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1  |  INTRODUC TION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
emerged in 2019 and is the causative agent of the coronavirus dis-
ease 2019 (COVID-19) pandemic. Although this pathogen mainly 
causes respiratory-related disease, it is also associated with symp-
toms involving the central nervous system (CNS) in some cases, 
including anosmia, headache, nausea, vomiting, and memory im-
pairment. Severe manifestations include delirium and agitation, and 
delirium can involve seizures caused by specific underlying enceph-
alitis.1,2 Hyperinflammation was also detected in the brains of hu-
mans infected with SARS-CoV-2.1 In 2020, Taquet et al. showed that 
33.62% of 236,379 (79,471) patients with COVID-19 had developed 

neuropathies and mental disorders within six months after initial 
diagnosis.3 According to a 2021 cohort study, 82% of 3743 (3069) 
patients hospitalized with COVID-19 reported neurological symp-
toms.4 These large numbers of nervous system injuries suggest that 
SARS-COV-2 can invade and damage the CNS. In addition, reports 
of mental health disorders were increased in the general population, 
and neurological and psychiatric symptoms were exacerbated in 
patients with chronic diseases, including in those with Alzheimer's 
disease and Parkinson's disease. However, although both the fre-
quency and severity of most mental disorders worsened during the 
COVID-19 pandemic, these manifestations in some other neuropsy-
chiatric diseases (such as Wilson's disease) did not.5 This review de-
scribes the potential pathways by which SARS-COV-2 invades the 
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more than merely 
a respiratory disease, as it also presents with various neurological symptoms. 
SARS-CoV-2 may infect the central nervous system (CNS) and thus is neurotropic. 
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CoV-2 enters the CNS through the hematogenous and neuronal routes, as well as 
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In this review, we discussed the pathway and mechanisms of SARS-CoV-2 invasion 
in the CNS, and associated clinical manifestations, such as anosmia, headache, and 
hyposmia. Moreover, the mechanism of neurological damage caused by SARS-CoV-2 
may provide potential treatment methods for patients presenting with SARS-CoV-2-
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CNS and the pathophysiology of this invasion. Previous studies pro-
posed various infection models for SARS-CoV-2 such as olfactory 
transmucosal and blood–brain barrier (BBB) penetration.6 However, 
these models have not been systematically organized and presented. 
Here, we summarized the different routes of SARS-CoV-2 neuroin-
vasion. Moreover, few systematic reviews have described the patho-
physiology of SARS-CoV-2. To construct an integrated dependency 
chain for COVID-19 neuropathy, we reviewed the mechanisms of 
viral neuroinfection, immune response of the host, and fate of in-
fected neurons.

2  |  METHODS

To review the mechanisms of SARS-CoV-2 neuroinfection, we per-
formed a comprehensive literature search of PubMed using the 
following search terms: “severe acute respiratory syndrome coro-
navirus 2,” “coronavirus disease 2019,” “SARS-CoV-2,” “COVID-19,” 
“neuropathy,” and “neurological.” All studies published after 2020 
were included. A total of 193 papers was identified, some of which 
were excluded after reading the abstract. Included were only original 
articles which explored the mechanisms of SARS-CoV-2-associated 
central and peripheral nervous system impairment and the clinical 
presentation of nerve impair caused by COVID-19. Excluded the re-
view, case report, and the articles unrelated to the mechanism of 
nerve injury. Ultimately, 23 papers were mainly included in our re-
view to conclude the pathway of SARS-CoV-2 invasion in the CNS, 
26 papers were included in the review to clarify the host immune 
and inflammatory responses in the CNS after SARA-CoV-2 infection, 
and 10 papers were included to summarize the nerve cell impairment 
induced by SARA-CoV-2.

3  |  RESULTS

In this article, we have reviewed the pathway of SARS-CoV-2 inva-
sion in the CNS, including peripheral nerve pathway and cross-BBB 
pathway, and we also summarized the related mechanisms, clinical 
presentation, and treatment strategies of SARS-CoV-2-associated 
central and peripheral nervous system impairment (Table 1). In ad-
dition, we reviewed the host immune and inflammatory responses 
in the CNS and nerve cell impairment post-SARA-CoV-2 infection, 
which provide potential therapeutic strategies for future clinical 
management.

