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Abstract

Mitotic spindle is a self-assembling macromolecular machine responsible for the faithful 

segregation of chromosomes during cell division. Assembly of the spindle is believed to 

be governed by the ‘Search & Capture’ (S&C) principle in which dynamic microtubules 

explore space in search of kinetochores while the latter capture microtubules and thus connect 

chromosomes to the spindle. Due to the stochastic nature of the encounters between kinetochores 

and microtubules, the time required for incorporating all chromosomes into the spindle is 

profoundly affected by geometric constraints, such as the size and shape of kinetochores as 

well as their distribution in space at the onset of spindle assembly. In recent years, several 

molecular mechanisms that control these parameters have been discovered. It is now clear that 

stochastic S&C takes place in structured space, where components are optimally distributed and 

oriented to minimize steric hindrances. Nucleation of numerous non-centrosomal microtubules 

near kinetochores accelerates capture, while changes in the kinetochore architecture at various 

stages of spindle assembly promote proper connection of sister kinetochores to the opposite 

spindle poles. Here we discuss how the concerted action of multiple facilitating mechanisms 

ensure that the spindle assembles rapidly yet with a minimal number of errors.
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1. Introduction

A healthy cell is ‘euploid’, it contains the entire karyotype of an organism, not a 

chromosome more, nor a chromosome less. To maintain euploidy in generations, replicated 

chromosomes must segregate evenly during cell division (mitosis) and consequences of just 
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a single error are dire. Not only the daughter cells are born lacking a chromosome or bearing 

an extra chromosome (i.e., aneuploid), but their progeny will likely enter a never-ending 

series of chromosome segregation errors in subsequent divisions [1]. This degradation of 

control over proper chromosome segregation, known as Chromosomal Instability (CIN), is 

a hallmark of malignancy [2,3]. Clearly, a robust machinery must be in place to ensure 

that all chromosomes reach their proper destinations during myriads of mitoses. This 

machinery, referred to as the ‘mitotic spindle’ due to its characteristically rhomboid shape 

(Fig. 1A), assembles during each division and the assembly relies on numerous interactions 

among complexly shaped elements scattered in space. Understanding molecular mechanisms 

that allow these elements to find one another and establish proper connections while 

avoiding erroneous ones, is essential to understanding how the high fidelity of chromosome 

segregation is achieved.

In higher eukaryotes, the spindle comprises hundreds of microtubules [4], dynamic 

filaments composed of αβ-tubulin dimers. The goal of spindle assembly is to connect each 

chromosome with the opposite poles of the spindle by attaching bundles of microtubules 

to ‘kinetochores’, a pair of macromolecular complexes that reside at the chromosome’s 

centromere [5]. Attachment of sister kinetochores to microtubules from the opposite 

poles, termed ‘amphitelic attachment’, ensures that replicated DNA molecules within the 

chromosome distribute evenly into the daughter cells (Fig. 1A). A fundamental question that 

has inspired generations of researchers on mitosis is how amphitelic attachments are formed.

Our current views on the mechanism of spindle assembly are guided by the ‘Search and 

Capture’ (S&C) hypothesis (Fig. 1B), originally formulated by Kirschner and Mitchison 

in 1986 [6]. Inspired by their discovery of microtubule ‘dynamic instability’ [7], these 

researchers proposed that repetitive cycles of growth and shrinkage allow microtubules 

to search for kinetochores that are scattered in space. In turn, serendipitously discovered 

kinetochores ‘capture’ (attach to) plus ends of microtubules and thus connect to the 

spindle poles where the minus ends of microtubules reside [6]. Capture of individual 

microtubules by kinetochores was subsequently observed in live vertebrate cells [8–10] 

as well as in yeast [11] and several molecules have been implicated in this process 

[12–15]. Further, theoretical analyses support the notion that dynamic instability of the 

microtubule plus end is uniquely advantageous for space exploration over other types of 

filament behaviour [16]. However, computer simulations based on real-life parameters of 

microtubule dynamics [17] suggest that unfacilitated search for 46 chromosomes would 

take hours, which is much longer than duration of mitosis in a typical human cell (Fig. 

1C). Moreover, the stochastic nature of S&C is not consistent with the highly reproducible 

pace of mitotic progression [18]. These inconsistencies indicate that S&C is facilitated 

by additional mechanisms and several of such mechanisms have been characterized in 

recent years. Among them are the regulated changes in the shape of the cell [19], pre-

positioning of spindle components [20, 21], nucleation of non-centrosomal microtubules 

near kinetochore as well as guidance of astral microtubule growth towards kinetochores 

[22–29] and adaptive changes of the kinetochore architecture [30–33]. While none of these 

mechanisms is essential, their combined contributions ensure that stochastic encounters 

between microtubules and kinetochores occur with high efficiency (rapidly) and fidelity 
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(low rate of erroneous attachments). In this chapter we review roles of various facilitating 

mechanisms in S&C-driven mitotic spindle assembly.

