivo are influenced by many factors, including con-
centration of free tubulin monomers and tubulin post-translational 
modifications, and by MT-binding proteins. MT plus-end dynam-
ics are regulated by a large cohort of plus end-tracking proteins 
(+TIPs)32; relatively few minus end-targeting proteins (−TIPs) have 
been identified that regulate MT minus ends33. Together, these pro-
teins affect the frequency of catastrophe (switching from growth to 
shrinkage) and rescue (switching from shrinkage to growth) events.

In contrast to the highly dynamic behavior of MTs in dividing or 
migrating cells, axonal MTs of mature neurons are relatively stable, 
forming a consistent architecture that maintains neuronal polarity 
and allows directed axonal transport34. Axonal MTs in C. elegans 
were first characterized in the MT-rich mechanosensory neurons35,36. 
More recent imaging of the dynamics of plus end-binding proteins 
indicates that, as in other organisms, C. elegans axonal MTs are 
consistently arranged with plus ends away from the soma (‘plus end 
out’) but that dendritic MTs either are oriented with minus ends out 
or have mixed orientation37,38.

After axon injury, the stable axonal MTs become highly dynamic to 
allow axonal regrowth and establishment of a new growth cone6,7. 
In cultured Aplysia californica neurons, injury triggers rapid 
MT depolymerization followed by repolymerization with aber-
rant MT orientation39,40. Reversal of MT polarity after injury has 
been observed in Drosophila dendrites41,42. In addition, axotomy 
triggers an acute change of MT dynamics in Drosophila41,43,44. In 
C. elegans, axotomy of the mechanosensory posterior lateral 
microtubule (PLM) neuron triggers an increase in growing MTs 
locally at the injury site, followed by persistent growth of MTs 
that leads to formation of functional growth cones37. A mutation in 
mec-7/β-tubulin that hyperstabilizes MTs in touch neurons inhibits 
anterior lateral microtubule (ALM) axon regeneration, suggest-
ing that precise regulation of MT dynamics is essential for axon 
regeneration45. Regenerating axon tips in severed mouse neurons 
display an acute increase in MT dynamics, followed by a sustained 
increase over several days46. Collectively, these findings suggest 
that axonal injury initiates an intricate series of changes in axonal 
MT organization.

The DLK-1 MAPK cascade promotes axon 
regeneration, in part via microtubule dynamics
The DLK MAPK pathway was identified several years ago as 
essential for axon regeneration in C. elegans motor neurons and 
in mechanosensory neurons21,22. Mutants lacking DLK-1 [dlk-1(lf)] 
display normal developmental axon growth but are unable to 
regenerate after injury, being blocked at the initial phase of growth 

cone reformation (Figure 1B). Conversely, overexpression of dlk-1 
[dlk-1(gf)] enhances axon regeneration21,22. A mammalian DLK-1 
homolog MAP3K13/LZK can functionally substitute for dlk-147, 
suggesting a high degree of conservation of the DLK pathway in 
axon regeneration. Indeed, in mammals, DLK is also required for 
axon regeneration after axonal injury26–29.

DLK-1 activity is required cell-autonomously at the time of 
regrowth, and DLK-1 itself is likely activated by injury sig-
nals. An axotomy-triggered Ca2+ transient has been implicated in 
DLK-1 activation47–49. In addition, the DLK pathway is sensi-
tive to MT depolymerization. Mutations disrupting MTs trigger a 
DLK-dependent reduction of protein levels in touch neurons50. In 
Drosophila, loss of Short stop (shot), a member of the spectra-
plakin family that crosslinks actin and MT51,52, activates the DLK 
signaling pathway to promote axon regeneration53. Moreover, dis-
ruption of MTs by nocodazole in mammalian sensory neurons 
activates the DLK signaling pathway54. As yet, it remains unclear 
how MT polymerization is sensed by DLK.

