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Early treatment increases the 5-year survival rate of patients with endometrial

cancer (EC). Deep learning (DL) as a new computer-aided diagnosismethod has

been widely used in medical image processing which can reduce the

misdiagnosis by radiologists. An automatic staging method based on DL for

the early diagnosis of EC will benefit both radiologists and patients. To develop

an effective and automatic predictionmodel for early EC diagnosis onmagnetic

resonance imaging (MRI) images, we retrospectively enrolled 117 patients (73 of

stage IA, 44 of stage IB) with a pathological diagnosis of early EC confirmed by

postoperative biopsy at our institution from 1 January 2018, to 31 December

2020. Axial T2-weighted image (T2WI), axial diffusion-weighted image (DWI)

and sagittal T2WI images from 117 patients have been classified into stage IA and

stage IB according to the patient’s pathological diagnosis. Firstly, a semantic

segmentation model based on the U-net network is trained to segment the

uterine region and the tumor region on the MRI images. Then, the area ratio of

the tumor region to the uterine region (TUR) in the segmentation map is

calculated. Finally, the receiver operating characteristic curves (ROCs) are

plotted by the TUR and the results of the patient’s pathological diagnosis in

the test set to find the optimal staging thresholds for stage IA and stage IB. In the

test sets, the trained semantic segmentation model yields the average Dice

similarity coefficients of uterus and tumor on axial T2WI, axial DWI, and sagittal

T2WIwere 0.958 and 0.917, 0.956 and 0.941, 0.972 and 0.910 respectively. With

pathological diagnostic results as the gold standard, the classification model on

axial T2WI, axial DWI, and sagittal T2WI yielded an area under the curve (AUC) of

0.86, 0.85 and 0.94, respectively. In this study, an automatic DL-based

segmentation model combining the ROC analysis of TUR on MRI images

presents an effective early EC staging method.
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Introduction

Endometrial cancer (EC) is one of the most common

malignant diseases worldwide. Its incidence rate increases with

the gradual aging of the population and the increase in obesity

(Amant et al., 2005). Cancer of the uterine corpus is often

referred as EC because more than 90% of cases occur in the

endometrium (lining of the uterus) (American Cancer Society,

2021). For EC, the prognosis of patients in the early stage is

relatively optimistic. In contrast, the prognosis of EC is extremely

poor in the advanced stage due to the metastasis of cancer cells in

the body (Amant et al., 2005; Guo et al., 2020). According to the

2020 global cancer statistics (Sung et al., 2021), uterine corpus

cancer is the sixth most commonly diagnosed cancer in women,

with 417,000 new cases and 97,000 deaths in 2020. According to

the American cancer society’s 2021 annual and cancer statistics

2021 report (American Cancer Society, 2021; Siegel et al., 2021),

an estimated 66,570 cases of the uterine corpus cancer will be

diagnosed and 12,940 women will die from the disease in Unite

States. The EC incidence rate increases about 1% per year since

the mid-2000s.

According to the International Federation of Gynecology and

Obstetrics (FIGO) staging, Stage IA of EC is determined by the

tumor invading less than 50% of the myometrium while stage IB

of EC is presented as the tumor involving 50% or more of the

myometrium (Pecorelli, 2009). The 5-year survival rate for EC

stage IA patients after surgery is 90–96% and 78–87% for EC

stage IB patients (Haldorsen and Salvesen, 2016; Rezaee et al.,

2018; Boggess et al., 2020; Mirza, 2020). And the 5-years survival

rate was about 92.6%when themyometrial invasion was less than

50%, and only about 66.0% when the myometrial invasion was

greater than 50% (Pinar, 2017). Low-risk patients were

discouraged from adjuvant radiation therapy and required

only a simple hysterectomy, while high-risk patients usually

required adjuvant radiation therapy and were recommended

pelvic and para-aortic lymphadenectomy (Amant et al., 2018).

Therefore, an efficient and automatic prediction model for early

EC staging, before cancer cells invade and spread, not only can

improve diagnostic efficiency but also provides valuable

information for clinicians to recommend treatment to patients.