3.1  |  Pathway of SARS-CoV-2 invasion in the CNS

SARS-CoV-2 belongs to lineage B of the β-coronavirus genus in 
the family Coronaviridae and contains positive-sense, single-
strand RNA.7 Products translated from the SARS-CoV-2 genome 
include nonstructural proteins (NSP), structural proteins (SP), and 
accessory proteins (AP). The SPs include spike (S), envelope (E), 

membrane (M), and nucleocapsid (N) proteins that regulate viral 
assembly, stability, and invasiveness.8 The S protein consists of a 
signal peptide and receptor-binding domain that enable the virus 
to recognize host cells. Angiotensin-converting enzyme 2 (ACE2) 
and transmembrane serine protease 2 (TMPRSS2) are crucial for 
SARS-CoV-2 infection. ACE2 is an integral membrane protein com-
prised of 805 amino acids and has a bilobate N-terminal peptidase 
domain; the tip of each lobe interacts with the receptor-binding 
domain of S protein, facilitating SARS-CoV-2 entry into the host 
cell.7,9,10 TMPRSS2 is expressed mainly on the membrane surfaces 
of bronchial epithelial cells and cleaves peptide bonds to promote 
fusion of the viruses with host cell membranes.11,12 Emerging 
neurological symptoms in response to SARS-CoV-2 infection 
have raised questions regarding whether SARS-CoV-2 infects the 
CNS and how it reaches the brain. Similar to other coronaviruses, 
SARS-CoV-2 is neuroinvasive, neurotropic, and neurovirulent in 
animals and humans.13 For example, two types of CoV have been 
confirmed as invasive and persistent in the CNS; in an autopsy 
study, human CoV RNA was detected in the CNS of 48% of in-
fected patients.14 In addition, supporting evidence from animal 
studies have shown that SARS-CoV enters the brain during intra-
nasal infection in mice expressing human ACE2.12 Compared with 
other human CoVs, SARS-CoV-2 has a higher binding affinity for 
the ACE2 receptor through the special receptor-binding domain 
of the S protein.15 ACE2 receptors are found in nearly all human 
organs and the CNS. Both SARS-CoV and SARS-CoV-2 use these 
receptors to penetrate tissues, trigger immune responses, invade 
the CNS, and promote neuroinfection.16 SARS-CoV-2 enters the 
CNS mainly via the peripheral nerve and cross-BBB pathways.

3.1.1  |  Peripheral nerve pathway of SARS-CoV-2 
CNS invasion

The peripheral nerves connect central nerves via interactions be-
tween neurotransmitters and receptors at the postsynaptic mem-
branes. Certain viruses such as CoVs reversibly invade the CNS 
through nerve endings via neuronal active transport.17,18 The ol-
factory nerve is one of the most common CNS access points for 
CoVs18–20 (Figure 1A). Neuronal and other cells combine to form an 
epithelial layer composed of apical sustentacular cells, Bowman's 
glands, microvillous and neural stem cells, and olfactory sensory 
neurons.19,21 Both the ACE2 and TMPRSS2 receptors are expressed 
in olfactory sustentacular cells and provide a convenient invasion 
port and replication hub for the virus. Olfactory sensory neurons 
are bipolar cells that express mature olfactory membrane protein 
and immature class III β-tubulin (TuJ1). In autopsied CoV-infected 
patients, viral particles were identified in sensory neurons that were 
positive for olfactory membrane protein and TuJ1. Furthermore, in 
patients with COVID-19, S protein immunoreactivity was detected 
in TuJ1-positive and olfactory membrane protein-positive cells, 
thereby indicating that the virus is present in olfactory neurons.19,21 
Moreover, infected TuJ1+ sensory neurons can be engulfed by 
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ionized calcium-binding adapter molecule 1+ macrophages, which 
may promote viral metastasis. In addition, clinical symptoms related 
to smell and taste disturbances suggest that SARS-CoV-2 uses the 
olfactory nerve as a port into the CNS. However, the details of the 
infection mechanism are unclear.

After penetrating the olfactory mucosa, SARS-CoV-2 may exploit 
retrograde pathways to disseminate from the olfactory nerves to 
different regions within the brain, causing symptoms such as head-
ache, consciousness disorder, and seizures. A study demonstrated 
that human CoV OC43 uses axon transport to spread between 