Activation of the DLK pathway leads to two major outputs in 
C. elegans: a transcriptional response involving the CEBP-1 bZip 
transcription factor and CEBP-1-independent effects on axonal 
MT dynamics. The dlk-1(lf) mutant fails to increase persistent MT 
growth after axotomy, whereas dlk-1(gf) shows increased number 
of growing axonal MTs, both before and after axotomy37. Following 
laser injury, the DLK pathway promotes MT dynamics and growth, 
through downregulation of the kinesin-13 KLP-7 and upregulation 
of the cytosolic carboxypeptidase CCPP-637. Thus, the DLK cas-
cade is closely interconnected with MTs, both as a sensor of MT 
integrity and as a regulator of MT dynamics, making it well placed 
to mediate regenerative reorganization of the axonal MT cytoskel-
eton after injury.

EFA-6, an inhibitor of axon regeneration acting via 
microtubule dynamics
The above studies of DLK-1 have helped spur efforts to identify 
additional factors that control MT dynamics during axon regen-
eration. Using a large-scale genetic screen, we identified the evo-
lutionarily conserved protein EFA-6 (exchange factor for Arf-6) as 
a cell-intrinsic suppressor of axon regeneration18. Loss-of-function 
mutations of efa-6 [efa-6(lf)] enhance axonal regeneration, whereas 
efa-6 overexpression [efa-6(gf)] blocks regeneration (Figure 1B). 
Uniquely, efa-6(lf) partially bypasses the requirement for DLK-1 
in axonal regeneration18, suggesting that EFA-6 and DLK-1 have 
antagonistic effects on a common process. Multiple lines of evi-
dence suggest that EFA-6 inhibits axon regeneration through 
modulation of MT dynamics18,55.

The EFA-6/EFA6 protein family is conserved from yeast to 
mammals. EFA-6 contains a Sec7 domain that confers guanine 
exchange activity (GEF) for Arf6 GTPases56. Four EFA6 members 
(EFA6A–EFA6D) have been identified in mammals and three of 
them (except EFA6B) are expressed in neurons57,58. EFA6 local-
izes to the plasma membrane through its pleckstrin homology 
(PH) domain56. Furthermore, EFA6 can interact with filamentous 
actin in vitro through its PH domain and plays important roles in  
regulation of cortical actin cytoskeleton in vertebrate cells56,57,59–61. 
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In C. elegans, efa-6 suppresses the embryonic lethality caused by 
mutations in dynein, a MT motor62, suggesting a functional linkage 
between actin and MT cytoskeletons at the cell cortex. In the one-
cell C. elegans embryo, EFA-6 localizes to the plasma membrane, 
with enrichment in the anterior cortex in late one-cell embryo, to 
limit MT growth throughout the cell cortex62,63. The plasma mem-
brane localization of EFA-6 is dependent upon the presence of its 
PH domain, whereas the intrinsically disordered N-terminal domain 
confers the enrichment at the anterior cell cortex63. The N-terminal 
region of EFA-6 contains a conserved 18-amino acid (18-aa) motif 
(Figure 2), which is essential for the MT growth-inhibiting activity.

In mature uninjured neurons, EFA-6 also localizes to the cell cortex 
via its C-terminal PH domain55. Upon axotomy, EFA-6 rapidly 
(within minutes) relocalizes to puncta close to sites containing MT 
minus ends, as marked by the minus end-binding protein PTRN-1/ 
Patronin55,64. Relocalization of EFA-6 is dependent on the intrin-
sically disordered N-terminal domain and plays important roles 
in inhibition of axon regeneration (Figure 3A). In addition, the 
N-terminal domain of EFA-6 binds to the MT-associated proteins 

TAC-1/TACC (transforming acidic coiled-coil) and ZYG-8/DCLK  
(double-cortin-like kinase). Both TAC-1 and ZYG-8 are required for 
regenerative growth cone formation after axonal injury55. Although 
the roles of mammalian EFA6 family members in axon regeneration 
remain to be examined, Xenopus TACC3 promotes axon outgrowth 
in embryonic cultured neural crest cells65, and DCLK is required in 
mammalian axon regrowth66, suggesting potential functional con-
servation from C. elegans to mammals.