Magnetic resonance imaging (MRI) and contrast-enhanced

dynamic MRI are very accurate in the local staging of EC

(Manfredi et al., 2004). In 2009, the European Society of

Urogenital Radiology (ESUR) issued guidelines for the staging

of EC. The new guidelines regard MRI as the preferred imaging

modality for assessing the disease severity of newly diagnosed EC

patients (Kinkel et al., 2009). MRI is now widely accepted as the

first choice for the initial staging of EC (Nougaret et al., 2019).

However, there would be big differences in the evaluation results

of two different radiologists on the same MRI images (Haldorsen

and Salvesen, 2012). The main reason is that the pathological

evaluation obtained by MRI mostly depends on the experience of

the radiologist (Woo et al., 2017).

In recent years, deep learning (DL) as a new computer-aided

diagnosis method has been widely used in the field of image

recognition (LeCun et al., 2015; Shin et al., 2016; Chan H. et al.,

2020). This method can automatically capture the target area

after training on a large number of data sets (Litjens et al., 2017;

Chan H. P. et al., 2020). Therefore, DL is widely used in medical

image processing such as classification between tumor

epithelium and stroma (Du et al., 2018), providing new

prognostic biomarkers for cancer recurrence prediction (Wang

et al., 2016), computer-aided diagnosis (CAD) of prostate cancer

and lung cancer (Serj et al., 2018; Song et al., 2018), automatic

segmentation of the left ventricle in echocardiographic images

(Kim et al., 2021), and classification of benign and malignant

breast tumor and quality inspection in mammography images

(Borges Sampaio et al., 2011; Rouhi et al., 2015).

Some DL-based studies have been carried out to assess the EC.

Y. Kurata et al. established a U-net model for uterine segmentation

of images with uterine diseases (Kurata et al., 2019). The average

dice similarity coefficient (DSC) of the model for uterine

segmentation is 0.82, which proves that the U-net model has

good segmentation performance in uterus segmentation. Besides,

its segmentation performance is not affected by uterine diseases.

However, the model only segmented the uterus on the sagittal

T2WI images which means it has not been further applied to the

automatic segmentation of early EC. M. Bonatti et al. presented a

DL model to locate EC lesion area and evaluate MI depth (Chen

et al., 2020). However, the AUC of their model on the test set was

0.78 which indicates the classification performance of their model

is relatively unsatisfactory. The main reason is that only a box was

used to locate the suspected lesion and the surrounding normal

anatomical structure. E. Hodneland et al. used a three-dimensional

CNN to segment the tumor in preoperative pelvic MRI images of

EC patients (Hodneland et al., 2021). The median DSCs between

the segmentation results of their model and two raters are 0.84 and

0.77, respectively. Nevertheless, they didn’t segment the uterus and

evaluate the invasion depth. The results of the previous work were

relatively unsatisfactory in terms of segmentation performance and

did not further analyze the TUR in relation to early EC staging.

Therefore, the purpose of this study is twofold: first, to establish a

DL-based semantic segmentation model to automatically segment

tumor and uterus on MRI images. Second, to analyze the

performance and potential of using TUR as a reference for

early EC staging.

Materials and methods

The Institutional Review Board (IRB) of Fujian maternity

and child health hospital in China approved our retrospective

study, the requirement for informed consent was waived.

The flowchart of the automatic staging model based on DL is

shown in Figure 1. Firstly, both the tumor and the uterus in the

input MRI images have been labelled by the experienced
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radiologist and have been divided into the training set, test set

and validation set randomly. Secondly, The U-net segmentation

model has been trained by the input training set. Thirdly, the

segmentation of the tumor and the uterus in the test set can be

obtained by the trained segmentation model. At last, the stage IA

or IB of EC patients can be determined by the TUR.

Patient population

We retrospectively enrolled 117 patients (73 patients in stage

IA, 44 patients in stage IB) with a pathological diagnosis of early

EC confirmed by postoperative biopsy at our institution (Fujian

maternity and child health hospital) from 1 January 2018, to

31 December 2020. All 117 female patients underwent

preoperative pelvic MRI and were diagnosed with stage I EC

(mean age: 54.8 years, standard deviation (SD): 9.7 years) on

postoperative pathology. A summary of the clinical and

pathological data of these patients is shown in Table 1.