1.1. Mechanisms that maintain chromosomes within the reach of microtubules

Rapid oscillation between short periods of growth and shrinkage at the plus end is the 

foundation of microtubule’s ability to explore space [16]. A limitation of this behaviour is 

that the short period of growth limits microtubules’ outreach to < 15 μm [34,35], which is 

not sufficient to cover even a moderately large cell. This hindrance would be particularly 

pronounced if the complex shapes displayed by interphase cells were maintained during cell 

division. Not surprisingly, cells round during division (Fig. 1C), which helps to lower the 

surface to volume ratio. This change is driven by rapid remodelling of actin cytoskeleton and 

reorganization of the microtubule network initiated during prophase [19,36,37]. Perturbation 

of the simplistic shape of mitotic cells causes defects in spindle assembly as microtubules 

struggle to reach all chromosomes [38]. Similarly, spindle assembly tends to take longer 

in cells that naturally remain flat during cell division. For example, in the extremely flat 

newt lung cells, incorporation of peripherally located chromosomes may take hours which is 

several folds longer than the entire duration of mitosis in a rounded cell [8].

Although mitotic rounding limits excessive chromosome scattering, this morphological 

change is not always sufficient. In larger cells such as oocytes, chromosomes are actively 

gathered within a limited space by contractility of actin filaments distributed around the 

nucleus at the onset of cell division [34,39]. Further, actin filaments contribute to the 

organization of space within the forming spindle which promotes formation of stable 

microtubule attachments [40,41]. Indeed, cooperative action of actin and microtubules 

appears to be important for speedy spindle assembly in various cell types and species 

[42,43].

While the direct involvement of the contractile actin network in gathering chromosomes has 

been demonstrated only in the extremely large oocytes, similar structural barriers exist in 

somatic cells. In epithelia, where cells tend to remain flat during mitosis, a rigid perinuclear 

cage of keratin intermediate filaments helps to avert excessive dispersion of chromosomes 

[44]. In cells that lack the keratin cage, more ubiquitous albeit less rigid barriers derived 

from the nuclear envelope have been observed [45,46].

Although the nuclear envelope breaks down at the onset of spindle assembly (nuclear 

envelope breakdown, NEB), constituents of this structure continue to surround the spindle 

as a structurally inconspicuous yet functionally important barrier between the ‘clear zone’ 

where the spindle assembles and the rest of the cytoplasm. Formation of this barrier 

is regulated by a mechanism that involves the small GTPase Ran and the microtubule 

motor dynein [45,46]. Depletion of Lamin B, the principal structural component of 

nuclear envelope, causes defects in mitotic spindle assembly and leads to chromosome 

mis-segregation [45]. In addition to restricting scattering of chromosomes and preventing 

invasion of large cytoplasmic organelle into the clear zone, remnants of the nuclear 

envelope operate as a matrix responsible for localized accumulation of soluble protein 

complexes required for spindle assembly, for example, αβ-tubulin dimers [47]. Germane 

here is that cells employ multiple mechanisms to ensure that stochastic interactions between 
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kinetochores and microtubules occur within a relatively small subcellular domain defined by 

structural and biochemical barriers.

1.2. Mechanisms that present kinetochores to microtubules

The necessity to maintain chromosomes within a small volume searchable by the dynamic 

microtubules leads to a steric constraint that, left unchecked, may significantly impede 

S&C-driven spindle assembly. In most animal cells, kinetochores are several folds smaller 

than the chromosome arms. Therefore, corralling numerous kinetochores within the reach 

of microtubules comes at the expense of crowding this space with chromatin that is 

impenetrable to growing microtubules. As a result, kinetochores of chromosomes positioned 

deeper inside the searchable volume are shielded from microtubules by the arms of 

chromosomes residing closer to the centrosomes. Computational analysis suggests that only 

~3% of kinetochores would have a direct line of sight to the centrosomes when 46 human 

chromosomes are packed into a spherical volume with the diameter of a nucleus [17]. In 

reality, the situation is more complex as in cells adhered to rigid substrates, the nucleus 

is shaped as a disc rather than a sphere (Fig. 2A,B). Due to this asymmetry, the number 

of kinetochores presented to microtubules at the onset of spindle assembly depends on the 

position of centrosomes during NEB (Fig. 2A’B’). The highest fraction of kinetochores is 

exposed when the centrosomes reside on the opposite sides of the larger nuclear surfaces 

(Fig. 2A,A’). In this configuration, chromosomes arrange in a thin layer orthogonal to 

the spindle axis which offers kinetic advantages for S&C (Fig. 2C,C’). In contrast, the 

multilayer distribution of chromosomes when spindle axis sets parallel to the longer axis 

of the nucleus impedes direct access of microtubules to the kinetochores residing in the 

middle layers (Fig. 2D,D’) and delays congression of chromosomes onto a metaphase plate 

(cf., Fig. 2E,F). Not surprisingly, orientation of the spindle axis along the shorter axis of 

the nucleus at NEB appears to be a common feature in various types of mammalian cells 

adhered to rigid substrates [21,48]. Preferred spatial pattern is achieved by active movements 

of the centrosomes along the nuclear envelope as well as by changes in the position of the 

nucleus during prophase, driven by microtubule motors recruited to the nuclear surface and 

coordinated with changes in the dynamics of microtubules and actin filaments [48].