F I G U R E  1  Pathways of SARS-CoV-2 Invasion of the CNS. (A) Two main travel pathes after SARS-CoV-2 entering the nasal cavity. (1) 
SARS-CoV-2 infects the nasal cavity mucosa and moves upstream to approach brain tissues. (2) The virus travels into the oropharynx with 
the airway, and then into the trachea. (B) Peripheral nerve pathway of SARS-CoV-2 CNS Invasion. Nasal mucosa is composed of apical 
sustentacular cells, Bowman's glands, microvillous, and olfactory sensory neurons (OSNs). The axons of OSNs ascend and traverse the 
cribriform plate to reach the olfactory bulb. (1) SARS-CoV-2 can damage the sustentacular cells, and indirectly harm olfactory sensory 
neurons by the ensuing inflammation. SARS-CoV-2 can directly infect OSNs as well. (2) With fast axonal transport and trans-neuron strategy, 
the virus may move upstream to the olfactory bulb and further brain tissues. (C) Cross-BBB Pathway of SARS-CoV-2 Penetration into the 
CNS. Given the abundant blood flow beneath the nasal mucosa and pulmonary alveolus, the virus can invade the brain by hematogenous 
route. Blood brain barrier (BBB) is a highly specialized structure which separates the parenchyma and the plasma. Endothelial cells with 
tight junctions, and astrocytes, pericytes, microglia, and other cell types collectively form the structure. SARS-CoV-2 can infect endothelial 
cells, pericytes, and astrocytes to enter the CNS. SARS-CoV-2 can overactivate glia cells, causing the disruption of tight junctions and an 
increase in BBB permeability. In addition, infection by SARS-CoV-2 damages the choroid plexus epithelium, causes it to leak, facilitates viral 
penetration into the cerebrospinal fluid (CSF), and damages the brain tissue
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neurons.22 SARS-CoV-2 may invade and diffuse in neurons via the 
same propagation strategy, including endocytosis and exocytosis, to 
spread within the synaptic cleft and undergo fast axonal transport 
to move along microtubules toward the neuron cell body.17 Recent 
studies have proposed certain retrograde pathways of SARS-CoV-2 
from the cribriform plate to the brain via the olfactory bulb or vagus 
or trigeminal nerves.19,21,23 After penetrating the olfactory mucosa, 
the virus induces apoptosis, which may facilitate penetration of 
other viruses into nerves and the brain. Nevertheless, definitive evi-
dence is needed to support these hypotheses. To confirm this retro-
grade route, the presence of the virus in specific specimens, such as 
the pyriform lobe and frontal lobe, should be evaluated (Figure 1B).

Hyposmia has been reported in patients since the onset of the 
COVID-19 pandemic.1,24,25 As the epidemic spread worldwide, anos-
mia, a severe form of the disease, was gradually regarded as an iso-
lated (most patient have no nasal obstruction or rhinitis) and major 
manifestation with a nearly 60% prevalence.17,26 The disease course 
depends on the site of damage. Studies of animal models showed 
that cilia (dendrite extensions responsible for olfactory perception) 
in the olfactory neuroepithelium infected with SARS-CoV-2 either 
decrease significantly or temporarily retract and reduce their pro-
tein expression, resulting in a temporary loss of smell.21,27 The in-
fected area may be disorganized, and experimental results indicated 
that these ciliary alterations were reversible, with the olfactory 
mucosa becoming ciliated again to recover the perception of smell. 
These studies suggested the neuro-pathology leading to hyposmia. 
However, histological analysis of cilia loss has not been widely per-
formed in human samples; therefore, this pathology requires verifi-
cation. In addition, a large number of dead olfactory sensory neurons 
was detected both in animal models and human samples.21 Nerve 
cell death is typically irreparable, and thus, the noticeable cell death 
of olfactory sensory neurons may be the main cause of anosmia oc-
curring through direct infection or indirect induction. Expression of 
cleaved-caspase-3 was widely detected in infected cells, suggesting 
that SARS-CoV-2 can induce cellular apoptosis, whereas positive ex-
pression was observed in non-neuronal and even uninfected cells.21 
It has been proposed that sustentacular cells are the primary targets 
of the virus, whereas nerve cells can be indirectly harmed by the 
ensuing inflammation.27 Thus, this dysfunction may be the synthetic 
effect of both direct infection and inflammation damage. A combina-
tion of the long-term viral or particle presence plus continual inflam-
mation may be responsible for permanent anosmia.21

Overall, anosmia is the main clinical symptom during the periph-
eral nerve pathway of SARS-CoV-2 CNS invasion. The evidence-
based treatment for post viral olfactory dysfunction is olfactory 
training, involving aromatic oils and using dedicated web application 
to quantify the benefit of olfactory training and visual stimulation, 
which suggested that a significant improvement in olfaction by olfac-
tory training and visual stimulation assisted by a dedicated web ap-
plication, especially after 28 days of olfactory training.28 In addition, 
numerous studies suggested that neuroinflammatory contribute to 
olfactory disorders after SARS-CoV-2 infection, therefore, targeting 
neuroinflammation is a potential strategy for improving olfactory 

dysfunction post-COVID-19 infection. Di Stadio et al. demonstrated 
that the anti-inflammatory/neuroprotective agents, such as palmi-
toylethanolamide and luteolin, combined with olfactory training re-
sulted in greater recovery of smell than olfactory training alone.29