MRI protocol

All MRI examinations were performed on a 1.5 T MRI

scanner (Optima MR360, GE Healthcare) with the patients

lying supine on the table, with their arms along their bodies.

FIGURE 1
The flowchart of the automatic staging model based on DL. The original MRI image (A), where the red outline is the ground-truth of the tumor
and the green outline is the ground-truth of the uterus. A blend of the predicted segmentation map of the U-net and the original MRI image (B),
where the red area is the tumor and the blue area is the uterus.

TABLE 1 Clinical and pathological data summaries.

Patients
infomation (n = 117)

Parameter Stage IA Stage IB p Value

Subpopulation 73 44

Age (year) 51.4 ± 8.9 58.9 ± 9.3 0.998

Endometrioid type# 0.541

Grade 1 49 21

Grade 2 22 18

Grade 3 2 5

Maximum diameter (cm) 0.547

< 3 55 14

≥3 18 30

Myometrial invasion 0.748

< 50% 71 3

≥50% 2 41

Mixed carcinomaa 0.158

No 43 21

Yes 30 23

#Histological grading of endometrioid carcinoma. According to the solid range of tumors, the classification criteria are as follows: Grade 1: solid growth area ≥5%; Grade 2: the solid growth

area accounts for 6% 50%; Grade 3: solid growth area > 50%.
aIndicates the presence of other tumors, such as clear cell carcinoma, uterine fibroids, etc.
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Before the examination, the patient without muscle injection

used Glycerini Enema to defecate and suppress the urine. The

MRI protocols include: according to the endometrial cavity

longest axis, high-resolution T2WI images were acquired

along three orthogonal planes (para-axial, para-sagittal) and

DWI images were acquired on two planes only (para-axial).

All T2WI images are fast spin-echo shimming and the DWI

images with B-values of 0, 800 s/mm2. The detailed MRI

acquisition parameters are listed in Table 2.

Data preparation and processing

There are 117 patients with early EC in the data sets,

including 73 cases of stage IA and 44 cases of stage IB. An

experienced radiologist selected the slices that clearly visualizes

the uterus and tumor from each patient’s three different MRI

sequences. As a result, 455 MRI images (161 axial T2WI images,

161 axial DWI images, 133 sagittal T2WI images) are obtained.

According to the convention of deep learning model training, the

dataset is divided in the ratio of 6:1:3 (Andrew, 2018; Jayapandian

et al., 2021) The selected MRI images are randomly separated

into 70 cases (44 IA/26 IB) including 272 images as the training

set, 12 cases (7 IA/5 IB) including 46 images as the validation set,

and 35 cases (22 IA/13 IB) including 136 images as the test set.

The details of data sets are shown in Table 3. The uterus and

tumor on the aboveMRI images were manually segmented by the

experienced radiologist through the software LabelMe (Russell

et al., 2008). These segmented areas were used as the ground

truth for uterus and tumor segmentation. An original MRI image

and the corresponding segmented image are shown in Figure 2.

Training the DL networks

An automatic segmentation DL-based model has been

implemented by a U-net architecture to segment the uterus

and tumor on the MRI images in this work. U-net is a

semantic segmentation network based on fully convolutional

networks (FCN), which is suitable for medical image

segmentation. The network architecture is shown in Figure 3

and it has both a contraction path to capture context information

and an asymmetric expansion path to allow accurate positioning,

which makes the network propagate context information to a

higher resolution (Ronneberger et al., 2015). The Adam

algorithm with an initial learning rate of 0.0003 was used to

minimize the cross-entropy loss. The model was implemented by

TensorFlow (version 2.5.0) with 300 epochs and employed an

early-stop strategy to avoid model overfitting. The experiments

were conducted on a workstation equipped with a high-

performance graphics processing unit (NVIDIA RTX 2080TI,

Gigabyte Ltd.). It took about 3 hours to train the semantic

segmentation model.

