
ORIGINAL RESEARCH
published: 06 December 2018

doi: 10.3389/fnagi.2018.00400

Amnestic Mild Cognitive Impairment
Is Associated With
Frequency-Specific Brain Network
Alterations in Temporal Poles
Francesca Jacini1,2*†, Pierpaolo Sorrentino3,4†, Anna Lardone1,2, Rosaria Rucco1,2,
Fabio Baselice3, Carlo Cavaliere5, Marco Aiello5, Mario Orsini5, Alessandro Iavarone6,
Valentino Manzo7, Anna Carotenuto7, Carmine Granata8, Arjan Hillebrand4

and Giuseppe Sorrentino1,2

1Department of Motor Sciences and Wellness, Parthenope University of Naples, Naples, Italy, 2Institute for Diagnosis and
Cure Hermitage Capodimonte, Naples, Italy, 3Department of Engineering, Parthenope University of Naples, Naples, Italy,
4Department of Clinical Neurophysiology and MEG Center, VU University Medical Center Amsterdam, Amsterdam,
Netherlands, 5Diagnostic and Nuclear Research Institute, IRCCS SDN, Naples, Italy, 6Neurological and Stroke Unit, CTO
Hospital—AORN Ospedale dei Colli, Naples, Italy, 7Department of Neurology, AORN Cardarelli, Naples, Italy, 8Institute of
Applied Sciences and Intelligent Systems, CNR, Pozzuoli, Italy

Edited by:
Guido Gainotti,

Università Cattolica del Sacro Cuore,
Italy

Reviewed by:
Ricardo Bruña,

Complutense University of Madrid,
Spain

Marie-Constance Corsi,
Institut National de Recherche en

Informatique et en Automatique
(INRIA), France

*Correspondence:
Francesca Jacini

francesca.jacini@uniparthenope.it

†These authors have contributed
equally to this work

Received: 05 July 2018
Accepted: 20 November 2018
Published: 06 December 2018

Citation:
Jacini F, Sorrentino P, Lardone A,
Rucco R, Baselice F, Cavaliere C,

Aiello M, Orsini M, Iavarone A,
Manzo V, Carotenuto A, Granata C,

Hillebrand A and Sorrentino G
(2018) Amnestic Mild Cognitive
Impairment Is Associated With

Frequency-Specific Brain Network
Alterations in Temporal Poles.

Front. Aging Neurosci. 10:400.
doi: 10.3389/fnagi.2018.00400

There is general agreement that the neuropathological processes leading to Alzheimer’s
disease (AD) begin decades before the clinical onset. In order to detect early
topological changes, we applied functional connectivity and network analysis to
magnetoencephalographic (MEG) data obtained from 16 patients with amnestic Mild
Cognitive Impairment (aMCI), a prodromal stage of AD, and 16 matched healthy control
(HCs). Significant differences between the two groups were found in the theta band,
which is associated with memory processes, in both temporal poles (TPs). In aMCI, the
degree and betweenness centrality (BC) were lower in the left superior TP, whereas in
the right middle TP the BC was higher. A statistically significant negative linear correlation
was found between the BC of the left superior TP and a delayed recall score, a sensitive
marker of the “hippocampal memory” deficit in early AD. Our results suggest that the
TPs, which are involved early in AD pathology and belong to the memory circuitry, have
an altered role in the functional network in aMCI.

Keywords: Alzheimer’s disease (AD), mild cognitive impairment—MCI, network analysis,
magnetoencephalography (MEG), phase lag index (PLI), minimum spanning tree (MST), functional
connectivity (FC)

INTRODUCTION

A large number of studies have investigated the causes of Alzheimer’s disease (AD); nevertheless,
many uncertainties remain about its pathophysiology (Kanfer et al., 1999; Sorrentino et al.,
2014). It is likely that multiple mechanisms contribute to the deposits of senile plaques and
neurofibrillary tangles, the hallmarks of AD pathology (Sorrentino et al., 2008). It is well
established that the spatiotemporal pattern of progression of neurofibrillary degeneration starts
in the allocortex of the medial temporal lobe (entorhinal cortex and hippocampus) and spreads

Abbreviations: BC, betweenness centrality; MEG, magnetoencephalography; MST, minimum spanning tree; PLI, phase
lag index; TP, temporal pole.
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to the associative neocortex (Braak and Braak, 1991; Braak et al.,
2006). Furthermore, it is now a general understanding that the
neuropathological processes leading to AD begin decades before
the onset of clinical symptoms (Sorrentino and Bonavita, 2007;
Jack et al., 2010).

