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Streptococcus suis infections can cause septic shock, which is referred to as strepto-
coccal toxic-shock-like syndrome (STSLS). The disease is characterized by a severe 
inflammatory response, multiple organ failure, and high mortality. However, no superanti-
gen that is responsible for toxic shock syndrome was detected in S. suis, indicating that 
the mechanism underlying STSLS is different and remains to be elucidated. Triggering 
receptor expressed on myeloid cells-1 (TREM-1), belonging to the Ig superfamily, is an 
activating receptor expressed on myeloid cells, and has been recognized as a critical 
immunomodulator in several inflammatory diseases of both infectious and non-infectious 
etiologies. In this review, we discuss the current understanding of the immunoregulatory 
functions of TREM-1 on acute infectious diseases and then highlight the crucial roles of 
TREM-1 on the development of STSLS.

Keywords: triggering receptor expressed on myeloid cells-1, streptococcal toxic-shock-like syndrome, 
Streptococcus suis, inflammation, cytokine storm

inTRODUCTiOn

Streptococcus suis is a major swine pathogenic bacterium, and it is also a severe threat to human 
health (1–4). Since the first reported case of S. suis-induced meningitis in humans in Denmark in 
1968, more than 1,600 human infection cases have been reported in the world (5, 6). In addition, S. 
suis has also been recognized as the leading and second cause of adult meningitis in Vietnam and 
Thailand, respectively (1, 7, 8). For a long time, S. suis infections in humans have remained sporadic 
and mainly affect individuals who have closely contacted with pigs or pig-derived products (9–11). 
However, the two large-scale outbreaks in China (12, 13) and human cases without a history of 
animal contact (14, 15) have modified opinion regarding the threat of this pathogen to humans.

Streptococcus suis infections in humans normally produce meningitis, endocarditis, cellulitis, 
peritonitis, arthritis, pneumonia, and occasionally septic shock, and the pooled case-fatality rate 
is 12.8% (1, 16, 17). Now, special attention is given to the largest outbreak in China in 2005, which 
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caused 38 deaths among 204 human infections. Of the 38 deaths, 
37 were caused by septic shock, which is designated as “streptococ-
cal toxic-shock-like syndrome (STSLS)” (12). Unfortunately, 63% 
of STSLS patients died even after treatment with antibiotics (18), 
and STSLS is characterized by high serum levels of IFN-γ, TNF-α, 
IL-8, IL-12, and IL-1β, termed “cytokine storm” (19). However, 
no superantigen that is responsible for toxic shock syndrome was 
detected in S. suis (12), indicating that the mechanism underlying 
STSLS is different from that of toxic shock syndrome.

High levels of systemic pro-inflammatory cytokines was an 
important pathological cause for sudden death or meningitis 
induced by S. suis infection (20). Besides, the IFN-γ response 
was also confirmed to be responsible for causing high mortality 
of STSLS (21). These experiments suggested that inhibition of the 
exaggerated inflammatory response could improve the outcome 
of STSLS. However, these findings seemed conflict with a previous 
study that pre-administration of IL-1β increased neutrophil and 
monocyte numbers and bactericidal activity, and then facilitate to 
control S. suis challenge (22). Therefore, inflammatory response 
may play complicate roles during S. suis infection.

Since its discovery in 2000, triggering receptor expressed on 
myeloid cells-1 (TREM-1) has been described as a critical immu-
nomodulator in several inflammatory disorders (23). Infection 
with S. suis also induced TREM-1 expression (24), indicating the 
signaling involved in this infectious disease. Here, we present 
the current progresses of the immunoregulatory functions of 
TREM-1 on acute infectious diseases and highlight the essential 
roles of TREM-1 on the development of STSLS.

