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ABSTRACT The efficacy of current influenza vaccines requires a close antigenic match between circulating and vaccine strains. As
such, timely identification of emerging influenza virus antigenic variants is central to the success of influenza vaccination pro-
grams. Empirical methods to determine influenza virus antigenic properties are time-consuming and mid-throughput and re-
quire live viruses. Here, we present a novel, experimentally validated, computational method for determining influenza virus
antigenicity on the basis of hemagglutinin (HA) sequence. This method integrates a bootstrapped ridge regression with antigenic
mapping to quantify antigenic distances by using influenza HA1 sequences. Our method was applied to H3N2 seasonal influenza
viruses and identified the 13 previously recognized H3N2 antigenic clusters and the antigenic drift event of 2009 that led to a
change of the H3N2 vaccine strain.

IMPORTANCE This report supplies a novel method for quantifying antigenic distance and identifying antigenic variants using
sequences alone. This method will be useful in influenza vaccine strain selection by significantly reducing the human labor ef-
forts for serological characterization and will increase the likelihood of correct influenza vaccine candidate selection.
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Seasonal influenza causes approximately 24,000 deaths and
200,000 hospitalizations in the United States annually (1–3),

and an influenza pandemic may kill millions of people in a short
time. Vaccination is the primary option to reduce influenza out-
breaks (4). Mutations in the influenza virus surface glycoproteins
hemagglutinin (HA) and neuraminidase (NA) can cause antigenic
drift, because these proteins, especially HA, are the primary targets
for host immunity (5, 6). Because influenza viruses frequently
undergo antigenic change in response to host immunity, circulat-
ing strains are continually monitored to optimize the antigenic
matches between vaccine and predicted community strains, a pro-
cess that is the key to a successful influenza vaccine program (7).
However, identifying antigenic variants is not a trivial task, and
current systems rely on empirical determination of antigenicity by
using methods such as hemagglutination inhibition (HI) assays.
Each year, thousands of scientists worldwide, including those
from 5 World Health Organization (WHO) collaborative centers,
more than 136 national influenza centers in 106 countries, more
than 80 participating laboratories in the United States’ National
Respiratory and Enteric Virus Surveillance System, and numerous
vaccine companies, generate data to inform influenza vaccine strain
selection (7). Vaccine mismatches can lead to vaccine failure, disease
outbreaks, and huge economic burdens (8, 9). As such, developing
additional rapid and robust methods to identify antigenic variants of
influenza virus remains a major public health endeavor.

Because influenza virus sequence data can be collected rapidly
and economically, sequence-based antigenic characterization can

shorten influenza variant detection time and increase influenza
surveillance coverage, thus facilitating influenza vaccine strain se-
lection. A few attempts at predicting influenza virus antigenic
variants based on the basis of genomic sequences have been pre-
viously reported. For instance, Lee and Chen developed a simple
method to correlate HI titer with the number of mutations be-
tween test and reference viral HA sequences (10). Liao et al. ap-
plied multiple and logistic regression analyses to compare HA
mutations to HI values (26). Huang et al. developed a decision tree
algorithm in drift variant prediction by using information theory
to derive association rules from HI data (12). Most recently, a
naive Bayes classifier was developed to derive features solely on the
basis of sequence comparison results, and these features were used
to compare antigenic similarities between sequences (13). How-
ever, to the best of our knowledge, none of these methods was able
to quantify influenza antigenic distance and to infer influenza an-
tigenicity for antigenic variant identification.

Here, we developed and validated a novel computational method
that integrates antigenic mapping and machine learning approaches
to quantify antigenic distances by using influenza HA1 sequences
(Fig. 1). This method, so-called antigenicity prediction via boot-
strapped ridge selection (Antigen-Bridges), integrates a bootstrapped
ridge regression with antigenic mapping to quantify antigenic dis-
tances by using influenza HA1 sequences. This method was used with
H3N2 influenza A virus sequences and identified the genomic signa-
tures associated with HA antigenicity and the mutations responsible
for antigenic drift events in H3N2 seasonal influenza viruses. By using
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historical serologic data, the antigenic scoring function derived from
this framework was validated to quantify the antigenic distances
solely on the basis of HA1 sequences, with an accuracy of approxi-
mately 80%, while over 95% of historical vaccine strains were pre-
dicted as antigenic variants.