Mild Cognitive Impairment (MCI) has been characterized by
an objective cognitive impairment in a given domain, mainly
memory, not yet implying the definition of dementia (Petersen
et al., 1999). Yet, MCI is associated with a higher risk of
developing dementia, including AD (Shah et al., 2000; Petersen
et al., 2009). In recent years, this definition underwent significant
evolution. The original notion of a predominant amnestic
problem was substituted by a new perspective where different
clinical subtypes were defined. Nowadays, MCI patients are
categorized according to type and number of affected cognitive
domains. This clinical classification is particularly relevant
because each subtype is linked to a presumed etiology, with the
amnestic subtypes (aMCI) considered as a prodromal form of AD
(Petersen et al., 2009, 2014).

The human brain can be seen as a complex system
characterized by a balancing between integration and segregation
mechanisms through spatial and temporal interaction of distinct
neuronal populations (Sporns et al., 2005; Lopes da Silva, 2013;
Sporns, 2013). One of the strategies to estimate the interactions
between brain areas, referred to as ‘‘functional connectivity’’
(Friston, 2011), is to exploit statistical dependencies that might
be present between the time series of neuronal activation
in these areas. Brain networks can be characterized using a
combination of graph theory and modern network science,
applied to neuroimaging data obtained from techniques such
as functional magnetic resonance imaging (fMRI; Stam, 2010;
Wang, 2010). To enable characterization of the macroscopic
brain network topology using graph analysis, brain areas are
typically used as nodes and the interactions between the brain
areas as links.

It has been proposed that in neurodegenerative diseases,
the spreading of the pathological process reflects itself in the
reduction of structural and functional connectivity (Trojsi et al.,
2017), and it has been suggested that AD may be regarded
as a disconnection syndrome (Pievani et al., 2011; Minati
et al., 2013; Stam, 2014). Previous studies showed that the
network architecture of AD brains loses the typical ‘‘small world’’
organization (Watts and Strogatz, 1998), disrupting the balance
between functionally highly specialized areas and long-range
interactions between distant regions (Stam et al., 2009; Sanz-
Arigita et al., 2010; Stam, 2010). There is also some evidence
that the most connected nodes are preferentially affected by
pathological processes (Buckner et al., 2009; Stam, 2014) perhaps
due to their high metabolic activity (de Haan et al., 2012).
Starting from there, the functional disconnection might spread
to other brain regions (Brier et al., 2014). Possibly, damage to
a node could lead to overload, and subsequent failure, of the
hierarchically upstream nodes. This could be the mechanism
underlying the spreading of neurodegeneration (Stam, 2014).
Hence, in order to capture the subtle changes underlying
cognitive impairment, we need to evaluate the brain as a complex
system (Sporns, 2011).

There is ample evidence that a temporally and spatially
balanced pattern of synchronized and desynchronized
oscillations in distinct frequency bands underlies specific
brain functions, including cognitive functions such as language,
memory, thought or awareness (Gross et al., 2004). Beside fMRI,
relevant information on the functioning of brain networks
can be retrieved using neurophysiological techniques, such as
electroencephalography (EEG) and magnetoencephalography
(MEG), since they directly capture the oscillatory activity
of the neuronal ensembles, thereby providing clinical and
pathophysiological information about brain functioning in
health and disease (Lopes da Silva, 2013). While retaining
the high temporal resolution of EEG, MEG signals are not
distorted by the layers surrounding the brain, allowing
for a temporally and spatially precise reconstruction of the
neural activity within the brain (Baillet, 2017). Furthermore,
the high temporal resolution of MEG signals allows for a
more sophisticated estimation of synchronization between
brain areas. For example, the phase lag index (PLI; Stam
et al., 2007) is a phase-based metric (insensitive to volume
conduction/field spread) that quantifies phase-synchronization
(Rosenblum et al., 1996) between areas, rather than the
simultaneous amplitude fluctuations typically estimated with
fMRI.

Several MEG studies have addressed network changes in
AD, but the results have not always been consistent (for an
extensive review see Engels et al., 2017). The reason for the
non-homogeneity of findings may have its origin in both
the clinical features of the examined populations and the
analysis methods. AD has a long clinical course linked to
a well-defined neuropathological evolution (Braak and Braak,
1991, 1995, 1996). As a consequence, the disease stage at which
the recording takes place may be crucial. Another possible
source of inconsistency of the experimental observations may
lie in the fact that network reconstructions may be biased
(van Wijk et al., 2010). In particular, one main problem is the
comparison of networks with different edge densities, average
degrees, or edge weights. Normalization of the data or selection
of arbitrary cut-offs does not solve this issue (van Wijk et al.,
2010; Otte et al., 2015). A possible approach to overcome
these limitations is the use of the minimum spanning tree
(MST; Stam et al., 2014). Starting from the full network, the
MST allows for the construction of a unique sub-graph that
connects all the nodes without forming cycles. This way, it is
possible to identify the backbone of the original network. If
the link weights are unique, this procedure provides a unique
reconstruction of networks with the same number of nodes and
links. The metrics calculated on the MST capture information
of the original network (Tewarie et al., 2015) while allowing the
unbiased statistical comparisons of those metrics across groups,
in the sense that observed topological differences are not trivially
due to differences in functional connectivity (van Wijk et al.,
2010).