FUnCTiOn OF TReM-1 On THe 
DeveLOPMenT OF inFeCTiOUS 
DiSeASeS

Triggering receptor expressed on myeloid cells-1 was firstly 
identified on lipopolysaccharide (LPS)-stimulated neutrophils 
and monocytes (25), and then confirmed to be highly expressed 
on granulocytes, DCs, and natural killer cells and lowly 
expressed on T and B cells (26). TREM-1, belonging to the Ig 
superfamily, is a cell surface-activating receptor with a single 
extracellular V-type Ig-like domain, a transmembrane region 
containing charged lysine residues and a short cytoplasmic tail 
lacking signaling motifs (27, 28). TREM-1 can amplify toll-like 
receptor (TLR)-initiated responses against microbial challenges, 
enhancing the inflammatory response through interaction 
with an adaptor protein, DNAX-activating protein of 12  kDa 
(DAP12) (23, 25, 29). Due to its key role on enhancement of the 
inflammatory response, TREM-1 was recognized as an impor-
tant regulator of innate immunity in sepsis (23, 30–33), septic 
shock (34–36), autoimmune arthritis (37), chronic inflamma-
tory disorders (38), inflammatory bowel disease (39, 40), and 
corneal inflammation (41).

Despite these previous findings, the results regarding the 
requirement of TREM-1 for controlling of microbial infections 
are controversial. TREM-1 contributed to neutrophilic infiltra-
tion, induction of pro-inflammatory cytokines, and the disease 
severity, but it could not obviously affect pathogen clearance 

during Leishmania major, influenza virus or Legionella pneu
mophila infection (42). By contrast, TREM-1 played an important 
role in controlling dissemination of Kelbsiella pneumoniae and 
improvement of survival in a model of a Klebsiella pneumoniae 
liver abscess (43). Another example for the contribution of 
TREM-1 to killing pathogen was the infectious model on 
Streptococcus pneumoniae with trem1/3−/− mice (44) or agonistic 
TREM-1 antibody (45). TREM-1 was confirmed to play a role 
on secretion of cytokines and chemokines, neutrophils influx, 
clearance of Streptococcus pneumoniae, and improved survival 
(44, 45). Moreover, TREM-1/3 deficiency also increased local 
and systemic cytokine production, decreased the transepithelial 
migration of neutrophils into the airspace, and increased mortal-
ity during Pseudomonas aeruginosa infection (46). Therefore, 
these studies suggest that the roles of TREM-1-mediated immune 
responses to infection are very complicate.

SOLUBLe FORM OF TReM-1 (sTReM-1) 
AnD inFeCTiOUS DiSeASe

Apart from the membrane-bound form of TREM-1, a 27-kDa 
glycosylated peptide, corresponding to the sTREM-1, has 
been found in body fluids of infected individuals (30, 47). Two 
hypotheses have been proposed to explain the origin of sTREM-
1: alternative splicing of TREM-1 mRNA (48) and proteolytic 
cleavage(s) of mature, membrane-anchored TREM-1 (49). With 
a general matrix metalloproteinase inhibitor, Gomez-Pina et al. 
demonstrated that metalloproteinases were responsible for shed-
ding of the TREM-1 ectodomain through proteolytic cleavage of 
its long juxtamembrane linker (50).

The clinical significance of sTREM-1 has been confirmed in 
several studies in which sTREM-1 was detected in patients with 
chronic obstructive pulmonary disease (51), peptic ulcer disease 
(52), severe sepsis (53), septic shock (30), or inflammatory bowel 
disease (54). Now, sTREM-1 is recognized as a diagnostic and 
prognostic biomarker in patients with septic shock (55), neonatal 
sepsis (56), and Streptococcus pyogenes-induced sepsis (32).

At present, the function of sTREM is not fully understood. It is  
possible that sTREM-1 may negatively regulate receptor signaling 
through neutralization of the ligands, which is supported by the 
findings that the TREM-1 signaling could be significantly inhib-
ited by a fusion protein containing the TREM-1 extracellular 
domain and human IgG1 Fc fragment (23) or the recombinant 
TREM-1 extracellular domain (57).

SiGnALinG FOR TReM-1 eXPReSSiOn

Triggering receptor expressed on myeloid cells-1 could be induced 
in response to various ligands, such as LPS (25, 58), bacteria  
(23, 41), and viruses (59, 60). In LPS-stimulated RWA264.7 cells, 
the transcription of TREM-1 was found positively and negatively 
regulated by NF-κB and PU.1 (61). In macrophages, LPS-induced 
TREM-1 expression was mediated, at least partly, by endogenous 
prostaglandins E2 followed by EP4 and cAMP, protein kinase A, 
p38 MAPK, and PI3K-mediated signaling (62). The expression 
of TREM-1 could also be inhibited by prostaglandins D2 and 
cyclopentanone prostaglandins PGJ2 and 15-dPGJ2, which was 
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through activation of Nrf2 and inhibition of NF-κB. These pro-
vided a novel mechanism by which these prostaglandins show 
anti-inflammatory effects (63).