While a functional spindle eventually assembles even when centrosomes remain within 

a single complex until NEB, this configuration leads to a higher frequency of merotelic 

attachments [49,50]. Similarly, the number of errors is elevated when supernumerary 

centrosomes assume positions on several sides of the nucleus. Although most cells 

ultimately coalesce supernumerary centrosomes into precisely two clusters and restore the 

bipolar architecture of the spindle, chromosome mis-segregation is rampant under these 

conditions [50–53]. Thus, even transient deviations from the proper bipolar geometry during 

early prometaphase are detrimental for the fidelity of spindle assembly.

A second set of mechanisms that facilitates exposure of kinetochores to the searching 

microtubules arises from the interplay of microtubule-mediated forces acting along the 

chromosome arms vs. the kinetochores. Because of their large size, chromosome arms are 

likely to encounter microtubules earlier than the kinetochores and these early interactions 

play an important role in defining position and orientation of the chromosome within the 
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forming spindle. Due to ubiquitous presence of plus-end directed kinesins on chromatin 

(‘chromokinesins’, kinesins 4 and 10) [54], direct contacts with microtubules produce a 

force that pushes the chromatin towards the plus ends, i.e., away from the spindle poles [55–

59]. The large number of momentous encounters with microtubules on chromosome arms 

rapidly clear the central part of the forming spindle from chromatin making kinetochores 

accessible to the microtubules (Fig. 2C,C’). As the ejection force along the arms is 

counterbalanced by the inward-directed forces produced by the molecular motors at the 

kinetochores [30,60], chromosomes arrange in a toroid around the nascent spindle packed 

with microtubules during early prometaphase (Fig 2C,C’). Within the toroid, kinetochores 

are adjacent to the spindle surface while the arms, straightened by the ejection force, point 

away towards the cell periphery [21,61] (Fig. 2C’). Transient arrangement of chromosomes 

into a ring around the spindle during early prometaphase occurs consistently but this pattern 

is quite transient as the chromosomes rapidly repopulate the hollow centre of the spindle 

by moving inward towards the spindle axis (Fig. 2E,E’). Various molecular pathways, such 

as inactivation of chromokinesins [21] or deviation from the optimal centrosome separation 

pattern prior to NEB (Fig. 2F,F’), prevent formation of the toroid and lead to prolonged 

spindle assembly and increased frequency of chromosome mis-segregation [21,30,59,60]. 

This common outcome of perturbations in biochemically unrelated molecular cascades, 

supports the notion that the efficiency and fidelity of S&C depend on achieving an optimal 

pattern in spatial distribution of centrosomes and kinetochores during the critical period of 

spindle assembly when amphitelic attachments are formed.

Electron microscopy (EM) analyses of early prometaphase reveal that kinetochores residing 

on the surface of the nascent spindle are in direct contact with walls of numerous 

microtubules; however, end-on attachments to microtubule bundles extending towards the 

spindle poles (K-fibers) are rarely observed at this stage [25,30]. Further, the toroidal 

pattern forms and persists for a much longer time in cells with kinetochores incapable of 

attaching to microtubules in the end-on fashion [21,61,62]. These observations suggest that 

prior to the capture of the plus ends, kinetochores interact with microtubules ‘laterally’ at 

various points along the entire length of a microtubule [11,21,63–65]. Whether these lateral 

interactions are subsequently converted into end-on attachments or whether they indirectly 

facilitate direct capture of microtubule plus ends remains unknown. However, transition 

from lateral interactions to end-on attachments appear to involve coordinated activities of 

various molecular motors, microtubule depolymerases residing at the kinetochore as well as 

chromokinesins acting upon chromosome arms [66–70].

An important role of lateral interactions in the context of S&C is that kinetochore gliding 

alongside of microtubules may deliver centromeres to the areas of the spindle favourable 

for formation of proper end-on attachments. For example, gliding alongside of astral 

microtubules, towards their minus ends facilitates incorporation of peripheral chromosomes 

into the microtubule-dense spindle [63]. Gliding towards plus end of bundled microtubules 

brings monotelic chromosomes to the spindle equator, where attachments to microtubules 

produced by the distal pole can rapidly form [63,71] These poleward and antipoleward 

movements driven by lateral interactions are mediated by the two molecular motors residing 

at the kinetochores, namely the plus-end-directed kinesin CenpE (kinesin 7) [71,72] and 

the minus-end-directed dynein [12,66,73]. Both motors are present in high concentrations 

Renda and Khodjakov Page 5

Semin Cell Dev Biol. Author manuscript; available in PMC 2022 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at unattached kinetochores, which could lead to tag-of-war situation where poleward and 

antipoleward forces would be simultaneously exerted. This potentially dangerous situation 

is averted by the different preferences of CenpE vs. dynein to various post-translational 

modifications (PTMs) that exist on different classes of spindle microtubules [74]. This 

mechanism ensures that lateral interactions with detyrosinated α-tubulin within relatively 

stable microtubule bundles, such as K-fibers, engages CenpE activity that transports 

kinetochores toward the plus ends, i.e., to the spindle equator [75]. In contrast, dynein/

dynactin’s preference for tyrosinated microtubules [76,77] seems to be important for the 

initiation of minus-end directed gliding towards the end of astral microtubules [77].