3.1.2  |  Cross-BBB pathway of SARS-CoV-2 
penetration into the CNS

Autopsy studies of patients with acute COVID-19 show that mac-
rophages, CD8+ T lymphocytes infiltrated in perivascular regions, 
and widespread microglial activation throughout the brain,30 sug-
gesting SARS-CoV-2 can injure the brain by some ways. Given the 
abundant blood flow beneath the nasal mucosa and pulmonary alve-
olus, the virus can invade the brain by hematogenous route. Hence, 
the cerebrovasculature is a potential pathway for SARS-CoV-2 brain 
invasion. To approach the brain tissue, SARS-CoV-2 must cross the 
BBB separating the parenchyma and plasma (Figure 1C). The BBB is 
a highly specialized structure consisting chiefly of capillary endothe-
lial cells. Adjacent endothelial cells are closely connected by tight 
junctions that block harmful substances from entering the brain. 
Astrocytes, pericytes, microglia, and other cell types along with 
brain endothelial cells collectively form the neurovascular unit. The 
end feet of astrocytes form a substantial part of the BBB and exten-
sively cover intracranial blood vessels.31 CoV HEV67 uses a clathrin-
dependent endocytic/extracellular pathway for neuronal transfer.32 
Mondolfi et al. detected SARS-CoV-2 virus-like particles in brain 
capillary endothelial cells, pericytes, and astrocytes, suggesting that 
SARS-CoV-2 infects astrocytes and enters the CNS via endocytosis. 
Wenzel et al. suggested that SARS-CoV-2 produces main protease 
(Mpro) that can ablate the NEMO protein, whose role is to regulate 
the apoptosis of cerebrovascular endothelial cells in humans. Loss of 
small-diameter vessels and patchy hypoxias were also observed in 
the brains of mice after ablation of NEMO.33 Wang et al. proposed 
that pericyte-like cells containing cortical organoids are SARS-CoV-2 
infection points. In humans, pericyte-like cells trigger astrocyte 
maturation and the production of basement membrane components 
that can be transformed into a viral replication hub. SARS-CoV-2 
may actively infect pericyte-like cells, induce astrocyte death, and 
mediate an inflammatory type I interferon transcription response.6 
In addition, in infected K18-hACE2 transgenic mice, SARS-CoV-2 
RNA was detected in the vascular wall, perivascular space, and brain 
microvascular endothelial cells. Moreover, the permeability of the 
infected vessel was increased, and the BBB was disintegrated in in-
fected hamsters.34

ACE2 is relatively abundant in certain neurovascular compo-
nents in brain pericytes and is expressed in mature choroid plexus 
cells.35 Viral tropism of choroid plexus epithelial cells was observed 
for a spike pseudovirus of novel CoV and during live virus attack.36 
Thus, infection by novel CoVs damages the choroid plexus epithe-
lium, causes it to leak, facilitates viral penetration into the cerebro-
spinal fluid, and damages the brain tissue. Reynolds et al. reported 
that primary human brain microvascular endothelial cells express 
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ACE2 receptors, and that the expression of these receptors was 
increased by exposure to S protein from SARS-CoV-2. These data 
indicate that SARS-CoV-2 proteins can induce endothelial inflamma-
tion and alter the integrity of the BBB through the ACE2 receptor on 
primary human brain microvascular endothelial cells, thereby pro-
moting nerve invasion by SARS-CoV-2. In addition, SARS-CoV-2 may 
cross the BBB through an S protein-ACE2 interaction or non-specific 
endocytosis, which may drive neuroinflammatory responses related 
to neuropathology.37

Hyperinflammation may facilitate the movement of SARS-CoV-2 
across the BBB. COVID-19 can provoke severe peripheral inflam-
mation, thereby liberating copious proinflammatory cytokines that 
disrupt the BBB and increase its permeability.38,39 In this manner, 
SARS-CoV-2 and cytokines gain access to the brain. After SARS-
CoV-2 enters the CNS, glial cells are activated by upregulation of 
proinflammatory cytokines and endothelial cell tight junctions are 
disintegrated, thereby disrupting the BBB and inducing neuroin-
flammation and neurological symptoms.39 Studies have shown that 
infiltration of inflammatory cells around blood vessels in the brains 
of infected animals and activation of glial cells may also induce 
the recruitment of peripherally infected white blood cells by pro-
inflammatory cytokines around endothelial cells to spread between 
them, similar to a “Trojan horse”.40 ATP may also participate in BBB 
disintegration. ATP activates P2X7 receptors expressed on endothe-
lial cells and on certain glial cells that discharge numerous proinflam-
matory cytokines. Activated P2X7 receptors then mediate NLRP3 
inflammasome activation and promote IL-1β production, which dis-
rupts the BBB.41

In addition, deciduous SARS-CoV-2 particles also affect the CNS. 
The spike 1 protein (S1) of SARS-CoV-2 may be shed from the virus 
and cause cytotoxicity. Intravenously injected radioiodinated S1 
easily traversed the BBB of male mice, was absorbed in the brain, 
and entered the parenchymal brain space. Radioiodinated S1 crosses 
the BBB via adsorptive transcytosis.42,43