Quantitative evaluation of the uterus and
tumor segmentation

The DSC is used to measure the overlap of two samples. In

this study, DSC was been used to quantitatively evaluate the

segmentation overlap of the uterus and the tumor in the test set.

DSC is calculated as follows:

DSC � 2|X ∩ Y|
|X| + |Y| (1)

Where X is the real artificial segmentation map and Y is the

predicted segmentation map. The range of DSC values is from

0 to 1. DSC is 0 when the two images are completely non-

TABLE 2 Details of parameters for 1.5 Optima MR360 imaging protocols.

Parmameter Axial T2WI Axial DWI(b = 0,
800 s/mm2)

Sagittal T2WI

Repetition/echo time (msec) 4,000/45 5,000/74 4,200/76

Sequence SE EP, SE SE

Bandwidth (Hz) 162.773 1953.12 122.07

Thickness (mm) 5 5 5

Voxel size (mm) 0.625 × 0.625 × 5 1.25 × 1.25 × 5 0.547 × 0.547 × 5

Rows&Colunms 512 × 512 256 × 256 512 × 512

Flip angle (degrees) 160 90 160

TABLE 3 Details of the data set division.

Type Training set Validation set Test set

Axial T2WI (IA/IB) 99 (61/38) 12 (6/6) 50 (34/16)

Axial DWI (IA/IB) 94 (55/39) 18 (10/8) 49 (33/16)

Sagittal T2WI (IA/IB) 79 (53/26) 16 (9/7) 38 (23/15)

Total (IA/IB) 272 (169/103) 46 (25/21) 137 (90/47)
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overlapping and one when the two images are completely

overlapping.

Calculation of TUR

An area-based approach is used to perform TUR calculations

on the segmented images predicted by the DL model in the test

set. The number of pixels is used to calculate the area. As shown

in Figure 1, the tumor and the uterus areas are obtained to

calculate the TUR (i.e., calculate the ratio of the number of pixels

in the red area to the number of pixels in both the blue area and

the red area). For MRI slices with different scanning parameters,

the TUR is all calculated in the same way.

Validation and statistics

The test set with 35 randomly selected patients (22 IA/

13 IB) including 137 images (50 Axial T2WI, 49 Axial DWI,

FIGURE 2
(A) The original MRI image. (B) The original MRI image with ground-truth contours of the uterus and tumor, where the red outline is the ground-
truth of the tumor and the green outline is the ground-truth of the uterus. (C) The label image that LabelMe transforms from the ground-truth
contours in (B) which is used for DL model training.

FIGURE 3
U-net architecture. In the contracting path, every step consists of downsampling with stride two of the feature map and doubles the number of
feature channels. Repeated application of two 3 × 3 convolutions (unpadded convolutions), each followed by a rectified linear unit (ReLU) and a 2 × 2
max pooling operation. In the expansive path, every step consists of an upsampling of the featuremap followed by a 2 × 2 up convolution that halves
the number of feature channels, a concatenation with the correspondingly cropped feature map from the contracting path, and two 3 × 3
convolutions, each followed by a ReLU.
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38 Sagittal T2WI) are used to validate the performance of the

semantic segmentation model. For the TURs obtained on the

predicted segmentation maps on the three different MRI

sequence slices, the ROCs were plotted and the AUCs were

calculated. For a patient in the test set, the corresponding

slices from three different MRI sequences are chosen for

predictive segmentation, and then calculate the TURs of

the segmentation maps, the final classification results will

be determined by the threshold values obtained from the

corresponding ROCs. Statistical analyses were performed

on SPSS (version 26.0., SPSS Inc.) and p-values were

obtained by t-test. The test datasets and code

implementation presented in this study can be found in

online repositories (https://github.com/mw1998/

Segmentation-Area-Ratio).

Results

Performance of the automatic uterus and
tumor segmentation model

The segmentation results of a patient with EC stage IA

(left) and a patient with stage IB (right) on axial T2WI image,

axial DWI and sagittal T2WI image are shown in Figure 5.