However, large displacements of kinetochores are rarely observed during early 

prometaphase in human cells [21]. Instead, kinetochores tend to exhibit directionally 

unstable brief movements that do not significantly change position of the chromosome [25] 

yet rotate the centromere which orients sister kinetochores roughly parallel to the spindle 

axis [30]. These changes in the centromere orientation appear to accelerate formation of 

amphitelic attachments and suppress the number of errors during early stages of spindle 

assembly [20,30].

1.3. Regulation of kinetochore architecture at various stages of spindle assembly

It is self-evident that larger objects have greater chances of being discovered in a random 

exploration of space than smaller ones. In the context of S&C, this implies that larger 

kinetochores would encounter microtubules with higher frequency and thus accelerate 

spindle assembly. However, this acceleration comes at a cost as a large kinetochore 

may simultaneously capture microtubules from both spindle poles, forming a merotelic 

attachment (Fig. 3A). Further, large sister kinetochores would encircle the centromere 

and be prone to capturing microtubules produced by the same spindle pole, which 

leads to syntelic attachments (Fig. 3A). Intuitively, efficiency and fidelity of S&C-driven 

spindle assembly appear to be in a reciprocal relation: a higher rate of microtubule 

capture inevitably increases frequency of errors. A ramification of this relationship is that 

sufficiently fast and error-free S&C is possible only when all kinetochores adhere to an 

‘optimal’ architecture with minimal variability in their size and shape.

In conventional EM, kinetochores appear as ~75 nm thin discoid plates situated on the 

surface of the centromere [65,78,79]. The plate comprises electron-opaque inner and outer 

layers separated by a translucent middle layer. Each layer is ~25-nm thin (Fig. 3B). 

The ‘trilaminar’ morphology is well conserved; however, the length of the plate varies 

significantly among the chromosomes within a cell as well as among different organisms. 

EM reconstructions of human cells suggest ~4-fold variation in the plate length during 

metaphase (~150–600 nm) with the average value of ~300 nm [80]. This range is consistent 

with ~8 fold variation observed in volumetric analysis [81]. Similar ~3-fold variability in 

linear dimension of the plate exists in the cell of Indian muntjac [82], although kinetochores 

in this species are much larger with the longest plate exceeding 1.5 μm (Fig. 3B). The 

budding yeast S. cerevisiae presents the opposite extreme as its kinetochores are not much 

larger than a single microtubule [83,84]. Such a wide range of sizes implies that mechanisms 
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responsible for the formation of proper microtubule attachments are sufficiently robust to 

cope with morphological irregularity of the kinetochore.

The inconspicuous morphology of the plate in EM does not do justice to the staggering 

biochemical complexity of this organelle that incorporates numerous proteins organized in 

an intricate network [5,85]. Attachment to microtubules is enacted by a multimeric assembly 

containing dozens of proteins [86]. The load-bearing connection at the microtubule tip is 

maintained primarily by Hec1, a member of the Ndc80 complex [87,88]; however, several 

additional protein complexes contribute as well [89–91]. Significant progress has been 

achieved towards solving the molecular structure of the microtubule attachment site in vitro 

[86,92].

In the context of spindle assembly, the ability to capture microtubules that randomly 

approach the kinetochore from various directions depends on the 3-D architecture of the 

kinetochore plate as well on the distribution and orientation of molecular ensembles within 

the plate. Consistent with the trilaminar morphology observed in EM, light microscopy 

(LM) suggests a layered distribution of proteins within the kinetochore with microtubule-

binding components concentrating near the outer surface (Fig. 3C). Two major models of the 

outer layer organization have been proposed. In one view, the outer layer comprises tandem 

repeats, each containing the entire molecular machinery required for a single microtubule 

attachment. The number of these repeats ranges from one in the budding yeast whose 

kinetochores capture a single microtubule [83,84] to dozens required for the formation of 

K-fibers in higher eukaryotes [93,94]. A corollary of this model is that the outer layer is 

a highly ordered structure where molecular interactions with each attached microtubule are 

constrained within a binding site [95,96]. In an alternative view, no predefined microtubule-

binding site exists prior to microtubule attachment. Instead, the outer layer comprises an 

unstructured assortment of complexes that act as a “molecular lawn” with random sets of 

molecules attaching to microtubules that accidentally come within their reach [97–99]. The 

latter model appears to gain popularity. Most recently, FRET analyses of protein distribution 

within the outer layer demonstrate that Ndc80 molecules are uniformly distributed and 

variably oriented in the absence of microtubules but they cluster after formation of end-on 

attachments [100]. This architecture is advantageous for S&C as it permits capture of 

microtubules approaching the plate from various directions.