Based on the analysis of the trem1 promoter, Hosoda et  al. 
demonstrated that the cAMP response element (CRE) and 
NF-κB-binding site in the mouse TREM-1 promoter regulated 
the basal TREM-1 transcription positively and negatively, respec-
tively (64). In addition, CRE and NF-κB possibly participated in 
the LPS-induced upregulation of TREM-1 promoter activity. 
AP-1 also seemed to be involved in the LPS-induced TREM-1 
transcription through the interaction with phosphorylated 
c-fos/c-Jun (64).

Interestingly, TREM-1 expression in response to lipoteichoic 
acid is MyD88 dependent, and the expression induced by LPS is 
mediated by the TRIF signaling but not by MyD88, which suggest 
that signaling for TREM-1 induction is dependent on the specific 
TLR ligands (65).

TReM-1 LiGAnDS AnD SiGnALinG

Activation of TREM-1 signaling is initiated when binding of the 
ligand to the receptor, which triggers the association and phos-
phorylation of the immunoreceptor tyrosine-based activation 
motif of the adaptor protein DAP12, resulting in the recruitment 
and activation of the non-receptor tyrosine kinase Syk. Syk, in 
turn, activates the downstream signaling molecules including 
PI3K, PLCγ, ERK1/2, and MAP kinases to induce the produc-
tion of inflammatory chemokines and cytokines, such as IL-8 
and myeloperoxidase (MPO), in neutrophils and IL-8, MCP-1, 
and TNF-alpha in monocytes (29, 66–68). In addition, TREM-1 
also regulates macrophage survival through Bcl-2 (69), alters the 
dynamics of pulmonary IRAK-M expression, and improves host 
defense during pneumococcal pneumonia (45).

Identification of TREM-1 ligands is very important for under-
standing the nature of TREM-1 signaling. Gibot et al. first revealed 
that a TREM-1 ligand was induced on murine granulocytes during 
experimental peritonitis and sepsis (35). Interestingly, the surface 
glycoprotein of filoviruses was identified as a ligand for TREM-1 
(70). Because endogenous signals released from necrotic cells 
could augment inflammatory responses through TREM-1, iden-
tification of the endogenous ligands would be more informative. 
HSP-70 and HMGB-1 from LPS-induced necrotic cell lysates 
might function as ligands for TREM-1, although the interaction 
between these proteins and TREM-1 was not confirmed in that 
study (71). Through screening hematopoietic cells for specific 
binding of a recombinant soluble fusion protein consisting of 
the extracellular domain of human TREM-1, Haselmayer et al. 
indicated that the natural ligand for TREM-1 was located on the 
surface of platelets (72). Considering the contribution of interac-
tion between platelets and immune cells to the development of 
sepsis (73, 74), further identification of the ligands for TREM-1 
activation in platelets was performed. Actin was identified as a 
TREM-1-interacting protein, and actin could activate inflam-
matory responses in a TREM-1-dependent manner (75). Since 
actin is a cellular cytoskeleton protein, there was a conflict about 
whether actin could be distributed on the cell surface. In fact, 
distribution of actin on the surface of platelets could be detected 

even in the resting state (76). Therefore, platelets did provide 
surface actin for TREM-1 recognition to activate signaling. In 
addition, HMGB1 was also confirmed as a TREM-1 ligand, which 
regulated Kupffer cell activation and development of hepatocel-
lular carcinoma (77). The peptidoglycan recognition protein 1 
(PGLYRP1) of neutrophils was also recognized as a functional 
ligand for TREM-1 (78). Until now, HMGB1, PGLYRP1, and 
extracellular actin have been identified as endogenous ligands for 
TREM-1 (75, 77, 78), which indicated that various proteins could 
be served as activate signal for TREM-1 signaling. Interestingly, all 
the identified endogenous ligands for TREM-1 were involved in 
the inflammatory conditions. PGLYRP1 could form homodimers 
for its antimicrobial activity and could be induced in response 
to the infection (79); HMGB1 and actin are the cellular proteins 
and could be released from the cells in inflammatory conditions  
(76, 80). The characteristics of these ligands for TREM-1 provided 
an image of how TREM-1 signaling can be activated to control 
infection or cause severe disease (Figure 1).