The aim of our study is to identify subtle changes in
network topology in aMCI. Given that aMCI is considered
a prodromal stage of AD, our hypothesis is that in aMCI
the topological alterations of the network involve brain areas
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that are known to degenerate early in AD. Furthermore,
we hypothesized that such alterations might be specific to
brain rhythms related to memory processes. Detecting subtle
functional alterations might enable the identification of early
disease markers and to shed light on the pathophysiological
mechanisms of neurodegeneration. To test our hypothesis, we
applied the PLI, followed by the MST, to MEG data obtained
from a cohort of aMCI patients and healthy controls (HCs),
and compared the reconstructed brain networks between these
groups.

MATERIALS AND METHODS

Participants
Fifty-two participants, aged 65–80 years, were screened. All
subjects were right handed and native Italian speakers. Exclusion
criteria were the presence of neurological or systemic illness
that could affect the cognitive status, and contraindications to
MRI or MEG recording. Based on neurological examination
and extensive neuropsychological assessment (see Table 1),
subjects were divided into two groups: 21 MCI and 31 controls.
MCI diagnosis was formulated according to the National
Institute on Aging-Alzheimer Association (NIA-AA) criteria
(Albert et al., 2011), which include: (i) cognitive concern
reported by patient or informant or clinician; (ii) objective
evidence of impairment in one or more cognitive domains,
typically including memory; (iii) preservation of independence
in functional abilities; and (iv) not demented. Three of
the MCI patients were non-amnestic MCI so they were
excluded from the study. Reduced hippocampal volume
detected by structural MRI (see Table 2), a neuronal injury
marker, gives our MCI cohort an intermediate likelihood of

TABLE 1 | Neuropsychological evaluation.

Test Explored function

MMSE Global cognitive status
FAB Frontal efficiency
FCSRT

FCSRT immediate free recall
FCSRT immediate total recall

“Hippocampal” episodic memory
FCSRT delayed free recall
FCSRT delayed total recall
FCSRT index of sensitivity of cueing

MDB
Rey’s 15 word immediate recall Short and long-term verbal
Rey’s 15 word delayed recall episodic memory
Word fluency Ability to access lexical-semantic

memory store
Phrase construction Language
Raven’s 47 progressive matrices Conceptual reasoning
Immediate visual memory Short-term

visuoperceptual recognition
memory

Freehand copying of drawings
Constructive praxia

Copying drawings with landmarks
BDI Depression

MMSE, Mini Mental State Examination (Measso et al., 1993); FAB, Frontal Assessment
Battery (Iavarone et al., 2004); FCSRT, Free and Cued Selective Reminding Test (Frasson
et al., 2011); MDB, Mental Deterioration Battery (Carlesimo et al., 1996); BDI, Beck
Depression Inventory (Sica and Ghisi, 2007).

being due to AD (Albert et al., 2011). Two patients and
15 controls did not complete the MRI because of difficulty
in lying down or refusal to perform it, so they were
excluded.

The subjects included in the study were 16 patients affected
by aMCI (mean age 71, 7 years; standard deviation (SD). 6, 6;
eight men and eight women) compared to 16 age, educational
level and gender matched HC subjects (mean age 70, 3 years; SD
4, 2; nine man and seven women). The study was approved by
the Local Ethics Committee ‘‘Comitato Etico Campania Centro’’
(Prot.n.93C.E./Reg. n.14-17OSS), and all subjects had given
written informed consent. All methods included in the protocol
were carried out in accordance with the Declaration of Helsinki.

Magnetic Resonance Imaging
MR images were acquired using a 3T Biograph mMR tomograph
(Siemens Healthcare, Erlangen, Germany) equipped with a
12 channels head coil. The scan performed either after the MEG
recording or a minimum of 21 days earlier (within 1 month).
The following protocol was applied: (i) three-dimensional
T1-weighted Magnetization-Prepared Rapid Acquisition
Gradient-Echo sequence (MPRAGE, 240 sagittal planes,
214× 21mm2 Field of View, voxel size 1× 1× 1mm3, TR/TE/TI
2,400/2.5/1,000 ms, flip angle 8◦); (ii) Three-dimensional
T2-weighted Sampling Perfection with Application optimized
Contrasts using different flip angle Evolution sequence (SPACE,
240 sagittal planes, 214 × 214 mm2 Field of View, voxel size
1 × 1 × 1 mm3, TR/TE 3,370/563); (iii) Two-dimensional T2-
weighted turbo spin echo Fluid Attenuated Inversion Recovery
sequence (FLAIR, 44 axial planes, 230 × 230 mm2 Field of
View, voxel size 0.9 × 0.9 × 0.9 mm3, TR/TE/TI 9,000/95/25,00,
flip angle 150◦). Volumetric analysis was performed with the
Freesurfer software (version 6.0; Fischl et al., 2002). Volumes
were normalized for the estimated total intracranial volume
(eTIV). Vascular burden was assessed using Fazekas scale
(Fazekas et al., 1987).