The classic early EM images obtained primarily from metaphase cells [78,79] have formed 

a perception of the kinetochore plate as a rigid flat disk; however, more recent whole-cell 

reconstructions suggest that the plate is pliable. On average, length and curvature of the 

plate increase when microtubule dynamics are suppressed by Taxol in human cells [80]. 

Similar yet larger scale changes occur when metaphase kinetochores lose their attachment to 

microtubules [30,101–104].

In the absence of end-on microtubule attachment, kinetochores gradually recruit additional 

proteins, primarily to its outer layers [31–33]. Morphologically, this process is manifested 

as progressive elongation of the plate and formation of ‘fibrous corona’ [65,78], a mat 

of fibrous material adjacent to the electron dense outer layer of the plate (Fig. 3D,E). 

Interestingly, outer kinetochore enlargement appears to be more pronounced on smaller 
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kinetochores. After full enlargement induced by the microtubule-depolymerizing drug 

nocodazole, kinetochores of the largest human chromosome do not differ in size or the 

amount of outer kinetochore components from kinetochores of other chromosomes [105]. 

In contrast, end-on attached kinetochores tend to be larger on chromosome 1 than on 

other chromosomes in human cells [106]. 3-D EM reconstructions demonstrate that the 

plate of unattached human kinetochores form crescents (Fig. 3D) with sister kinetochores 

encircle the centromere, which creates a large surface capable of capturing microtubule on 

all chromosomes [30].

Molecular mechanism behind the elongation of plate involves the outer-kinetochore complex 

comprising the trio of ROD, Zwilch, and Zw10 proteins, acting as unified ‘RZZ’ complex 

[107] as well as the RZZ-binding protein Spindly [108]. Oligomerization of the RZZ and 

Spindly appears to trigger formation of a meshwork that gradually extends from the core 

of the kinetochore outwards, increasing the length of the plate [31–33]. The process is 

controlled by various post-translational modifications, such as farnesylation of Spindly 

and phosphorylation of RZZ components that are in turn governed by the mitosis-specific 

kinases [109]. Importantly, growth of the plate is reversed upon formation of end-on 

attachments likely by the removal of the RZZ complex as well as other outer layer 

components via dynein mediated transport along the attached microtubules [110,111]. As 

a result, end-on attached kinetochores rapidly compact down to the size and morphology 

typical for metaphase cells [30,104]. The cycle ofkinetochore enlargement at the onset 

of spindle assembly followed by rapid compaction upon formation of end-on microtubule 

attachment bears pronounced functional significance in the context of S&C.

As discussed earlier in this chapter, capture of microtubules by large kinetochores is 

expected to be efficient yet error prone (Fig. 3A). Consistent with this expectation, perpetual 

enlargement of kinetochores in human cells with the mutant SpindlyΔN protein increases 

the frequency of merotelic attachments and chromosome mis-segregation [31]. Similarly, in 

Indian muntjac cells, where, in sharp contrast to human cells, the length of kinetochore plate 

does not change in response to microtubule attachment (compare Fig. 3B with 3D and 3C 

with 3E) larger kinetochores have higher propensity of forming merotelic connections [82]. 

However, no linear relationship between the size of the centromere and the probability of 

attachment errors has been found in cells where transient enlargement of the plate at the 

onset of mitosis is followed by a rapid compaction upon formation of end-on microtubule 

attachments. Indeed, while mis-segregation rates are not equal among human chromosomes, 

similar frequencies have been reported for the largest and smallest chromosomes [105,112–

115]. This suggests that regulated architecture of the kinetochore somehow facilitates 

formation of proper attachments.

Computational modelling predicts that forces acting upon the enlarged kinetochores during 

early stages of spindle assembly that are dominated by lateral interactions, rotationally 

align centromeres roughly parallel to the spindle axis. During this process, larger crescent-

shaped kinetochores support a greater angular improvement as they remain in contact with 

microtubules at a wider range of angles (Fig. 3F). As lateral interactions are established 

rapidly, by the time a kinetochore has a reasonable chance of capturing a microtubule 

plus end, the centromere is already ‘pre-aligned’ on the surface of the nascent spindle. 
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Rapid compaction of the kinetochore, triggered by the end-on attachment, further decreases 

probability of errors in the formation of amphitelic attachment [30]. Rotation of centromeres 

leading to roughly parallel orientation of the centromere prior to the formation of end-

on attachments has been observed in live cells, lending experimental support to the 

computational predictions [30,31].

It is important to emphasize that transient enlargement of the kinetochore is advantageous 

only when S&C occurs in the context of spatial cues and constraints provided by 

the facilitating mechanisms described in Sections 1.1–1.2. As the rotation of enlarged 

kinetochores is driven by lateral interactions with microtubules on the surface of the nascent 

spindle, conditions that perturb spindle architecture or impede lateral interactions, inevitably 

increase the number of erroneous attachments [21,31]. Conversely, conditions that affect 

kinetochores’ ability to enlarge or compact at the appropriate stages of spindle assembly 

become disadvantageous when other facilitating mechanism are functional [31].

