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Abstract: I feel part of a massive effort to understand what is wrong with motor systems in the brain
relating to Parkinson’s disease. Today, the symptoms of the disease can be modified slightly, but
dopamine neurons still die; the disease progression continues inexorably. Maybe the next research
phase will bring the power of modern genetics to bear on halting, or better, preventing cell death.
The arrival of accessible human neuron assemblies in organoids perhaps will provide a better access
to the processes underlying neuronal demise.
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1. The Start of Something New

My interest in neuroscience started in the company of inquisitive psychiatrists won-
dering about the origins of schizophrenia. The ideas frequently discussed with my fellow
worker and teammate Tim Crow were about the role of dopamine in the type I symptoms of
schizophrenia, which are characterized by delusions, hallucinations, and erratic and disor-
ganized speech and thinking. We were confident that dopamine had something to do with
the disease; the problem was that the dopamine receptor blockers used to aid schizophrenic
symptoms could result in a condition similar to Parkinson’s disease (PD) [1,2].

1.1. A Model and a Misleading Feedback

Intrigued about dopamine, I departed, thanks to the Welcome Trust, for a postdoctoral
year in Stockholm to participate in the development of the first animal model of PD. That
happened more than a decade before an addictive drug contaminant (MPTP) turned out
to be a potent neurotoxin of dopamine cells and caused Parkinsonism [3]. In Sweden, we
observed that a local injection of 6-hydroxy dopamine (6-OHDA), unilaterally into the
substantia nigra of adult rats, destroyed dopamine cells and not much else [4]. Undisturbed,
rats that had received unilateral 6-OHDA could not be distinguished from sham animals,
but if perturbed by handling or pinching their tails or by injecting them with amphetamine,
the animals circled to the side ipsilateral to the lesion [1]. At the time, it was thought
that brain dopamine levels were controlled by a feedback loop running from striatum to
the dopamine cells and back. The “Amine Group” I worked with then interpreted their
results on dopamine turnover with that in mind [5]. Back in Scotland, at the M.R.C. Brain
Metabolism Unit, my students and I traced the “feedback loop” to determine its beginning
and ending sites. However, in spite of using the long and difficult autoradiographic
method, we could not convince ourselves that the return pathway ended on the dopamine-
containing cells in substantia nigra pars compacta [6]. Still uncertain, we damaged striatal
axons travelling from striatum to substantia nigra in the crus cerebri and, although the
animals had clear behavioral symptoms that agreed with the work in Stockholm, the
turnover of dopamine was modified to a normal extent by the dopamine antagonist,
haloperidol [7]. The pathway from striatum was the output, not a feedback loop as
suggested by earlier work showing that striatal output was responsible for the turning
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behavior [8] and later also supported by the group of DiChiara in Italy [9], who showed
that destruction of striatal neurons did not affect the “feedback”.

1.2. Consequences, Predictions and Observations

The paper of Garcia-Munoz, et al. [7] was one of the many consequences of trying
to “put the dopamine neurons back in the brain” [10]. In those early days, we had none
of the imaging tools we take for granted today. The dopamine cells and their terminals
were visible, but not their travelling axons. Only catecholamine neurons were fluorescent,
so both their postsynaptic targets and their input connections were invisible [11]. As the
anatomical results came in [12–14], there were arguments about which of the output systems
were responsible for the turning behavior that was so useful for testing drugs, but whose
relevance to normal movement, or most importantly PD, was still deficient. In spite of a
chorus of support for brain stem areas as the source of the turning [15,16], we were skeptical.
We predicted, instead, that the striatal command for turning, converged in the ventral
thalamic nuclei, the gathering site of outputs from substantia nigra reticulata. Indeed,
specific thalamic lesions, reduced the typical turning behavior following 6-OHDA [17]. For
us, it was also important to determine if the animal models of PD also suffered a variety of
cognitive- and sensory-related symptoms. As expected, we observed a profound neglect
contralateral to the lesioned side, associated with an inability to learn new motor tasks
with the paw contralateral to the lesion [18]. This set of experiments about dopamine’s
action in brain was the continuation of the earliest ideas that Tim Crow and I developed in
Aberdeen [19] linking dopamine to self-stimulating behavior [20,21].

2. The Steppingstones
2.1. Dopamine and Synaptic Structure

Cali Ingham, an electron microscopist, joined Edinburgh just as she completed her
PhD in Oxford. She was interested in the formation of new synapses in the adult brain
as described by Raisman and Field [22]. Then, it was clear that the heads of spines on
medium spiny neurons were contacted by cortex and thalamus and that a proportion of
spines also received a second synaptic input proposed to be dopaminergic [23]. With this
in mind, we wrote a grant that would allow us to study what replaced dopaminergic
synapses on spines after damage to dopaminergic afferents. After setting up everything for
the experiment, Cali said: “I suspect that when the dopamine is gone—so are the spines”.
That was a difficult thing to conclude . . . we needed to count dendritic spines! Indeed,
months later, we knew there were spines lost—and not resulting from the time it took us to
count. Age-matched older controls had fewer spines than young animals, but the 6-OHDA
lesioned side had fewer still. More than 1400 dendrites later, the result was published [24],
and we went on to show that the loss of inputs was even more extreme in human post
mortem brains from PD patients [25].