MEG Acquisition
The MEG system, equipped with 163 magnetometers, was
developed by the National Research Council, Pozzuoli, Naples,
at the Institute of Applied Sciences and Intelligent Systems
‘‘E. Caianiello’’ (Rombetto et al., 2014). Using Polhemus
(Polhemus FASTRAKr) we determined the location of four
coils, placed on the forehead and behind the ears of the
participants, and of four reference points on the head (nasion,
right and left preauricular points, vertex). The head movement
were evaluated by visual inspection through a camera placed
inside the cabin. The coils were activated, and localized, at
the beginning of each segment of the registration. Participants
were seated inside a magnetically shielded room to reduce
background noise (Advanced Technologies Biomagnetics, Ulm,
Germany). Electrocardiographic (ECG) and Electrooculographic
(EOG) signals were co-recorded to aid artifact removal (Gross
et al., 2013). Spontaneous brain activity was recorded for two
sets of 2.5 min, in resting-state, with eyes closed. Signals, after
an anti-aliasing filter, were acquired at a sampling frequency
of 1,024 Hz. The signal was then filtered using a fourth order
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TABLE 2 | Subjects characteristics.

aMCI (n = 16) HC (n = 16) p-value

Age (years) 73 ± 6.6 70 ± 3.9 NS
Education (years) 10.25 ± 4.55 13 ± 4.81 NS
Left hippocampal volume (%) 0.230 ± 0.039 0.288 ± 0.043 <0.001
Right hippocampal volume (%) 0.223 ± 0.030 0.285 ± 0.036 <0.001
MMSE 25.00 ± 2.62 28.21 ± 1.42 0.002
FCSRT immediate free recall 15.95 ± 7.60 28.21 ± 1.42 <0.001
FCSRT delayed free recall 3.57 ± 3.42 10.47 ± 1.53 <0.001
FCSRT immediate total recall 28.93 ± 6.45 35.93 ± 0.25 <0.001
FCSRT delayed total recall 7.68 ± 3.32 12 ± 0 <0.001
FCSRT index of sensitivity 0.70 ± 0.20 0.99 ± 0.02 <0.001
BDI 9.6 ± 8 7.1 ± 4.9 NS
FAB 14.35 ± 2.80 16.44 ± 1.19 0.010
Rey’s 15 word immediate recall 26.27 ± 5.98 44.23 ± 7.76 <0.001
Rey’s 15 word delayed recall 3.56 ± 1.89 10.53 ± 3.21 <0.001
Word fluency 32.87 ± 11.29 32.71 ± 6.49 NS
Phrase construction 14.56 ± 8.15 18.14 ± 5.67 NS
Raven’s 47 progressive matrices 22.3 ± 5.65 28.03 ± 4.34 0.003
Immediate visual memory 16.10 ± 3.77 19.87 ± 1.88 0.001
Freehand copying of drawings 8.41 ± 1.36 9.98 ± 1.38 0.003
Copying drawings with landmarks 65.57 ± 3.78 68.58 ± 4.58 NS

Demographic and clinical variables comparison in aMCI and control groups. Data are given as mean ± standard deviation (SD). NS, not significant; aMCI, amnestic Mild Cognitive
Impairment group; HC, healthy controls; MMSE, Mini Mental State Examination; FCSRT, Free and Cued Selective Reminding Test; BDI, Beck Depression Inventory; FAB, Frontal
Assessment Battery.

Butterworth IIR band-pass filter in the 0.5–48 Hz band. In
order to reduce the environmental noise, principal component
analysis (PCA) was implemented (Sadasivan and Dutt, 1996).
The methodology consists in computing the space base of the
signals acquired by the reference sensors (i.e., environmental
noise), and in projecting the signals from the brain sensors on
such base in order to remove the noise parallel components
from the brain signal (de Cheveigné and Simon, 2007). The
PCA filtering implementation available within the Fieldtrip
Toolbox (Oostenveld et al., 2011) was used. Subsequently,
noisy channels (on average 14 ± 5 channels) were removed
manually through visual inspection of the whole dataset by an
experienced rater (Gross et al., 2013). Physiological artifacts,
cardiac and blinking (if present), were removed from the signals
through supervised independent component analysis (ICA).
Typically, one component has been deleted for ECG and no
component for EOG. The processing has been done using
the Fieldtrip toolbox (version 2014.05.06; Oostenveld et al.,
2011).