1.4. Role of non-centrosomal microtubules

In the classic formulation of S&C hypothesis, every microtubule captured by a kinetochore 

was expected to form a direct connection with a spindle pole, as the duplicated centrosomes 

were assumed to be the only source of microtubules [6]. Although well justified at the 

time, this assumption proved to be incorrect. We now know that a significant fraction of 

microtubules within the spindle are nucleated at locales other than the centrosomes. Of 

particular importance in the context of S&C are non-centrosomal microtubules that assemble 

near unattached kinetochores. Due to their spatial proximity kinetochores are more likely to 

capture these microtubules rather than astral microtubules radially spreading from a distantly 

located centrosome. However, this capture does not connect the kinetochores with the poles. 

Instead, it leads to the formation of a ‘nascent K-fiber’, a set of microtubules with minus 

ends protruding from the kinetochore. Due to continuous incorporation of tubulin subunits 

into the plus ends of these microtubules at the kinetochore, nascent K-fibers gradually 

elongate [23,116].

Nascent K-fibers allow kinetochores to establish indirect connections with the spindle poles 

via poleward ‘microtubule on microtubule’ gliding that is a major transport property of the 

spindle [24]. This transport is driven by the ubiquitous flow of cytoplasmic dynein, a large 

minus-end directed molecular motor [23,117]. As dynein uses microtubules as both the track 

and the cargo, it efficiently pulls microtubules with free minus ends towards the spindle 

poles. Nascent K-fibers experimentally created by severing a full-size K-fiber in mammalian 

cells connect to the neighbouring microtubules in less than a minute [118–120]. Several 

minutes later, continuous elongation of microtubules within a nascent K-fiber delivers its 

minus ends to the pole. Such a rapid incorporation of chromosomes into the spindle is 

clearly advantageous over direct capture of astral microtubules by ‘naked’ kinetochores. 

However, the advantage exists only when short microtubules attached to the kinetochore 

are organized in a single bundle oriented roughly parallel to the spindle axis. A bundle 

orthogonal to the spindle axis or a set of individual microtubules emanating from the 

kinetochore in various directions would be prone to forming simultaneous connections with 

both spindle poles (i.e., merotelic attachment). Indeed, erroneous reattachment of nascent K-
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fibers has been observed [118]. Thus, mechanisms must be in place to ensure that capture of 

non-centrosomal microtubules does not lead to intolerable levels of erroneous attachments.

Assembly and organization of non-centrosomal microtubules near chromosomes are 

regulated by two major molecular pathways. One is governed by a small GTPase Ran that 

acts upon a range of ‘Spindle Assembly Factors’ (SAF), molecular complexes responsible 

for localized microtubule assembly. Due to the high affinity of RCC1, Ran’s guanine 

exchange factor, to the DNA, concentration of GTP-bound Ran (RanGTP) is maximal 

in the proximity of chromatin. As a result, SAFs, sequestered in a complex with importin-

β throughout the cytoplasm, are released near chromosomes and their activity triggers 

microtubule growth [121–125]. In the context of S&C, microtubule arrays produced by 

the RanGTP gradient are spatially organized rather than random. This organization arises 

from ‘branching microtubule nucleation’ promoted by the interplay between the downstream 

target of RanGTP, TPX2 [126, 127], microtubule branching complex Augmin [128–131], 

and the γ-Tubulin Ring Complex (γ-TuRC) [132,133] that nucleates microtubules. TPX2-

mediated recruitment of Augmin and γ-TuRCs to the walls of existing microtubules leads 

to the formation of branched microtubule networks in which new microtubules grow in 

the same general direction as the older ‘mother’ microtubules [129,134–136]. ‘Branching 

microtubule nucleation’ has a potential to rapidly convert a single microtubule end-on 

attached to a kinetochore into a K-fiber, accelerating spindle assembly [137]. There is direct 

evidence that TPX2 accumulates within older microtubule lattices near chromosomes, such 

as K-fiber, which is consistent with the potential role of this process in facilitation of spindle 

assembly [136].

A second chromatin-mediated pathway that appears to function independently of RanGTP 

is driven by the chromosome passenger complex (CPC) [138] which resides within the 

centromere and acts via local regulation of microtubule dynamics [139–142]. CPC complex 

consists of inner centrosome protein (INCENP), borealin, survivin and Aurora B kinase and 

is recruited directly to the centromeres. The kinase subunit of CPC has been proposed to 

phosphorylate and inactivates locally microtubule-depolymerizing proteins, such as MCAK 

[139–141] and Op18/Stathmin [142], thereby facilitating the stabilization of microtubules 

and initiating spindle formation from chromosomes [141]. Although the CPC concentrates 

at each centromere, an Aurora B diffusion gradient extends over the length of the spindle, 

which prevents microtubule depolymerization within the spindle [143,144].