In the resting state (Figure 1A), two reasons to confirm that 
TREM-1 signaling could not be activated by the surface actin on 
platelets: one reason is that TREM-1 expression is not induced in 
normal conditions; the other reason is that activation of TREM-1 
on neutrophils by the surface actin on platelet requires the inter-
action of both cells, which is selectin/integrin dependent (72).

By contrast, low-level stimulation could activate neutrophils 
or monocytes and then induce expression of TREM-1 through 
various pattern-recognition receptors (Figure  1B). Then, the 
active immune cells could interact with platelets through selectin/
integrin dependent, which would further provide the condition 
for TREM-1 activation: the surface actin on platelets. In addi-
tion, the secreted PGLYRP1 and HMGB1 from host cells would 
also provide the endogenous signals for TREM-1 activation. 
This inflammatory condition mediated by TREM-1 signaling is 
required for some pathogen clearance (43, 44, 81).

However, if the pathogen could not be controlled by the 
inflammatory cells, the overwhelming stimulation might be pre-
sented. Then, TREM-1 expression would be induced significantly. 
Furthermore, the stimulation could further cause actin and 
HMGB1 to be released from the dying host cells, which would 
provide a large quantity of ligands for TREM-1 activation to cause 
progressive systemic inflammatory responses, resulting in severe 
inflammation.

A PROTeCTive ROLe OF TReM-1  
On S. suis inFeCTiOn

Through transcriptional analysis on the swine response to  
S. suis infection, Li et al. found that the expression of TREM-1 
was induced and that a few inflammatory genes were also highly 
expressed (24). Using a recombinant TREM-1 extracellular 
domain or an agonistic TREM-1 antibody as an inhibitor or 
activator of signaling, Yang et al. found that blocking TREM-1 
signaling could not improve the survival of mice experiencing  
S. suis-induced septic shock (81). This finding is inconsistent with 
the effects of blocking TREM-1 signaling on sepsis or septic shock 
caused by other pathogens (30–33, 35, 36). By contrast, they 
also found that the activation of TREM-1 signaling significantly 
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FiGURe 1 | The role of triggering receptor expressed on myeloid cells-1 (TREM-1) signaling on the development of streptococcal toxic-shock-like syndrome 
(STSLS) caused by Streptococcus suis. (A) In the resting state, two reasons to confirm that TREM-1 signaling could not be activated by the surface actin on 
platelets: One reason is that TREM-1 expression is not induced; the other reason is that activation of TREM-1 on neutrophils by the surface actin on platelet requires 
the interaction of both cells, which is selectin/integrin dependent. Therefore, the signaling does not occur. (B) At the early stage of S. suis infection, TREM-1 
expression is induced through various pattern-recognition receptors, such as toll-like receptor (TLR)2, TLR4, TLR6, and so on. The activated host cells could also 
secrete HMGB1 or peptidoglycan recognition protein 1 (PGLYRP1), which could serve as ligands for TREM-1 activation. In addition, the activated neutrophils could 
interact with platelets which could further provide surface actin for TREM-1 activation. The activation of TREM-1 signaling is essential for further activation of 
neutrophils and monocytes, which are important for bacterial clearance. At this stage, if S. suis could be significantly killed by these innate immune cells, the 
infection would be under control. (C) Severe infection would occur if the bacterial could resist the clearance. The Chinese epidemic S. suis strain has developed 
many strategies to resist the early killings, and the quick propagation of S. suis would provide more ligands for TLR activation to induce a significantly high level of 
TREM-1 expression. In addition, necrosis of host cells due to the infection of S. suis would provide much more ligands (such as actin and HMGB1) to activate 
TREM-1 signaling to cause severe inflammation. Ultimately, a TREM-1-mediated severe inflammatory response results in the cytokine storm, multiple organs failure, 
and high mortality—the characteristics of STSLS.
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improved the survival of mice infected with S. suis (81). These 
results indicated a protective role of TREM-1 on S. suis infection.