Source Reconstruction
The subject’s fiducial points were visually identified on the native
MRI of the subjects and used to coregister the MEG acquisition,
whereupon the MRI was spatially normalized to an average
T1-MRI template, part of the SPM toolbox1. Subsequently,
we used the volume conduction model proposed by Nolte
(2003) and we applied the Linearly Constrained Minimum
Variance (LCMV) beamformer (Van Veen et al., 1997) to
reconstruct the time series in the centroids of 116 regions-
of-interest (ROIs). In order to compute the beamformer
weights, we used the broad-band data covariance matrix
and an identity noise covariance matrix (hence assuming

1http://imaging.mrc-cbu.cam.ac.uk/imaging/Templates

uncorrelated noise). The optimal source orientation was
found using a Singular Value Decomposition (SVD). The
labeling of the regions was based upon the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002;
Gong et al., 2009). We considered only the first 90 ROIs,
excluding those corresponding to the cerebellum given the
low reliability of the reconstructed signal in those areas. For
each region, we projected the time series along the dipole
direction that explained most variance by mean of SVD using
Fieldtrip.

The signals in the source space have been downsampled to
512 Hz. By visual inspection, the first 10 epochs of 8 s for
each subject that did not contain artifacts (either system related
or physiological) or strong environmental noise were selected.
All the source reconstruction processing has been performed in
Matlab environment using the Fieldtrip toolbox.

Functional Connectivity Analysis
The functional connectivity analysis was performed using
BrainWave software (version 0.9.152.4.1, available from
https://home.kpn.nl/stam7883/brainwave.html). The length of
8 s is a trade-off between the need to have enough cleaned epochs
(Gross et al., 2013; Sorrentino et al., 2017) and to obtain a reliable
estimate of the functional connectivity (Fraschini et al., 2014),
while avoiding drowsiness. The epochs were band-pass filtered
into five canonical frequency bands using Brainwave: delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz)
and gamma (30–48 Hz). The PLI (Stam et al., 2007) was used
to estimate functional connectivity. The PLI is based on the
distribution of the differences of the instantaneous phases
(derived from the Hilbert transformation of the times series) for
two time series, and is computed as:

PLI =
∣∣〈sign [sin (18(tk))]

〉∣∣
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where ‘‘< >’’ indicates the mean value, ‘‘sign’’ stands the signum
function, ‘‘|.|’’ denotes the absolute value and ‘‘tk’’ are the
samples. This measure is not sensitive to volume conduction
(at the cost of discarding true zero–lag interactions). PLI values
range between 0 and 1, where 1 indicates perfect synchronization
and 0 indicates non synchronous activity. We obtained a
90 × 90 adjacency matrix for each epoch for each subject, in
all the frequency bands (Stam et al., 2007). For each epoch, the
PLI matrix was computed, and after this step they are merged by
arithmetic average.

Network Analysis
The adjacency matrices we obtained were interpreted as
networks, where the 90 sources are the nodes and the 1/PLI
values are the edges. For each frequency band, a MST was
calculated based on each adjacency matrix using Kruskal’s
algorithm (Kruskal, 1956). The algorithm classifies the links in
growing order and, then, builds the network by adding a link at
a time. If the link forms a loop, it is discarded. The algorithm
proceeds until all nodes are connected resulting in a loop-less
binary graph with N nodes and M = N − 1 links. The MST
was used to obtain topological measures that are unaffected by
degree distribution, matrix density or arbitrary thresholds (van
Wijk et al., 2010).

Based on theMSTmatrix, we calculated both global and nodal
parameters. The former provide insight on the network as a
whole. In details, we calculated the leaf fraction (fraction of nodes
with degree equal to 1), the tree hierarchy (quantification of the
trade-off between node–overload and efficient communication),
and the degree divergence (amplitude of the degree distribution;
Boersma et al., 2013; Stam et al., 2014; Tewarie et al., 2015).
Furthermore, we calculated nodal parameters that provide
information on the centrality of each of the 90 ROI. We
computed the degree, the betweenness centrality (BC) and the
eccentricity. The degree is the number of connections incident
on a given node. The BC represents the number of shortest
paths passing through a given node, divided by the total number
of shortest paths of the network (Boersma et al., 2013). The
eccentricity is defined as the longest path between a node and any
other node of the network. The lower the eccentricity, the more
central the node (Tewarie et al., 2015). Figure 1 shows the data
analysis pipeline (Sorrentino et al., 2018).