While we were involved in these details, one of the great advances in the dopamine
field came. Two output pathways from striatum, with different dopamine receptors on
each, were proposed [26,27]. The idea led to a revolution in the way the basal ganglia was
conceived, reported on in textbooks and used in the clinic. Some basic scientists had serious
doubts that the system was as simple as it seemed, but the literature about dopamine in
the brain took a new path for sure [10].

Then, we began to count dendritic spines again, this time differentiating between the
two pathways from striatum. Since that original paper had interested others, by the time
we had a possible answer, the world had joined us and we published together. The article
included results from four laboratories concluding that out of the D1- and D2-expressing
striatal medium spiny neurons, the D2-medium spiny neurons lost spines first [28]. Today,
it is clear that both output pathways lose connections from the cortex, but that it takes
longer for D1-expressing neurons, the direct pathway, to lose their spines [29,30]. These
results biased my thinking toward a view of dopamine loss, as a way to study how the
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brain compensates for the damaged system. It could be that at least some symptoms result
from inappropriate reactions to the loss, rather than the primary actions of dopamine.

2.2. Dopamine and Synaptic Strength

When Jeff Wickens visited my laboratory in Edinburgh, he suggested we take a look
at the actions of dopamine in striatum from a different point of view. His theory that
dopamine would act specifically on recently active cortical inputs to the striatum resulted
in a series of experiments involving intracellular recordings from rat brain slices. Cortical
stimulation produced long-term depression (LTD), and application of dopamine along
with the stimulation converted LTD to a long-term potentiation (LTP) [31]. This led us to
conclude that when dopamine release coincides with the activation of synapses, neuronal
ensembles may emerge associated to a particular reinforcing event—a result in agreement
with Wolfram Schultz’s famous evidence that dopamine may carry the reinforcement error
signal [32]. Perhaps, striatal dopamine selects particular recently active cortical inputs
for strengthening, in order to generate assemblies of striatal output neurons to carry the
signals of reinforced behavior [33].

2.3. The Functional Striatal Anatomy and Its Consequences for Patients

One of the most important consequences of the two output systems was the advent of
deep brain stimulation (DBS) for PD. The model of PD proposed that the D2 cells of the
output pathway were highly active, so they would inhibit globus pallidus which would in
turn, disinhibit the subthalamic nucleus (STN). This increased activity of the excitatory STN
was expected to result in the bradykinesia. Therefore, removing the STN should reduce
the symptoms. Indeed, it worked in monkeys, although it turned out to be a very risky
surgery in humans [34]. This surgical approach closely bordered the internal carotid artery,
resulting in a high risk of the strokes well known to cause hemiballismus [35]. Indeed, for
a few days after the initial surgeries in monkeys, ballism was observed [34].

Following the suggestion that overactivation of STN should silence the neurons, it
was proposed that its stimulation in patients should improve their condition at least by
alleviating the worst of the motor symptoms [36]. That worked indeed, and it still does
relieve motor problems for patients. Dieter Jaeger and I had three reasons to doubt the
explanation for the success: 1. STN firing rates can be very high, sometimes recorded
nearly 3 times faster than the “blocking” stimulation rate; 2. the stimulation pulse widths
were too short to be likely to stimulate cell bodies; and, 3. the 50 µsec pulses were more
efficient at activating myelinated fibers of which there were many around the stimulation
site. When we tested the idea that myelinated axons were the source of the improvement,
indeed we observed that simulation in the region of the STN induced a clear antidromic
excitation of the rat’s pyramidal cortical neurons, whose axons pass close to the stimulation
site [37]. Subsequently, Dieter and I followed different strategies in our separate parts of
the world. With new colleagues in New Zealand, I was able to show that rats recovered
from dopamine-blocker-induced akinesia as a result of stimulation in the subthalamus.
Successful recovery required an intensity close to the threshold for the antidromic evoked
potentials in cortex [38]. Moreover, cortical recordings from intact and 6-OHDA-treated
freely moving rats revealed that the STN stimulation threshold for induction of antidromic
evoked potentials and recovered mobility in lesioned animals close to controls [39]. A
finding we thought would be of interest to neurologists was that the stimulation that
increased movement also reduced cortical synchronization at beta frequencies [40]. Dieter
in Atlanta went on to show that the fibers of the hyperdirect pathway from cortex to STN
could support similar recovery in mice when stimulated with optogenetic techniques [41].
This cortical involvement in the generation of symptoms is still an ongoing field of interest
in ameliorating the symptoms of PD [42–47]. Moreover, it also led to a flurry of theoretical
work [48–52] and to confirmation of the earlier reports that antidromic activity could be
found in patients receiving DBS [43,53–57]. It also suggested that, in spite of less than
exciting trials of cortical stimulation in humans, mimicking the stochastic antidromic stimu-
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lation with DBS might be therapeutically useful, at least in the rat model [58]. Nonetheless,
since the rodent cortex has no folds and is much thinner than the human one, a direct
transfer of technology may not be possible.