Importantly, in sharp contrast to in vitro systems such as Xenopus egg extracts, in 

mammalian cells, non-centrosomal microtubules appear to form exclusively near the 

centromeres and not along the chromosome arms [22,145,146] although the mechanism(s) 

that spatially restrict microtubule nucleation are not fully understood. Rapid appearance 

of short randomly oriented microtubules in the immediate proximity of kinetochores 

was originally observed in EM reconstructions of cells recovering from microtubule-

depolymerizing drugs [145,146]. More recent serial-section EM analyses demonstrate that 

~75% of kinetochores are in contact with non-centrosomal microtubules during early 

prometaphase in human cells. Interestingly, these microtubules tend to orient either parallel 

or orthogonal to the kinetochore plate, the angles typical for lateral interactions and 

end-on attachments [25]. However, orthogonal orientation is suppressed upon inactivation 
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of the kinetochore-associated kinesin CenpE (kinesin-7). These observations suggest that 

CenpE transports the plus ends of laterally attached microtubules towards the kinetochore 

promoting formation of end-on attachments [25]. Consistent with this proposed role, CenpE 

has been shown to attach firmly to microtubule plus ends for an extended time in vitro [147]. 

Importantly, EM analyses suggest that sorting of non-centrosomal microtubules into nascent 

K-fibers occurs after centromeres rotationally align on the spindle surface [25] so that the 

K-fibers growing from the sister kinetochores extend roughly towards the opposite spindle 

poles.

2. Conclusions

For over 30 years, S&C hypothesis has stood the test of time as discoveries of numerous 

facilitating mechanisms provided a clue on how cells manage to overcome the impediments 

arising from the stochastic nature of interactions between kinetochores and microtubules. 

These mechanisms ensure that spindle assembly takes place in well-defined and structured 

space, where components are optimally distributed, and steric hindrances are minimized. 

Proper patterns of centrosome separation during prophase and ejection of chromosome 

arms during the earliest stages of spindle assembly enable rapid rotational alignment of 

centromeres to spindle axis via lateral interactions between the enlarged kinetochores and 

microtubules on the surface of nascent spindle (Fig. 4). A large number of microtubules 

nucleated in the immediate proximity of the centromere promote end-on attachments. 

Together, concerted contributions from these mechanisms allow the spindle to assemble 

rapidly yet with the minimal number of errors. Importantly, while molecular machinery 

employed by various facilitating mechanisms may appear dissimilar, contributions of 

these mechanisms into spindle assembly are interrelated. Indeed, deficiency in one of 

the facilitators may render other mechanisms counterproductive. For example, while 

kinetochore enlargement increases fidelity of spindle assembly when capture is preceded by 

rotational alignment on the surface of nascent spindle; this adaptive change in kinetochore 

architecture would increase the number of errors if the architecture of nascent spindle 

is perturbed. Indeed, erroneous attachments become numerous when chromosomes and 

centrosomes are intermixed at the onset of spindle assembly in cells recovering from 

microtubule-depolymerizing drugs [30,148]. This interdependency highlights wholistic 

nature of spindle assembly and the necessity of strict coordination among the contributing 

mechanisms.
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Fig. 1. 
Mitotic machinery and the principle of spindle assembly (A) Architecture of mitotic spindle. 

Two radial arrays of microtubules (green) emanate from the spindle poles. Bundles of 

MTs (K-fibers) connect spindle poles and kinetochores (magenta), specialized organelles 

on chromosomes (blue). Arrowheads denote sister kinetochores on a chromosome that 

is simultaneously attached to the opposite spindle poles (i.e., ‘amphitelic’). The image 

depicts a medial slice through the metaphase spindle of Indian muntjac, a species of deer 

that possesses the largest kinetochores among mammals. (B) Cartoon of the ‘Search and 
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Capture’ model for spindle assembly. Breakdown of the nuclear envelope (orange) at the 

onset of mitosis allows microtubules (green) that radially emanate from the centrosomes 

to reach chromosomes (blue). Connection to a spindle pole is achieved via capture 

of microtubules by the kinetochores (magenta). Due to stochasticity in the distribution 

of chromosomes and growth of microtubules, capture may lead to a proper amphitelic 

attachment as well as to erroneous configurations when a single kinetochore simultaneously 

attaches to both spindle poles (‘merotelic’ attachment) or when sister kinetochores attach 

to the same spindle pole (‘syntelic’ attachment). For faithful chromosome segregation, 

amphitelic attachments should be promoted while erroneous attachments – suppressed. 

(C) Progression through mitosis in a typical human cell. Kinetochores and centrosomes, 

labelled with CENP-A-GFP and centrin1-GFP respectively, are shown as Maximum 

Intensity Projections through the entire cell. Arrows denote pairs of centrioles within each 

centrosome/spindle pole. Changes in cell morphology are shown in Differential Interference 

Contrast (DIC). Spindle assembly initiates when nuclear envelope breaks down (NEB, 

arrowheads). Chromosomes arrange in a characteristic ring around the forming spindle 

during Early Prometaphase and later repopulate the centre of the inner parts of the spindle 

forming a tight plate at the equator by Metaphase. The spindle assembles within a clear 

zone devoid of large organelles (Late Prometaphase, arrowheads). Notice rounding of the 

cell as it progresses through spindle assembly. Chromosome segregation occurs rapidly 

during Anaphase that initiates less than 20 min after NEB and daughter cells form during 