Statistical Analysis
To compare clinical variables between the two groups we
applied T-tests. MST metrics were compared, for each frequency
band and for each parameter, between the two groups using
permutation testing (N 10,000, alpha 0.05). In more detail:
the labels of each metric (i.e., whether a value belongs to the
aMCI or controls group) were randomly exchanged 10,000 times.
At each iteration we computed the difference between the
two groups, building a distribution of the differences. We
used this distribution to compute the statistical significance of
the experimentally observed groups difference. Then, the false
discovery rate (FDR), using the Benjamini—Hochberg procedure
(Benjamini and Hochberg, 1995), was applied to correct for
multiple comparisons across the global MST measures (N = 3),

and separately across the 90 ROIs for the nodal measures.
The reported p-values that follow are always the FDR-corrected
values (indicated as pFDR).

If a given node was found to have significantly different
centrality in the two groups, we compared all the links incident
upon that node in order to identify the ones that differed between
the two groups, as follows: based on the PLI adjacency matrix,
each link was averaged separately for the MCI and control
groups, and the average strength was subsequently compared
using permutation analysis, as described above. The results were
corrected for multiple comparisons across links using FDR. To
investigate the topological role of the links incident upon the
significantly different nodes, we also checked how many times
each link was included in the MST in both MCI and controls. To
check if the frequency of inclusion in the MST differed between
the two groups, we used a Chi-square test and corrected the
results across the links using the FDR.

Finally, to calculate the correlation between clinical variables
(neuropsychological scores) and both MRI data (hippocampal
volume) and statistically significant network parameters, we used
Pearson’s correlation coefficients. Correlations were calculated
for the aMCI group only, because the neuropsychological scores
in the control group showed a too narrow distribution to allow
a reliable estimation of the correlation in this group. The linear
correlations that have been computed were not corrected for
multiple comparisons.

T-test and Pearson’s correlation coefficients were evaluated
using IBMr SPSS Statisticsr (version 20). Permutation testing
and FDR correction were performed in Matlab (Mathworksr,
version R2013a). A significance level of p < 0.05 was used.

RESULTS

Population Characteristics
The studied population consists of 16 aMCI patients and
16 HC subjects. Comparing the clinical variables between
the two groups, no significant differences were found in
age, educational level, gender, depression (Beck Depression
Inventory, BDI), language skills (fluency, phrase construction).
Significant differences in hippocampal volume, global cognitive
status (Mini Mental State Examination, MMSE), memory
tests (Free and Cued Selective Reminding Test (FCSRT), Rey
words, immediate visual memory), frontal efficiency (Frontal
Assessment Battery, FAB) and constructive praxia (freehand
copying of drawings, copying drawings with landmarks)
were evident. As expected, patients showed worse cognitive
performances (Table 2).

MEG Data
We found several differences between the brain networks in
aMCI and HCs. In the theta band, the degree (pFDR = 0.036)
and the BC (pFDR < 0.001) of the left superior temporal
pole (TP) were significantly lower in patients compared to
controls. Conversely, in the right middle TP we found higher BC
(pFDR = 0.027) in the aMCI group (Figure 2).

For the links incident upon the left superior TP, no individual
link differed significantly between the two groups. The right
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FIGURE 1 | Data analysis pipeline. (A) Raw magnetoencephalography (MEG) signals recorded by 154 sensors (a subset displayed here). (B) MEG signals after
artifact removal and noise cleaning. (C) Source reconstruction (beamforming), based on the native magnetic resonance imaging (MRI) of the subjects. (D) Functional
connectivity matrix estimated using the phase lag index (PLI). Rows and columns are the regions of interest (ROIs), while the entries are the estimated values of the
PLI. (E) Brain topology representation based on the minimum spanning tree (MST). (F) Global (leaf fraction, tree hierarchy and degree divergence) and nodal (degree,
betweenness centrality (BC), eccentricity) network parameters.

medial TP, however, was more strongly connected to the
right cuneus in controls as compared to the MCI population
(pFDR = 0.0009).

No significant difference was found in the frequency of
inclusion in the MST between the two groups for any link
incident on the left superior or right middle TP.

FIGURE 2 | Brain networks comparison. Statistical differences between amnestic Mild Cognitive Impairment (aMCI) and control group in degree and BC in the theta
band. Bar charts showing the mean degree and BC in the left superior temporal pole (TP; left) and mean BC in the right middle TP (right) for both groups. The
p-values were computed using permutation testing (with false discovery rate (FDR) correction). In the middle, regional distribution of differences in degree and BC
between aMCI and control group for the theta frequency band. MST network is visualized on a brain template. Blue dots represent the nodes of the network. In red,
the nodes that are significantly different between aMCI and controls. Lines indicate the links between each pair of nodes. TPOsup.L, left superior temporal pole;
TPOmid.R, right middle temporal pole.
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The global MST parameters (leaf fraction, tree hierarchy
and degree divergence) did not differ between the two groups.
No statistically significant differences were found in any other
frequency band (delta, alpha, beta and gamma) for any of the
MST parameters.