Both the uterus and tumor were well segmented. The average

DSC values of uterus and tumor in 137 MRI images in the test

set are 0.959 and 0.911, respectively. A box plot of the DSC

values is shown in Figure 4). The DSCs of three different MRI

images are all over 0.9. As shown in Figure 4, the DSCs of

sagittal T2WI images and axial DWI images have better

performance in the three MRI sequences, and the DSC of

the uterus is obviously higher than that of the tumor. The

DSC variances of uterus and tumor in three MRI sequences

images are less than 0.15, indicating that the data has little

fluctuation and the segmentation model is stable. The DSCs

of the segmented uterus and tumor on MRI images are shown

in Table 4. The segmented tumor and the segmented uterus

are all significantly different (p < 0.001) from each other in

the three MRI sequences images.

FIGURE 4
DSCs of the segmented uterus and tumor.

TABLE 4 DSCs of the segmented uterus and tumor.

DSC Info mean ± SD median p value

All Uterus 0.959 ± 0.089 0.974 < 0.001

All Tumor 0.911 ± 0.123 0.947

Axial T2WI Uterus 0.964 ± 0.050 0.978 < 0.001

Axial T2WI Tumor 0.918 ± 0.128 0.951

Axial DWI Uterus 0.952 ± 0.139 0.975 < 0.001

Axial DWI Tumor 0.915 ± 0.143 0.953

Sagittal T2WI Uterus 0.961 ± 0.023 0.968 < 0.001

Sagittal T2WI Tumor 0.897 ± 0.082 0.923
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TUR findings

The TURs of a patient with stage IA and a patient with stage

IB on axial T2WI, axial DWI and sagittal T2WI images are

shown in Figure 5. Compare to stage IB patient, stage IA patient

has small TURs on all three MRI sequence slices. Moreover,

small TUR differences in the same stage patients indicate that

early EC classification by using TUR is effective. The mean

TURs of all stage IA patients and all stage IB patients on three

different MRI sequence slices in the test set are shown in

Table 5. For axial T2WI images, the mean TUR is 0.165 for

stage IA and 0.307 for stage IB. For axial DWI images, the mean

TUR is 0.190 for stage IA and 0.335 for stage IB. For sagittal

T2WI images, the mean TUR is 0.103 for stage IA and 0.334 for

stage IB. All three MRI sequence slices have a statistically

significant difference in the stage IA group to the stage IB

group. ROCs on three different MRI sequence slices are shown

in Figure 6. For axial T2WI images, the threshold of 0.207 can

distinguish stage IA from stage IB with 84.6% sensitivity, 86.4%

specificity, and AUC of 0.86. For axial DWI images, the

threshold of 0.331 can distinguish stage IA from stage IB

with 69.2% sensitivity, 95.5% specificity and AUC of 0.85.

For sagittal T2WI images, the threshold of 0.198 can

distinguish stage IA from stage IB with 92.3% sensitivity,

90.9% specificity and AUC of 0.94.

Comparisons between three different MRI
sequence slices

The radiologist decides by viewing more than one MRI

sequence slice of an EC patient. Table 6 demonstrates the

classification performance of TUR on a single MRI sequence

slice and combined different MRI sequence slices for a patient

with early EC. The first three rows indicate the classification

performance only by oneMRI sequence slice. The sagittal T2WI

image has the best TUR classification performance, reaching an

accuracy of 0.914, a sensitivity of 0.923 and a specificity of

0.909. The middle three rows indicate the classification

performance by two MRI sequence slices. The best accuracy

is 0.886 by the axial DWI and sagittal T2WI images, while the

sensitivity is 1.000 by the axial T2WI and sagittal T2WI images.

The last three rows indicate the performance of TUR when

FIGURE 5
The segmentation results of a patient with EC stage IA (left) and a patient with stage IB (right) on axial T2WI image, axial DWI and sagittal T2WI
image. The red outline is the ground-truth of the tumor and the green outline is the ground-truth of the uterus. The red area is the tumor and the blue
area is the uterus.

TABLE 5 Mean TURs of all patients on three different MRI sequence
slices.