Generally, headache, hyposmia, and hypogeusia are the most 
common CNS symptoms of COVID-19, and most of these symp-
toms are acute or mild, followed by stroke and seizures.17 Patients 
with more severe disease may experience coma, encephalitis, and 
other conditions. As described above, some diseases, particularly 
those with long courses, may show persistence of the virus and in-
flammation.44 Viral products can be factors or cofactors affecting 
irreversible cell or tissue deformation.45 For instance, MPro from 
SARS-CoV-2 can cleave NEMO to affect the neurovascular unit, 
triggering disruption of the BBB and causing small-vessel diseases.33 
Immunofluorescence staining confirmed an increase in string ves-
sels (an MPro-mediated vascular morphology with an empty endo-
thelial basement) in the frontal cortex of patients with COVID-19.33 
Cleaved NEMOs induce apoptosis and necroptosis of endothelio-
cytes via receptor interacting protein kinase (RIPK) signaling.46 This 
pathological alteration can activate astrocytes and increase BBB 
permeability.33 Subsequently, patients with COVID-19 may develop 
epileptic seizures.33,47 In addition, SARS-CoV-2 protein ORF3a can 
induce inflammation and cell death.48,49 These factors indicate that 

viral persistence and the inflammatory response are inextricably 
linked to the occurrence and course of the disease. To better un-
derstand the virus and develop treatment strategies, studies are 
needed to evaluate the inflammatory process that occurs following 
viral infection.

3.2  |  Host immune and inflammatory responses 
in the CNS

The host immune response may function counter-currently to viral 
invasion in some cases. Severe SARS-CoV-2 infection may cause 
inflammatory impairment including epithelial cell apoptosis, vas-
cular damage, pulmonary edema, acute respiratory distress syn-
drome, and multi-organ failure.41,50,51 These symptoms indicate 
that SARS-CoV-2 can induce excessive inflammatory responses 
in the lungs. The virus may evoke similar responses in the CNS. 
Upregulation of the expression of certain soluble cerebral factors 
has been detected in response to SARS-CoV-2 infection.19,21,23,41 
Nevertheless, the mechanism of CNS inflammation in the CNS re-
mains unclear. As brain-related symptoms occur mainly in cases 
of severe COVID-19 presenting with systemic inflammatory ef-
fects, SARS-CoV-2 pathogenicity may be related to pulmonary 
inflammation.

3.2.1  |  Innate immune response in COVID-19

The pulmonary inflammatory response to SARS-CoV-2 occurs in 
two phases. In the first phase, the virus evades the immune system 
after recognition. The innate immune system detects molecules 
expressed on the viral surface known as pathogen-associated mo-
lecular patterns. The innate immune system opposes viral attack 
by secreting interferons (IFNs) and enhances host defense by re-
leasing chemokines that recruit white blood cells.52 They initiate 
strong IFN responses such as the RIG-I-MAVS signaling cascade to 
interfere with viral replication. Cytoplasmic RIG-I and MDA5 ac-
tivate various factors and kinases and phosphorylate the “master 
regulators” IRF3 and IRF7, resulting in the transcription of numer-
ous type I IFNs and interferon-stimulated genes.51,53 However, in 
patients and in vitro infection models, COVID-19 was shown to 
be associated with low levels of IFNs and moderate interferon-
stimulated genes.54,55 The second phase of the pulmonary in-
flammatory response to SARS-CoV-2 is the “cytokine storm” (CS), 
which leads to immunosuppression. Overreaction between the 
innate immune system and virus induce a CS or cytokine release 
syndrome.41,51,56 The latter is characterized by upregulation of the 
expression of proinflammatory cytokines, chemokines, comple-
ment, and other factors.41,57 Yang et al. proposed that monocyte-
derived macrophages are the major sources of proinflammatory 
cytokines.58

There has been no evidence of a direct association between 
SARS-CoV-2-induced pulmonary inflammation and cerebral 
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inflammation.59 Nevertheless, many cases of severe COVID-19 
present with neurological manifestations. Upregulation of the ex-
pression of proinflammatory cytokines in the peripheral blood may 
disrupt the BBB and increase its permeability. In this condition, the 
infected brain parenchyma may recruit external innate immune cells 
to enter the CNS and mediate the inflammatory response. External 
cytokines can affect the brain by crossing the BBB, enabling other 
substances to traverse the BBB.60 Overall, SARS-CoV-2-induced CS 
may indirectly affect CNS function.

3.2.2  |  Immune response to SARS-CoV-2 in the CNS

SARS-CoV-2 may also mediate inflammatory responses by direct 
neuroinvasion. We propose that P2X7 receptors and NLRP3 inflam-
masomes in the innate immune system and T-cells in the acquired 
immune system are the main triggers of neuroinflammation in 
COVID-19.