Correlations
We calculated the correlations between clinical variables
(neuropsychological scores) and both MRI data (hippocampal
volume) and statistically significant network parameters. The
right hippocampal volume correlated positively with three of the
five subtests of the FCSRT (immediate total recall (r(21) = 0.546;
p = 0.029), delayed total recall (r(21) = 0.612; p = 0.012) and
sensitivity index (r(21) = 0.508; p = 0.044)). In theta band,
the BC of the left superior TP correlated negatively with the
FCSRT delayed total recall score (r(21) = 0.507; p = 0.045;
Figure 3).

DISCUSSION

In the present work, we aimed at identifying subtle changes in
network topology in aMCI, which is considered as a prodromal
stage of AD. Our hypothesis is that in aMCI the topological
alterations of the functional network may be limited to brain
regions typically affected by early neurodegeneration and to
frequency bands involved in memory processing. To test our
hypothesis, we applied the PLI followed by the MST on source-
level MEG data obtained from a cohort of aMCI patients
compared to HCs.

The two groups were comparable by age, educational
level and depression status, while neuropsychological scores,
especially memory tests and the hippocampal volume allowed
a clear division between aMCI and controls. According to
Albert’s criteria, given the presence of hippocampal atrophy, the
likelihood that in our population the cognitive impairment was
due to AD was ‘‘intermediate’’ (Albert et al., 2011). In addition,
the observed positive correlation between right hippocampal
volume and memory scores is in accordance with the role of
hippocampal volume as a progression marker (Frankó et al.,
2013). The right hippocampal volume directly correlated with
three of the five subtests of the FCSRT (immediate total recall,
delayed total recall, Index of Sensitivity of Cueing), confirming
the strong link between hippocampal atrophy and memory
efficiency (Stoub et al., 2010). It has been shown that the FCSRT
test isolates storage disorders due to the involvement of medial
temporal structures, that is typical of AD, from other memory
deficits related to attention or retrieval disturbances (Frasson
et al., 2011). This test has been included in the current diagnostic
criteria for AD, since it detects specific episodic memory profiles
characterized by low free recall score that is not normalized
by cueing (Dubois et al., 2007, 2014). Correlation with the
right hemisphere is consistent with the FCSRT visuospatial
material used (de Toledo-Morrell et al., 2000) and confirms
that our aMCI cohort displays clinical characteristics similar
to the ones of the prodromal stage of AD (Dubois et al.,
2014).

The global network parameters that we took into account
(MST based leaf fraction, tree hierarchy and degree divergence)

FIGURE 3 | Correlations between neuropsychological scores, hippocampal volumes and network parameters. Pearson’s correlation between the BC of the left
superior TP and the subtest of the Free and Cued Selective Reminding Test (FCSRT) regarding delayed total recall (A). Pearson’s correlation between the right
hippocampus volume and subtests of the FCSRT regarding immediate total recall (B), delayed total recall (C) and index of sensitivity (D).
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failed to show any difference between the two groups. AD is
characterized by an overall decrease of functional connectivity,
a loss of modularity and a specific vulnerability of long-range
connections and of the hubs (Tijms et al., 2013). Generally,
in MCI the network features might be considered as in an
intermediate stage between AD and healthy subjects (Yao
et al., 2010). Increased synchronization between brain areas
has been demonstrated in MCI, especially for long-distance
connections, as well as reduced modularity, with altered
segregation/integration balance (Buldú et al., 2011). In contrast,
reduced functional connectivity has recently been reported
for medial temporal and parietal regions in MCI compared
to HCs (Cuesta et al., 2015). A possible explanation of
such incongruence could be found in differences in both
the clinical features of the samples and the functional
connectivity metric adopted. Only very few MEG studies
describe PLI-based networks in AD and MCI. Interestingly,
in these articles alterations of global network parameters
have been reported in AD but not in MCI. Stam et al.
(2009) found that in AD, in a no-task, eyes-closed condition,
the clustering coefficient and path length in the lower
alpha band were both decreased. Furthermore, Yu et al.
(2016), using EEG, found that in the alpha band the global
topological features suggested a less integrated topology in
AD as compared to controls. Recently, López et al. (2017)
focused on brain networks specifically in MCI and found
no differences between MCI and controls in terms of global
network parameters (averaged normalized weighted clustering
coefficient and path length). Our results, obtained with
the bias-free MST analysis, are in line with this evidence,
indicating that there are no global topological changes in
aMCI. Hence, one may speculate that in the very early phase
of disease regional changes in functional connectivity (and
network topology—see below) may precede global alterations.
However, longitudinal studies are needed to confirm this
hypothesis.