Further, while we were building up the account of the basal ganglia loops, we found
their final return to cortex from the thalamic area [59]. The axons arrived in layer one, but
in 1990, the cortical layer 1 was a “tar pit”, with a physiology which was impossible to
elucidate. After my move to Japan, more recent work on this surface layer of the cortex is
beginning to suggest another reason to consider cortex as part of the underlying problems
of PD [60–62]. Layer 1 of cortex has relatively few inhibitory neurons and very many
axonal terminals from other areas of the brain, including the ventromedial thalamus and
other cortical areas. The dynamics among the cells suggest complex arrangements of
the inhibitory cells displaying widespread but differential responses to stimuli in awake
mice [63]. Since the inhibitory neurons are electrically coupled [64], this arrangement is
a likely source of synchronous waves of activity that may underlie the EEG. In PD, EEG
changes have been recorded that include more power in the beta frequency range. The
cortical antidromic activity we saw in animal models also disrupted the very same EEG
changes while recovering the animals’ movements [37,40]. Furthermore, in experiments on
automatic control of DBS, Bergman’s group [65] suggested that triggering on the EEG beta
frequencies led to the best control of the patients’ movements. Recent work also suggests
that the sleeplessness of PD might also be related to the increased beta frequencies [66].

Meanwhile, the idea of the two functionally separated striatal output systems was
in various kinds of trouble. Firstly, Costa [67], Cui et al. [68], da Silva et al. [69], and
Tecuapetla et al. [70] showed that both groups of striatal cells were involved in the typical
movements and decisions made during ongoing behavior. As a result, the flood gates
opened and our results began to be publishable; we suggested that the structure of a normal
assembly among the striatal neurons during movement was disrupted in the dopamine
depleted striatum. Furthermore, we showed that crude light activation of both cell types
could mimic the turning and the disruption of striatal assemblies seen after the lesion of
dopamine cells. In contrast, a more subtle pulsatile optical stimulation had the opposite
effect and returned assembly dynamics to more normal levels [71].

The simple story that D1 cells say ”go” and D2 cells ”stop” is clearly very oversim-
plified. When we trained mice to reach for a chocolate pellet with one paw, interruption
of the action of D1 cells, although it disturbed the early part of the reach, did not change
much its initiation. In contrast, activation of D2 cells led animals to miss the target, but the
movement stopped just fine [72]. This is in itself a simplification since, while the animals
perform the task, connections between the two pathways can be modified, and in spite of
the known anatomy, activity in both sides of the brain are important for the behavior.

3. Stepping away—A New Path

We have now begun to look beyond the cortical consequences of dopamine loss,
particularly considering that animal models only address the end-stage of the disease.
Bilateral lesions kill animals very quickly [73] unless they are given an equivalent of human
patient intensive care [74]. Finding a cure is not going to be possible from this end-stage
scene. My first attempts at a slower model of cell death really did not replicate the extent
of the dopamine cell loss, even though the subthalamic overactivity, initiated by globus
pallidus lesions in rats, caused a damage that rapidly progressed over weeks [75].

I had earlier resisted the genetic path of investigation because, although many genes
are implicated in familial PD, only about 10% of patients have a clearly established inherited
link. The newer Genome Wide Association Studies suggest that many genes associated
with the disease might have been missed since some genes might have strong associations
with the disease [76,77] and have high prevalence but low penetrance, making them hard to
find in familial studies. In any event, accumulations of proteins, including alpha-synuclein,
encased in lipid membranes, called Lewy bodies, were present in both the idiopathic
majority, as well as in the familial minority. Although that could have made them a
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pathological identifier of PD, they also occur with a more extensive distribution in Lewy
body dementia. My interest in protein metabolism changed, however, when I met a group
who had developed a three-dimensional culture from human stem cells: an organoid. An
additional benefit was immediately clear: their dopamine cells made neuromelanin [78] a
great improvement from rodents! I saw that fact as a chance to move from studying how
a whole brain responds to the loss of dopamine to closely examining how the cells die in
the first place. If this method enables us to look at the ultimate causes of the disease, we
should dedicate our effort where the best prospects are. In the rest of this review, I focus on
the possible opportunities and problems associated to this newly accessible methodology.