3.2.2.1 | P2X7 receptors in neuroinflammation
The P2X7 receptor is generally expressed on microglia and oligoden-
drocytes in the CNS.61,62 However, its expression on neurons and 
astrocytes has been controversial.61,63 Neuroinflammation and glial 
cell dysfunction are closely related.64 Injured brain cells release pro-
inflammatory cytokines and ATP. Elevated extracellular ATP levels 
activate P2X7 receptors which, in turn, induce rapid Na+ and Ca2+ 
influx and K+ efflux. These cation movements cause various intra-
cellular intermediators including phospholipase C, phospholipase 
A2, protein kinase C, and mitogen-activated protein kinase (MAPK) 
to modulate certain cellular functions such as cell proliferation, cell 
death, IL secretion, and reactive oxygen species formation.41,65 As 
described above, the P2X7 receptor can increase the permeability of 
the BBB, thus allowing more viruses and molecules to enter the CNS 
and thereby aggravating neuroinflammation.

3.2.2.2 | NLRP3 inflammasomes in neuroinflammation
COVID-19 neuroinflammation is associated with the inflamma-
some,41 which is an intracellular innate immune system sensor 
and receptor comprised of NLRP1, NLRP3, NLRC4, and AIM2. The 
NLRP3 inflammasome is expressed in the neurons, microglia, astro-
cytes, and other cells, and plays important roles in the pathogenesis 
of certain CNS diseases such as Alzheimer's disease and ischemic 
stroke.66,67

Induction of the NLRP3 inflammasome requires priming and ac-
tivation signals. Resting microglia do not contain sufficient quanti-
ties of the inflammasome. Hence, they require a priming signal to 
upregulate the expression of its components.68,69 After pathogen-
associated molecular patterns and pattern recognition receptors are 
combined or cytokines and their associated receptors (TNFR, IL-1R1, 
and others) interact,66,69 nuclear factor κB is activated to upregulate 
the expression of NLRP3, caspase-1, and pro-IL-1β.41,66,68,70

A study demonstrated that the N protein of SARS-CoV-2 is in-
volved in the process of NLRP3 inflammasome induction.71 First, 

the N protein of SARS-CoV-2 can specifically trigger the expression 
of NLRP3 protein. Second, the N protein participates in activation 
and assembly of the NLRP3 inflammasome. The N protein of SARS-
CoV-2 then notably induces the secretion of IL-1β and maturation 
of caspase-1. Interestingly, NEK7 was not found to be required for 
NLRP3 inflammasome activation but its expression is induced by the 
N protein. In addition, several other proteins such as ORF3a and the 
S protein of SARS-CoV-2 are involved in this process.72,73 However, 
most current research on the inflammasome has focused on pulmo-
nary cells or blood-derived cells, and whether these processes occur 
in glial cells is unknown.

Upregulated IL-1β and IL-18 are captured by IL-1R on inactive 
microglia. This interaction then assembles NLRP3 inflammasomes 
that release cytokines, and SARS-CoV-2 may perpetually stimulate 
cytokine maturation and secretion. This explosive increase in spe-
cific cytokines may greatly alter brain function in a manner resem-
bling that of a pulmonary CS. However, the downstream products 
of these pathways in COVID-19 have not been evaluated, and the 
mechanisms require further investigation.

3.2.2.3 | T-Cells in neuroinflammation
T-cells may also promote neuroinflammation. Schwabenland et al. 
observed that pronounced immune activation in the CNS along with 
apparent neuropathology. They detected substantial CD8+ T-cell 
infiltration and an elevated number of parenchymal cells that were 
positive for ionized calcium-binding adapter molecule 1 in the CNS of 
deceased patients with COVID-19.74 Twenty-five patients who had 
succumbed to COVID-19 exhibited varying degrees of neuroinflam-
mation that manifested as extensive changes in microglia, considera-
ble CD8 inflammatory cell infiltration, and other severe phenotypes 
accompanied by microglial nodule formation. Nearly 70% of pa-
tients presented with CD8+ T-cell infiltration and ~40% of patients 
developed microgliosis and microglial nodules. The expression of 
numerous immune checkpoint molecules was detected, revealing 
that programmed death-1 (PD-1) was upregulated on SARS-CoV-2-
specific CD8+ T-cells in microglial nodules.74 These findings suggest 
that microglia-T-cell crosstalk is involved in COVID-19 neuroinflam-
mation. Infected microglia may activate CD8+ T cells and other im-
mune cells to secrete profound levels of cytokines that increase 
axonal damage in brain neurons. Damage to neurons may be associ-
ated with tissue damage to the brain, thus presenting as various neu-
rological diseases. This process requires immune cells to penetrate 
the BBB. Although the study revealed increased permeability of the 
BBB in patients, whether this dysfunction is related to cytotoxic 
CD8+ T cells or other factors remains unclear.