EFA-6, cell polarity proteins, and microtubule 
dynamics
Current evidence suggests that EFA-6 has bifunctional roles, as 
an MT destabilizing factor at the cell cortex in the steady state 
and relocalizing to the vicinity of MT minus ends after injury55. 
The molecular mechanisms involved in the transitions between 
these putative EFA-6 activity/localization states remain unknown.  
However, the intrinsically disordered N-terminal domain appears 
to be key to understanding the functions of EFA-6 with respect to 
MT dynamics. All EFA6 family members contain large N-terminal 
domains that are predicted to be intrinsically disordered (Figure 2A). 

Figure 2. The intrinsically disordered N-terminal of EFA-6 contains a conserved 18-amino acid (18-aa) motif. (A) EFA-6 protein domain 
organization in different organisms. Red boxes in the EFA-6 N-terminus highlight a conserved 18-aa motif, found in both Caenorhabditis 
elegans and Drosophila63. (B) Plot of intrinsic protein disorder score for C. elegans EFA-6. Different domains of EFA-6 are color-coded as in (A). 
Note that EFA-6 N-terminus has an overall high disorder probability, apart from the 18-aa motif. Figure adapted from 55.
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Within the N-terminal domain, the sole region of primary sequence 
conservation is the 18-aa motif conserved in C. elegans and other 
invertebrate EFA6 family members and partly recognizable in some 
vertebrate EFA6 members. This motif contains potential phospho-
rylation sites, mutation of which abolishes the relocalization and 
regeneration-inhibiting activities of EFA-655. However, the identity of 
upstream kinases or phosphatases remains unknown; DLK-1 does not 
appear to be required for injury-triggered relocalization of EFA-6.

As the phosphorylation status of EFA-6 is tightly correlated to its 
MT dynamics-regulating activity55, the kinase or kinases responsible 
for EFA-6 phosphorylation may also have MT dynamics-regulating 
activity, directly or indirectly. Furthermore, like EFA-6, such kinases 
may also regulate MT dynamics in early embryo. Many candidates, 
including PAR-1/MARK (MT affinity-regulating kinase) and 
polo-like kinase, have been implicated in MT dynamics in 
embryos and neurons67,68, although none of these kinases has yet 
been associated with EFA-6 phosphorylation. Here, we focus on  
PAR-1/MARK and summarize the known functions of PAR-1/MARK 
in neurons and embryos that may be relevant to axon regeneration.

PAR-1/MARK is one of the PAR (partitioning defective) proteins, 
first identified in C. elegans for their roles in polarization of the 
early embryo69. PAR-1 encodes a serine/threonine kinase related 
to the MARKs70. Misregulation of PAR-1 and its phosphoryla-
tion targets has long been implicated in neuronal diseases such as 
Alzheimer’s disease and autism71,72. In mammalian neurons, MARK 
phosphorylates the MT-associated proteins (MAPs) tau, MAP2, and 
MAP4, causing these MAPs to dissociate from MTs and thereby 
destabilizing the MT network and increasing MT dynamics70. 
Furthermore, expression of MARK in cultured neurons promotes 
neurite outgrowth73. Neurite outgrowth involves a pioneer popu-
lation of dynamic MTs that invades growth cones, followed by 
MT stabilization in axon extension74. These studies suggest that 
PAR-1/MARK plays key roles in MT plasticity during neurite 
outgrowth; less is known of its roles in axon regeneration.

PAR-1/MARK can regulate MT dynamics in many cell types75–79. 
In C. elegans one-cell embryos, PAR-1, together with its partner 
PAR-2, accumulates at the posterior cortex80. This localization 
prevents the anterior polarity complex, PAR-3/PAR-6/aPKC, from 
concentrating at the posterior cortex81,82 (Figure 3B). Intriguingly, 
MTs are more dynamic at the posterior end of an embryo, depend-
ent on the asymmetric distribution of PAR proteins, including 
PAR-175. It is possible that PAR-1 regulates localization of EFA-6, 
causing an enrichment of EFA-6 at the anterior cortex (Figure 3B). 
Interactions between PAR network proteins and EFA-6 in the early 
embryo have not yet been tested but could affect regulation of 
cortical MT dynamics.