MRI sequence (mean ±
SD)

IA IB p value

Axial T2WI 0.165 ± 0.083 0.307 ± 0.112 < 0.001

Axial DWI 0.190 ± 0.077 0.335 ± 0.117 < 0.001

Sagittal T2WI 0.103 ± 0.077 0.334 ± 0.125 < 0.001
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using a fuzzy logic approach by at least one MRI sequence, at

least two MRI sequences and three MRI sequences. The optimal

specificity of 1.000 is obtained by at least one MRI sequence,

while an optimal sensitivity of 1.000 is obtained by all three MRI

sequences.

Discussion

In this study, by using a DL-based semantic segmentation

model to segment tumor and uterus on three types of MRI

images, and then calculate the TUR to classify the stage IA and

stage IB for early EC. Employing the patient’s pathological

diagnostic results as the gold standard, using TUR for early

EC staging has a different performance for different MRI

sequence slices. The proposed method has the best

performance in classifying early EC on only sagittal T2WI

images, yielding an accuracy of 0.914, a sensitivity of 0.923,

and a specificity of 0.909. And the classification performance has

a higher sensitivity or specificity by multiple MRI sequences. Its

main clinical values are: 1. Accurate segmentation of uterus and

tumor can help the clinician to better observe the invasion trend

of tumor; 2. Using TUR to analyze the tumor invasion of patients

can help clinicians to develop more appropriate treatment

strategies for patients. For example, while the TUR is small,

the clinician may recommend a hysterectomy for the patient.

While the TUR is large, the clinician may recommend pelvic and

para-aortic lymphadenectomy for the patient. 3. The model is

FIGURE 6
ROCs on three different MRI sequence slices. SEN:Sensitivity, SPE:Specificity, CRI:Criterion.

TABLE 6 The performance of TUR in single MRI sequence andMultiple
MRI sequences.

References MRI Criterion ACC SEN SPE

Axial T2WI 0.207 0.857 0.846 0.864

Axial DWI 0.331 0.857 0.692 0.955

Sagittal T2WI 0.198 0.914 0.923 0.909

Axial T2WI + Axial DWI — 0.857 0.846 0.864

Axial T2WI + Sagittal T2WI — 0.857 1.000 0.773

Axial DWI + Sagittal T2WI — 0.886 0.923 0.864

Least one MRI sequence — 0.886 0.692 1.000

Least two MRI sequences — 0.886 0.769 0.955

All — 0.857 1.000 0.773
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automatic and efficient, which can reduce the clinician’s

workload.

As shown in Figure 7, three traditional machine learning

segmentation algorithms are compared with the CNN-based

U-net segmentation algorithm on two MRI images of the test

set. OTSU is a threshold-based image segmentation algorithm,

and the segmentation results of the OTSU algorithm are shown

in Figures 7B,G. MRI images are grayscale maps, and because the

grayscale values of the uterus and tumor are not significantly

different from the grayscale values of other pelvic tissue, the

OTSU algorithm was unable to find a threshold for

distinguishing both the uterus and tumor from pelvic MRI

images. The region growing algorithm is a region-based image

segmentation algorithm. The segmentation results of the region

growth algorithm are shown in Figures 7C,H. The region growth

algorithm requires the initial seed and growth criterion to be set

manually according to the image conditions. However, the

location and size of the uterus and tumor in each MRI image

are different, the region growth algorithm is difficult to be applied

to the uterus and tumor segmentation. Figures 7D,I show the

preliminary results of the segmentation algorithm based on edge

detection. Due to the complex and dense distribution of tissues

and organs in the pelvis, there are more edge features in the MRI

images. Therefore, the segmentation algorithm based on edge

detection is difficult to segment the uterus and tumor from MRI

images. Figures 7E,J show the segmentation results of CNN-

based U-net on MRI images. It can be seen that U-net segmented

the uterus and tumor well on the MRI images and were very close

to the region in the ground-truth contour. Compared with

traditional machine learning methods, the CNN-based method

can automatically and accurately segment both uterus and tumor

regions from pelvic MRI images.