Cytokinesis.
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Fig. 2. 
Steric constraints arising from different relative positions of centrosomes and chromosomes 

at the onset of spindle assembly. (A,B) The number of kinetochores with a direct line of 

sight to the spindle poles depends on whether the centrosomes separate along the shorter 

vs. longer axis of the nucleus. In the ‘Optimal pattern’ (A), chromosomes form a thin layer 

orthogonal to the spindle axis while in the ‘Suboptimal pattern’ (B) many kinetochores 

are shielded from microtubules by chromosome arms (compare the number of green spots 

visible in A’ vs. B’). (C,D) Optimal positioning of centrosomes at NEB promotes toroidal 

distribution of chromosomes during early prometaphase (C). Within the toroid, kinetochores 

(green) reside near the surface of a microtubule-dense ‘nascent spindle’ (magenta) while 

chromosome arms are ejected outwards (compare shape of chromosomes greyed in A’ vs. 

C’). Suboptimal pattern of centrosome orientation leads to multiple layers of chromosomes. 

(E,F) In the Optimal pattern, chromosomes rapidly repopulate the inner parts of the spindle 

(E,E’). In contrast, wider distribution of chromosomes in the Suboptimal pattern delays 

chromosome alignment at the spindle equator (F,F’). (A-F) Maximal intensity projections 

of the entire cell volumes with microtubules shown in magenta (α-Tubulin), kinetochores 
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and centrosomes in green (CenpA-GFP and Centrin1-GFP), and chromosomes in blue 

(Hoechst 33342). Orientation of the spindle axis is denoted by a dashed white line. (A’-F’) 

Surface-rendered models of presenting positions of chromosome arms (blue), kinetochores 

(green), and centrosomes (yellow) in 3D space. Each model is oriented to present the view 

from one centrosome towards the other.
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Fig. 3. 
Effects of kinetochore architecture on the efficiency and fidelity of Search and Capture. 

(A) Reciprocity in the efficiency vs. fidelity of microtubule capture in the original S&C 

hypothesis. (Left cartoon) Larger kinetochores are likely to encounter microtubules faster; 

however, they are likely to be exposed to microtubules emanating from both spindle poles. 

This results in a mixture of proper (green arrows) and erroneous (orange arrows) interactions 

(syntelic and merotelic). (Right cartoon) Smaller kinetochores are protected from the 

exposure to ‘wrong’ spindle poles; however, microtubule search for small kinetochores is 

longer. (B–C) Architecture of attached kinetochores. (B) EM of metaphase kinetochores 

in human (RPE-1) and Indian muntjac cells. Arrows denote the trilaminar morphology of 

the plate comprising two electron-dense layers separated by a translucent middle layer. 

The length of the plate varies greatly. Notice end-on attached microtubules (highlighted 

yellow). (C) In fluorescence LM, mammalian kinetochores appear near diffraction-limited 
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spots, while IM kinetochores form thin lines. Layered distribution of proteins within the 

kinetochore is apparent with DNA-binding proteins (CenpA-GFP, green) residing in the 

inner layer and microtubule-binding proteins (Hec1, magenta) in the outer layers. (D-E) 

Architecture of unattached kinetochores. (D) EM reveals fibrous corona (arrows in magenta) 

adjacent to the outer layer in the absence of microtubule attachments. In human cells 

(RPE-1), the plate elongates and encircles a large part of the centromere. In contrast, 

the length and shape of the plate does not change significantly in Indian muntjac. (E) 

Fluorescence LM is consistent with the elongation and shape changes in human (RPE-1) 

but not in Indian muntjac kinetochores. (F) Effects of kinetochore architecture on rotational 

alignment of the centromere in early prometaphase. Larger kinetochores support a higher 

degree of rotation on the surface of nascent spindle as they maintain constant contact with 

microtubules (left). In contrast, rotation angles of smaller kinetochores are sterically limited 

(right). As a result of extensive rotation, larger sister kinetochores have higher probability of 

forming proper attachments (green arrows) while less-aligned smaller kinetochores remain 

exposed to microtubules from ‘wrong’ spindle poles (orange arrow).
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Fig. 4. 
Spindle assembly via facilitated Search and Capture. (A) Positioning of the duplicated 

centrosomes on the shorter axis prior to NEB facilitates rapid formation of nascent spindle 

and maximal exposure of kinetochores to microtubules at the onset of spindle assembly. 

(B) Lateral interactions between spindle microtubules and enlarged kinetochores orient 

centromeres roughly parallel to the spindle axis while nucleation of non-centrosomal 

microtubules near centromeres promotes capture of microtubule plus ends. (C) Capture 

of astral microtubules by enlarged kinetochores aligned on the spindle surface ensures 

rapid formation of direct connections between kinetochores and spindle poles (green 

arrows). Nascent K-fibers produced by the kinetochores are transported poleward by dynein-

mediated gliding astral microtubules (orange arrows). (D) Concerted action of multiple 

mechanisms results in rapid formation of amphitelic connections (black lines).
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