COVID-19 neuroinflammation is highly complex and may be 
caused by simple direct infection or a combination of direct infec-
tion and indirect systemic responses. P2X7 stimulates the NLPR3 
inflammasome and triggers excessive cytokine release. Patients 
infected with SARS-CoV-2 show upregulation of IL-6, IL-10, IL-1β, 
TNF-α, IFN-γ, CCL2, CXCL10, CCL7, IL-1 receptor antagonist, and 
IL-2 receptor. These factors are thought to be associated with dis-
ease severity.
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3.3  |  SARS-COV-2-induced nerve cell impairment

Nerve cell death is irreparable and may result in numerous serious 
symptoms depending on the site of damage. As we described above, 
de Melo et al. reported that many neuronal and non-neuronal cells 
infected by SARS-CoV-2 died in the olfactory mucosae of humans 
and hamsters.21 These observations indicate that similar effects 
occur in brain tissues subjected to SARS-CoV-2 neuroinvasion. As 
this virus has high pathogenicity, it may damage brain neurons in 
several different ways.

3.3.1  |  Neuroinflammation-associated nerve 
cell impairment

Several neuroinflammatory factors including secreted endogenous 
molecules and intracellular inflammasomes can mediate neuronal 
death. Distressed cells may release ATP to activate P2X7 recep-
tors on microglial cells and astrocytes and increase Ca2+ influx and 
glutamic acid (Glu) release.41 Glu triggers N-methyl-D-aspartic 
acid receptors on nerve terminals to release increased amounts 
of Glu and ATP, thereby forming an auto-regenerative loop.41 Glu 
is an excitatory amino acid that acts as a neurotransmitter and 
neurotoxin under certain conditions. Increased Ca2+ levels in post-
synaptic neurons mediate formation of the CaM (Ca2+-calmodulin) 
complex and induce nitric oxide synthase.41 Nitric oxide augmen-
tation can injure neurons by interacting with iron–sulfur centers 
and blocking mitochondrial energy transfer. In response to the ac-
tions of NADH oxidase and nitric oxide synthase 2, nitric oxide 
interacts with reactive oxygen species and generates free radicals 
and nitro compounds such as peroxynitrite (ONOO−) and perox-
ynitrous acid (HOONO). The latter substances damage DNA, per-
oxidize lipids, cause other structural changes, and lead to neuronal 
death.41

NLRP3 inflammasomes can induce pyroptosis, apoptosis, and 
necroptosis. Pyroptosis is a type of cell death associated with inflam-
mation and plays important roles in CNS disease development and 
progression. It is a unique proinflammatory, caspase-dependent cell 
death with distinct morphophysiological characteristics. In NLRP3 
inflammasome-mediated pyroptosis, activated caspase-1 cleaves 
GSDMD and separates its gasdermin-N domain,75 which binds 
membrane lipids, inositol phosphate, and cardiolipin.76 These com-
pounds are translocated to the plasma membranes of infected cells 
where they form gasdermin pores that induce pyroptosis. Abundant 
endogenous substances are released by pyrolyzed cells, promote in-
flammation, and strengthen the host immune response. Alzheimer's 
disease may be associated with neuronal death regulated by NLRP1 
inflammasomes and NLRP3 inflammasome-mediated neuronal py-
roptosis.77,78 Hence, the pyroptosis mechanisms associated with 
Alzheimer's disease may also apply to neuronal damage associated 
with COVID-19.

3.3.2  |  Cerebrovascular hypercoagulopathy-
associated nerve cell impairment

Severe COVID-19 is characterized by frequent hemostatic abnor-
malities related to extensive and excessive thrombosis as well as 
high D-dimer and ferritin levels within cerebral vessels; these mani-
festations indicate cerebrovascular hypercoagulopathy.1 In humans, 
cerebral blood flow is relatively strong. When this flow is impeded 
or hindered, cerebral neurons are immediately damaged. Therefore, 
coagulation is a major factor contributing to ischemic stroke. Five in-
dividuals aged 33–49 years presented with large-vessel stroke after 
SARS-CoV-2 infection.79 These and other discoveries underscore 
the importance of studying cerebrovascular disease in COVID-19.