Comparing the nodal network parameters between groups,
we found significant differences in the TPs, in the theta band. The
theta rhythm has been linked to memory integration, from the
encoding of new information to the retrieval of stored items (for
reviews see Kirk and Mackay, 2003; Lisman, 2005). It has been
shown that theta power in the medial temporal lobe increases
when new memories are included in an existing mnemonic
representation (Backus et al., 2016). To this regard, an association
between the theta rhythm, AD, and cognitive impairment has
been described previously. In fact, higher EEG theta amplitude
in parietal, occipital, temporal and limbic areas has been found
in AD (Babiloni et al., 2006) and an increased theta relative
power has been described using MEG in MCI patients (López
et al., 2014), as well as in early AD in almost all cortical regions,
including the hippocampi (Engels et al., 2016). Such evidence
shows that the theta band yields information that is specifically
relevant for AD and MCI.

Our data show changes in topological features in the TPs.
More specifically, in the left superior TP, degree and BC were
significantly lower in aMCI as compared to controls, while in the
right middle TP the BC was higher in the aMCI group. BC and

degree are both indices of node centrality in the network. The BC
reflects the importance of a node for the interactions among the
other nodes in the network, and the degree reflects how many
connections insist upon a given node. Our results suggest that
the functional role of the TPs is modified in aMCI. Such areas
are primarily affected in AD (Delacourte et al., 1999; Thompson
et al., 2003). Interestingly, the TPs display a central role within
memory circuitry, connecting it to further anatomical structures
within and beyond the temporal lobe (Olson et al., 2007).

Interestingly, the nodal features of the left and right TPs
display an opposite tendency. This result is partially in agreement
with López et al. (2017). They found a higher BC in the
lower alpha band in the superior and middle gyrus of the
right TP, associated with a decreased BC in upper alpha band
in the left middle temporal gyrus. However, none of these
findings persisted after FDR correction. The role of the TPs and
their functional lateralization has been described as ‘‘enigmatic’’
(Olson et al., 2007). The left TP is mainly considered a semantic
hub (Clark et al., 2007), implicated in semantic memory, typically
affected in semantic dementia (Landin-Romero et al., 2016).
The right TP, given its connections with the amygdala and the
orbitofrontal cortex, is involved in emotional control (Chan et al.,
2009). By integrating hippocampal information with those from
posterior associative areas, the right TP retrieves past emotional
experiences to evaluate the meaning of the current stimulus,
driving the associated behavioral response (Lane et al., 1999;
Nadal, 2013).

Our observation of a ‘‘mirrored’’ change between left and
right TP does not find a univocal interpretation. A recent
functional connectivity study between the left and right anterior
temporal lobe underlined the interaction between the two poles
(Warren et al., 2009). The authors proposed that the inhibition
of the injured hemisphere by the intact one could be an
adaptive process after stroke. The opposite characteristics that
we observed in the two TPs could be related to a similar
mechanism, in which one TP is influenced by the activity
of the contralateral one. Alternatively, it is possible that the
neurodegenerative process affects the two TPs at different times.
It has been proposed that the increased activity and connectivity
often recorded in the early phases of the pathological course
may be related to a loss of inhibitory connections, subsequently
leading to further neuronal damage, loss of connectivity, and
network disruption (de Haan et al., 2012). In this line of thinking,
the different alterations observed in the TPs in the right and left
hemisphere would be due to differences in the staging of the
pathological process.

Finally and interestingly, we observed that, in patients, the
BC of the left superior TP showed a negative correlation with
the FCSRT delayed total recall. Patients with higher BC show
worse memory performances, or vice versa, patients with lower
BC have better memory performances. However, it is not clear
what the mechanisms that underlie this phenomenon could be.
One might speculate that, when the brain damage is still limited,
it might be possible to guarantee long term memory efficiency
by lowering the computational load in memory circuitry. When
the brain damage is widespread, this mechanism would be no
longer efficient and the memory performances would worsen.
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Hence, the inverse relationship between BC and cognitive scores
might be due to overload of the TP related to more widespread
brain damage. Recently, de Haan et al. (2012) showed that
more central areas tend more easily to metabolic overload and
consequent degeneration. Probably, the negative relationship
observed between BC and memory performance could be
explained within this framework.

Comparing the PLI values of the links that connect the right
middle TP and the left superior TP with other brain regions,
the right middle TP appeared to be more weakly connected to
the right cuneus in the aMCI group as compared to the control
group. This finding is in line with recent evidence showing
that posterior links are hypoconnected in MCI as compared to
controls, while the opposite happens for anterior links (López-
Sanz et al., 2017).

In conclusion, we aimed to identify changes in network
properties that could characterize aMCI, which may precede
the development of overt AD (Shah et al., 2000; Petersen et al.,
2009). Our results indicate that in aMCI there are changes in
network centrality with an opposite trend between left and right
TP, with no concurrent global network alteration. These changes
are frequency-specific in the theta band, which is classically
associated with memory processes. Our findings suggest that
the pathological process induces changes in the role of the TP
within the functional brain networks, and that the extent of these
changes is related to the memory performance in aMCI patients.
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