RESULTS
Antigen-Bridges: sequence-based antigenic distance quantifi-
cation by machine learning. We developed a model using HA1
protein sequences to quantify influenza antigenic distances by in-
tegrating antigenic mapping and machine learning. In this model,
serologic data (i.e., HI titers) are first transformed into pairwise
antigenic distances between viruses by using matrix completion-

multiple dimensional scaling (14) followed by transformation of
the HA1 sequence alignment into a genetic distance matrix
(Fig. 1). Because surface residues of HA1 are predominantly re-
sponsible for antigenicity (5, 6), the genetic information of the
sites on the protein surface was the only information used to con-
struct the genetic distance matrix. A novel machine learning
method, antigenicity prediction via bootstrapped ridge selection
(Antigen-Bridges), was selected to correlate the antigenic distance
matrix with the genetic distance matrix.

The proposed computational method was developed on the
basis of the hypothesis that only a few features (instead of the
entire data set) are necessary to determine the overall data char-
acteristics. The rationale of this hypothesis is that the sites affect-
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FIG 1 Simplified framework of Antigen-Bridges. (A) Sequence alignments and antigenic mapping to construct genetic and antigenic profiles; (B) ridge
regression to identify antigenicity-associated sites and to detect mutations driving antigenic drift events; (C) antigenic distance prediction function to quantify
antigenic distances and identify antigenic variants on the basis of their HA1 protein sequence.
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ing influenza antigenicity are mostly in the head structures of the
HA protein, such as the antibody-binding sites Sa, Sb, Ca1, Ca2,
and Cb in H1N1 (6) and sites A, B, C, D, and E in H3N2 viruses (5,
15). For H3N2 viruses, approximately 100 residues exist in these 5
antibody-binding sites, and only a few of these residues have fre-
quently changed during antigenic drifts since 1968 (16–21). Fur-
thermore, it is well documented that approximately 75% of
epitopes have 15 to 25 residues (22), and only a few of these are
responsible for the majority of antibody binding (23), which may
be useful in predicting antigenic variants. The ridge regression
selects the residues that are most likely to be involved in determin-
ing antigenicity by selecting those that minimize the difference
between the genetic distance matrix and the antigenic distance
matrix. After we trained and tested the model, it assigned each
residue a weight indicating the influence of this residue on influ-
enza antigenicity—the larger the weight, the greater the influence
of the residue on influenza antigenicity. The number of
antigenicity-associated residues was decided by performing cross-
validation and bootstrapping, which aims to obtain the best match
between the genetic distance matrix and the antigenic distance
matrix. By integrating weights derived from ridge selection and
the biophysical properties of the selected antigenicity-associated
sites, a sequence-based antigenicity scoring function can be devel-
oped to quantify the antigenic distance between any two HA1
sequences. By using this function, the antigenic distance between
a newly isolated influenza virus and a known virus can be quanti-
fied solely from its HA1 sequence and an antigenic map con-
structed using the distance matrix (14). By applying the compu-
tational model to two antigenic clusters, we could also identify the
single and multiple sites that drive the antigenic drift.

Antigenic profiling derived from HA1 sequences by Antigen-
Bridges matches the antigenic profile derived from serological
data. Using the proposed computational method to analyze H3N2
influenza virus datasets spanning from 1968 to 2007 identified 39
antigenicity-associated sites, including 35 sites in the 5 reported
antibody-binding sites A to E (5): 9 in A (126, 131, 133, 135, 137,
140, 142, 144, and 145), 11 in B (155, 156, 158, 159, 160, 163, 188,
189, 193, 196, and 197), 4 in C (50, 53, 276, and 278), 6 in D (121,
172, 173, 214, 219, and 226), and 5 in E (57, 62, 63, 82, and 262)
(see Fig. S1A and Table S1 in the supplemental material). Residues
25, 202, 222, and 225 were also identified as being antigenicity
associated (see Table S1).