4. More Things That Led My Way

In Okinawa Institute for Science and Technology (OIST), we had developed methods
to build cortico-striatal cultures of mouse neurons [60]. These had solved some problems for
us, but they were mouse neurons [79]. The organoids grew dopamine cells with neurome-
lanin; an early study indicating that neuromelanin coexisted with the extra vulnerability
of dopamine cells [80] had intrigued me for years. Moreover, a recent paper describing
genetically engineered neuromelanin in rat dopamine cells brought promise of a new
model of the disease [81]. Having lived through the advent of antibodies to beta-amyloid
for Alzheimer’s, I am not a fan of adding antibodies to alpha-synuclein as treatment for PD.
It could be said that although the organoids have a genetic “disease” that only accounts
for few of the patients, they could let us understand much more about alpha-synuclein
and its role in dopamine cell death. Animal models have given confusing results: Chronic
MPTP infusions in mice cause much less damage in alpha-synuclein knock-out mice [82];
conversely, expressing synuclein A53T, the mutation associated with PD, in otherwise nor-
mal mice, produces a severe dopamine depletion and alpha-synuclein accumulations [83].
It seems that most animal models do not develop typical Lewy bodies [84]. Perhaps only
human cells, available in the organoids, can develop Lewy bodies with the typical mor-
phology and biochemistry. Of course, one thing that organoids are not by far is whole
brains; they have extracellular space and no blood–brain barrier and no microglia—unless
they are added. They do have astrocytes and oligodendrocytes, and therefore, some exper-
iments on their role might be possible. Perhaps glial cells in organoids also accumulate
the leucine-rich repeat kinase 2 (LRRK2), as do astrocytes in patient brains [85]—just a
sample of important things these strange cultures “organoids” provide to experimentalists,
although above all, they allow access to human neurons and glia typical of midbrain, the
very place where dopamine cells normally live.

For the future, the hope is that these model organoids will be more closely matched to
the normal human brain and so will provide a better platform on which to test therapeutics
for neurological diseases. It could be that the current failures in therapeutic developments
are due to the tests having been done on rodent brains or in isolated cells, lacking the com-
plexity of an interactive network, another characteristic of human brain cells. In principle,
organoids grown from induced pluripotent human stem cells (iPSCs) expressing various
genetic causes of the disease could provide the much-needed detailed pathology and, per-
haps, a final common path. It is not at all a straightforward task: for example, it seemed that
LRRK2 gain of function mutations were a cause of alpha-synuclein accumulation [86] and
that inhibitors of the kinase activity reduced the accumulations [87]. There are even some
kinase inhibitors that may be useful clinically [88], although knock-out animals with no
LRRK2 also have alpha-synuclein accumulations [89]. In human genetic studies, it seems
that loss-of-function mutations in LRRK2 are not associated with any disease; therefore,
perhaps there is still hope in spite of the knock-out data [90]. In conclusion, clearly, there
are many more interesting questions to answer in this area.

5. Was It a Wasted Life in Research, with Nothing to Show for It?

The fact that since 1969, PD patients’ life expectancy has shifted from 5 to 20 years
is some justification for what we have been involved with. All of the pharmacology,
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anatomy, and neurophysiology that have been my life so far have contributed to treatment
strategies, from L-DOPA itself (still the first line treatment), to surgical lesions, and deep
brain stimulation, which have increased survival and reduced symptoms for patients. The
idea that the brain compensated for injury was new in 1973, but now we are beginning
to understand just how widespread it is, and how much of a mixed blessing it can be.
Raisman’s experiments, which pioneered the idea that the brain did rewire after injury, had
the synapses that were missing replaced by cells not normally making synapses at that site.
Not so much a repair as a rewiring that did not have obvious behavioral consequences.
Now we have ample evidence that the brain normally remodels itself, even during the
formation of memories for instance [91,92]. As the molecular revolution proceeds, the
genetic underpinning of repair in the nervous system has opened new opportunities.
Recently, for example, new ways have been suggested that might allow us to speed up the
recovery from stroke by creating an “excitable brain state” that encourages regrowth [93].
Perhaps a rescue of dopamine cells will require more subtlety because it needs to be more
focused, but the expansion of the genetic causes of functional damage and recovery in the
central nervous system now has a new focus and new tools with which to reach the target.

As we put 2020 behind us, 2021 might become a bright new year, not only for the
responses to the COVID-19 pandemic, but for the generation of new targets for therapeutic
interventions to save, or better to rescue, dopamine cells from their death, and patients,
from the Parkinsonism that ruins their quality of life, until it finally ends it.
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