Concluding remarks
Recent studies have highlighted the importance of MT dynamics in 
regulation of axon regeneration. Several players, including DLK-1 
and EFA-6, have been identified to regulate MT dynamics upon 
axon injury. However, many questions remain unexamined (see 
“Outstanding issues”). Importantly, pharmacological stabiliza-
tion of MTs enhances axon regeneration both in vitro and in vivo, 
highlighting the therapeutic potential of MT dynamics regula-
tion in axon regeneration. We anticipate that future studies should 
elucidate these mechanisms, which are potentially relevant to thera-
peutic interventions aimed at promoting regenerative axon growth.

Outstanding issues
1. What triggers EFA-6 relocalization upon axon injury?
EFA-6 rapidly relocalizes close to the MT minus ends to inhibit 
MT dynamics upon axon injury. This relocalization may be 
controlled by phosphorylation of the intrinsically disordered  
N-terminus of EFA-6. However, the signals (kinases/phosphatases) 

Figure 3. Functions of EFA-6 and PAR-1 in axon regeneration 
and polarity control in the early Caenorhabditis elegans embryo. 
(A) Model for the regulation of EFA-6. In steady-state axons, 
EFA-6 localizes to the plasma membrane through its pleckstrin 
homology (PH) domain. Upon axon injury, EFA-6 and TAC-1/TACC 
(transforming acidic coiled-coil) relocalize close to the microtubule 
(MT) minus ends as defined by PTRN-1/Patronin puncta. The  
N-terminal intrinsically disordered region of EFA-6 is necessary 
and sufficient for relocalization and binding to TAC-1. (B) In one-
cell embryos, PAR-1 and PAR-2 localize to the posterior cortex. This 
localization restricts the PAR-3/PAR-6/aPKC polarity complex to the 
anterior cortex. EFA-6 is enriched at the anterior cortex, dependent 
on the intrinsically disordered N-terminal domain. Such polarity 
complexes could regulate EFA-6 localization.
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that might trigger EFA-6 relocalization or function remain to be 
discovered. Identification of these signals will bring crucial insights 
into how the activity of EFA-6 is regulated, possibly allowing 
precise manipulation of EFA-6 activity in a regrowing axon.

2. What are the cellular targets of DLK and EFA-6?
Upon axotomy, DLK-1 promotes MT dynamics and growth, 
whereas EFA-6 relocalizes close to the MT minus ends to inhibit 
MT dynamics. Both proteins seem to affect axon regeneration by 
regulating MT dynamics. Intriguingly, efa-6(lf) can partially bypass 
the requirement of DLK-1 in axon regeneration. However, how 
EFA-6 interacts with the DLK-1 pathway remains unclear. It is of 
great interest to investigate these issues further to provide a better 
understanding of how MT dynamics control axon regeneration.

3. Is EFA-6 a conserved inhibitor of axon regeneration?
Identification of EFA-6 as a cell-intrinsic inhibitor of axon regen-
eration in C. elegans raises the question of whether any of the four 
mammalian EFA6 family members are involved in mammalian 
axon regeneration or axonal MT dynamics or both. Like C. elegans  
EFA-6, mammalian EFA6 family members all contain large  
N-terminal domains that are predicted to be intrinsically disordered. 

EFA6A, EFA6C, and EFA6D are expressed in the nervous system, 
but their roles in axon regeneration have yet to be assessed. Given 
evidence that partial stabilization of MT dynamics can improve 
axon regeneration in vertebrates, manipulation of specific MT 
destabilizing factors such as EFA-6 might allow a more targeted 
approach to enhancing regrowth in a therapeutic context.
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