Several SARS-CoV-2-related factors may induce cerebrovas-
cular hypercoagulopathy. SARS-CoV-2 can activate the MAPK 
pathway. ERK1/2/eIF4E/p38 phosphorylation was upregulated in 
the platelets of patients with severe COVID-19.80 Upregulation of 
downstream signaling indicates that the MAPK signaling pathway is 
activated in COVID-19.80 MAPK signaling promotes thromboxane 
biosynthesis which, in turn, is regulated by cytosolic phospholipase 
A2 activation.81 Cytosolic phospholipases are highly upregulated in 
response to COVID-19. SARS-CoV-2 infection upregulated MAPK 
signaling and increased thromboxane levels, which promoted plate-
let aggregation. However, how SARS-CoV-2 triggers the MAPK path-
way requires further study. SARS-CoV-2 may also alter the platelet 
transcriptome. Manne et al. performed RNA-sequencing to evalu-
ate changes in platelet gene expression and functional responses 
in patients infected with SARS-CoV-2. Pathway analysis identified 
differentially expressed genes in all pathways related to protein 
ubiquitination, antigen presentation, and mitochondrial dysfunction 
except for ACE-2. The latter is a receptor that binds SARS-CoV-2. 
Compared with healthy donors, patients with COVID-19 displayed 
markedly elevated levels of circulating platelet neutrophils, mono-
cytes, and T-cell aggregates. Moreover, patients with COVID-19 
exhibited faster platelet aggregation and increased fibrinogen and 
collagen diffusion when compared with healthy individuals. The 
observed SARS-CoV-2-related increase in platelet activation and 
aggregation may be attributed in part to MAPK pathway activation 
and increased thromboxane production. These results indicate that 
SARS-CoV-2 infection is associated with platelet hyperresponsive-
ness, possibly contributing to the COVID-19 pathophysiology.80

Cerebrovascular hypercoagulopathy can lead to perturbations in 
cerebral blood flow and brain tissue damage. Cerebral ischemia can 
cause cerebral infarction, neuronal cell death, and ischemic stroke.82 
The pathogenesis of cerebral ischemia is based on a series of com-
plex cascades that occur after long-term or permanent occlusion of 
at least one cerebral blood vessel. Traditional ischemic necrosis de-
pends on type I cell death, which is caspase-dependent apoptosis, 
resulting in neuronal morphological alterations and apoptotic body 
formation. Recent research revealed that type II (programmed) cell 
death is mediated by autophagy. Factors associated with cerebral 
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neuronal autophagy in focal ischemia include upregulation of the 
expression of autophagy regulator Beclin-1 and autophagy marker 
LC3.83 Overall, cell death associated with cerebrovascular hyperco-
agulopathy is regulated by complex, systematic cascades. This dis-
covery provides clues to cerebrovascular syndrome pathogenesis in 
COVID-19. Nevertheless, it is unknown whether SARS-CoV-2 causes 
vascular disease or COVID-19-related cerebrovascular syndrome, 
which must be evaluated through vascular imaging and pathological 
analyses.

4  |  CONCLUSIONS

We summarized the association between SARS-CoV-2 and the 
neurological symptoms of COVID-19. The olfactory mucosa is 
a putative port for SARS-CoV-2 neuroinvasion. In this pathway, 
specific components within the olfactory epithelium are infected, 
and certain retrograde routes for transsynaptic dissemination are 
opened. SARS-CoV-2 may also enter the CNS by crossing the BBB 
or blood-cerebrospinal fluid barrier. Certain cytokines mediated 
by SARS-CoV-2 can disrupt BBB integrity, thereby increasing its 
permeability and enabling more viruses to penetrate the brain. 
Upon entry to the CNS, SARS-CoV-2 may induce a strong neu-
roinflammatory response in the host. Brain hyperresponsiveness 
may be associated with viral immunosuppression. Inflammasome 
activation may also play an important role in neuroinflammation 
observed in COVID-19. Infection and excessive inflammation 
damage host tissues and induce host cell death. We review these 
mechanisms of SARS-CoV-2-associated central and peripheral 
nervous system impairment, which are critical for developing di-
agnostic and therapeutic tools to identify and treat this growing 
public health problem.

Many researchers have designed treatments for COVID-19 to re-
duce the events of neurological injury, such as treating inflammation 
with the NLRP3 inhibitor MCC950 and Food and Drug Administration-
approved oral drug.49 Mpro inhibitors can also be used as a therapeu-
tic option to prevent the neurological complications of COVID-19.33 
Another potential treatment involves reducing RIPK3 or inhibiting 
RIPK1, and some RIPK1 inhibitors have entered clinical trials.84

A limitation of the review is that not have a comprehensive 
analysis of the neuropathological studies and lack of systematic 
clinical diagnostic methods. Further analyses of autopsy samples 
are required to confirm the retrogression of SARS-CoV-2 from the 
olfactory mucosa to the CNS. Furthermore, vascular imaging and 
neuropathological analyses are needed to establish the correlations 
among virus-induced vascular disease, vasculitis, and COVID-19-
related cerebrovascular syndrome.
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