Furthermore, Yang et  al. also noticed that TREM-1 block-
age could intensify rather than inhibit the severe inflammatory 
response to S. suis infection, while activation could reduce 
inflammatory response (81). These results are confusing and give 
a contradictory function for TREM-1 signaling (23). However, 
the analysis on bacteria clearance indicated that the pro-inflam-
matory cytokine levels correlated well with the bacteria quantity 
in  vivo, which suggested that blocking TREM-1 signaling may 
affect S. suis clearance, resulting in exacerbate inflammation (81).

Neutrophils played a very important role in controlling S. 
suis infection (82, 83), and an analysis indicated that TREM-1 
signaling could significantly improve MPO level and neutrophils 
quantity in the blood during S. suis infection (81). Thus, the 
analysis further provided an explanation of how TREM-1 signal-
ing provided a protective role of TREM-1 on S. suis infection: 
TREM-1 activation enhanced the activation of neutrophils and 
then contributed to the clearance of pathogen. Thus, TREM-1 
blockage would inhibit inflammatory response and the activa-
tion of neutrophils, which would further reduce the clearance of  

S. suis. These would increase bacteria quantity and further cause 
severe inflammation to ultimately result in adverse outcomes of 
S. suis infection.

COnTRiBUTiOn OF TReM-1 TO STSLS

Triggering receptor expressed on myeloid cells-1 plays an essen-
tial role on S. suis clearance (81), and TREM-1 blockage alone 
cannot rescue the host from the infection. To directly evaluate 
the role of TREM-1 on causing severe inflammation, an inhibitor 
of TREM-1 signaling was used in the presence of antibiotics, 
although the treatment effectiveness on S. suis infection remains 
controversial (18). Treatment with ampicillin alone could kill 
bacterial efficiently and also reduce the inflammatory cytokine 
response; however, it cannot significantly improve survival rates 
(57). These findings are similar to the outcomes of the clinical 
treatment of pigs and humans during S. suis infection. However, 
killing the bacteria and blocking the TREM-1-mediated inflam-
matory response at the same time could effectively alleviate the 
severe inflammation and protect the host against epidemic S. suis 
infection (57). Thus, these results indicate that TREM-1 signaling 
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also contributes to the development of severe inflammation and 
STSLS. Undoubtedly, TREM-1 blockage in the presence of effec-
tive antibiotics would be a valuable treatment for STSLS.

COnCLUSiOn

Streptococcus suis infection may induce the expression of TREM-1 
through various receptor, such as TLR2 (84–86), TLR4 (87), 
TLR6 (88), and so on, although the pattern-recognition receptor 
mainly responsible for STSLS remains to be identified (85, 89).  
At the early stage of infection (Figure 1B), TREM-1 recognizes the 
natural ligands (such as surface actin on the platelets) and activate 
neutrophils, which is essential for bacterial clearance (81). If the 
bacteria can be significantly killed by neutrophils, the infection 
will be under control. However, the Chinese epidemic strain has 
evolved many strategies to evade killing by host immune cells, 
such as resistance of phagocytosis (83) and acidic stress in lys-
osomes and endosomes (90), evading entrapment and killing by 
neutrophil extracellular traps (91, 92), resistance of complement-
mediated killing (93, 94), and so on. If S. suis successfully resisted 
killing, the quick propagation of bacteria will provide much 
more ligands for the activation of pattern-recognition receptors 

to induce high levels of TREM-1 expression. In addition, necrosis 
of host cells due to the infection will also provide more ligands 
(such as actin and HMGB1) to activate TREM-1 signaling to 
cause severe inflammation. Ultimately, a TREM-1-mediated 
severe inflammatory response results in the cytokine storm, mul-
tiple organs failure, and high mortality—characteristics of STSLS 
(Figure 1C). Therefore, TREM-1 signaling plays protective and 
pathogenic roles on STSLS.
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