(Bonatti et al., 2018) found that the tumor/uterus volume

ratio greater than 0.13 was significantly associated with high-

grade EC, and the cut-off value of 0.13 enabled to distinguish

low-grade EC from high-grade EC with 50% sensibility and 89%

specificity. However, volume calculation is time-consuming and

has poor utility in daily clinical practice. Besides, there is an error

when they use ellipsoidal formulas rather than segmentation to

estimate tumor volume. (Hodneland et al., 2021). proposed the

use of 3D convolution neural networks for the segmentation of

tumors in EC patients onMRI images. Themethod achieved high

segmentation accuracy and accurate volume calculation which

are close to the results of radiologists’ manual segmentation.

However, accurate manual tumor labelling of 3D image data is

highly labor-intensive, and they did not investigate the

relationship between the volume ratio of tumor to the uterus

and the grade of EC. (Chen et al., 2020). proposed a DL-based

two-stage CAD method for assessing the depth of myofilament

infiltration of EC on MRI images. The classification method

yielded a sensitivity of 0.67, specificity of 0.88, and accuracy of

0.85. However, only T2WI data were used for training the DL

network so it could not provide interpretable references to

scientists due to the black-box nature of DL. This study

differs from previous studies as follows: 1. avoids the use of

labor-intensive 3D datasets. 2. analyzes the classification

FIGURE 7
(A) and (F) MRI images of the test set, where the red outline is the ground-truth of the tumor and the green outline is the ground-truth of the
uterus. (B) and (G) Segmentation results of the OTSU algorithm. (C) and (H) Segmentation results of the region growth algorithm. (D) and (I)
Segmentation results based on edge detection. (E) and (J) Segmentation results of the U-net, where the blue area is the uterus region and the red
area is the tumor region.
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performance of TUR on different MRI sequences for early EC. 3.

Compared to using the DL model exclusively, combining the DL

model with the TUR analysis method provides a more

interpretable reference for the staging of early EC.

The mean DSCs of the uterus is higher than that of the tumor

which is shown in Figure 4. It indicates that the model has a better

segmentation effect on the uterus compared to tumors. The main

reasons are as follows: The shape of the uterus in the human body

is relatively geometrically fixed so that the model can learn the

characteristic parameters of the uterus region better. The shape of

the tumors in various patterns makes it harder to learn. There are

also some interference factors inside or outside the uterus, such as

pelvic effusion, hematocele, uterine fibroids, cervical cancer, and so

on, which makes the model more complicated in the selection of

tumor characteristics parameters. An fault segmentation example

is shown (Figure 8). Figure 8A is the original axial T2WI image

with a pelvic effusion (pointed by the arrow). The pelvic effusion is

false segmented as a tumor by the DL model as shown Figure 8C.

The reason could be the brightness similarity of the pelvic effusion

and the tumor. Figure 8D is the adjacent image which doesn’t have

the bright pelvic effusion like Figure 8A. The tumor is segmented

correctly as a tumor as shown Figure 8F. Such kinds of faults will be

discussed in future work.

The automatic staging method also has some limitations.

Firstly, the number of patient cases used in the study is small and

no data of healthy individuals are included. We will improve the

model by collecting more patient cases including MRI images of

healthy individuals. Secondly, although we have preliminary

proved the feasibility of distinguishing stage IA from stage IB

by using the method of TUR, the accuracy could also be

improved by other methods. Further research will focus on

developing a computer-aided diagnosis method that can

imitate radiologists’ behavior on early EC staging. Last but not

the least, picking the optimal slice from a MRI sequence to be

segmented is time-consuming. An automatic picking method

would be studied in the future to make the model more practical.

In summary, the results show that the DL-based semantic

segmentation model for tumor and uterus segmentation on MRI

images and then performing TUR analysis for early EC staging is

effective. This method is an automatic and time-saving solution

and has the potential to be used for early EC in clinical use.
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FIGURE 8
(A), (D) The two axial T2WI images from the continuous sequences of a patient. (B), (E) The tumor (red) and uterus (green) images labelled by
experienced radiologists. (C), (F) The predictive tumor (red) and uterus (blue) images by the DL model.
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