We attempted to use the identified antigenicity-associated sites
to develop a scoring function (Fig. 1) to quantify antigenic dis-
tances solely on the basis of HA1 sequences. Using this scoring
function, we constructed a sequence-based H3 antigenic map,
which we compared with a map generated by using HI data. The
Pearson’s correlation coefficient between the HI-derived anti-
genic map (see Fig. S1B) and the sequence-derived map (see
Fig. S1C) was 0.9355, indicating a high level of congruence be-
tween the methods.

Mutations driving H3N2 influenza antigenic drift predicted
by Antigen-Bridges were validated by bench experiments. The
H3N2 HI data of the 1968 to 2007 H3N2 viruses describe at least
13 major antigenic clusters: HK68, EN72, VI75, TX77, BK79, SI87,
BE89, BE92, WU95, SY97, FU02, CA04, and BR07 (16, 24). We
used our model to identify the mutations responsible for these
antigenic transitions. The 12 antigenic drift events were caused by
3 single-residue mutations, 6 double mutations, and 3 multiple-

residue mutations, with positions 135, 145, 156, and 193 being
involved in at least 2 of the events (Table 1).

The residues responsible for prior H3N2 antigenic drifts are at
either single or multiple antibody-binding sites (Table 1) (http:
//sysbio.cvm.msstate.edu/H3N2MachineLearning/FIGW1.pdf),
as reported previously (5). For example, substitutions at residues
189 and 155 that caused the antigenic drift from cluster BK79 to
SI87 are in the B binding site; substitutions at residues 135, 145,
and 156 that caused the antigenic drift from cluster BE89 to BE92
are in the neighboring binding sites A and B; and substitutions at
residues 62, 156, and 158 that caused the antigenic drift from
cluster WU95 to SY97 are in sites B and E, which are relatively far
apart in H3 HA’s three-dimensional structure (http://sysbio.cvm
.msstate.edu/H3N2MachineLearning/FIGW1.pdf).

The computationally identified mutations driving 3 antigenic
drift events (BE92 to WU95, WU95 to SY97, and SY97 to FU02)
were selected for experimental validation. Single and multiple
mutants were generated by performing site-directed mutagenesis
and reverse genetics with the following templates: A/Johannes-
burg/33/1994(H3N2) (JO/33; representing antigenic cluster
BE92), A/Nanchang/933/1995(H3N2) (NA/933; representing
cluster WU95), and A/Sydney/05/1997(H3N2) (SY/05; represent-
ing cluster SY97). Although 7 mutants were generated, NA933-
E158K was not successfully rescued despite multiple attempts.
These mutations were expected to relocate the virus from one
antigenic cluster to the targeted antigenic cluster in the antigenic
map. For example, the N145K and G172D mutations of JO/33
were expected to relocate JO/33 from antigenic cluster BE92 to
antigenic cluster WU95. All of the introduced mutations led to at
least a one-unit change in antigenic distance from the parental
wild-type strains, corresponding to a 2-fold change in HI titer (see
Table S2 in the supplemental material). Simultaneous mutations
N145K and G172D and simultaneous mutations K62E, K156Q,
and E158K were required to relocate the mutant from cluster
BE92 to WU95 and from cluster WU95 to WY97, although N145K
and K156Q dominated the changes leading to these 2 antigenic
drift events. Q156H moved the mutant from cluster SY97 to FU02
(Fig. 2). The results of microneutralization (MN) assays con-
firmed those of HI assays (see Table S3).

To confirm our computational results, we generated 10 addi-
tional viruses having mutations outside the predominant sites
previously examined: JO/33-rg-K135T, JO/33-rg-R197Q, JO/33-
rg-N262S, JO/33-rg-S278N, NA/933-rg-G142R, NA/933-rg-
V144I, NA/933-rg-V196A, SY/05-rg-L25I, SY/05-rg-H155T, and

TABLE 1 Predominant mutations that drove H3N2 antigenic drifts
from 1968 to 2007

Antigenic drift Mutation(s)

HK68 ¡ EN72 G144D
EN72 ¡ VI75 S145N-S193D
VI75 ¡ TX77 D53K-E82K
TX77 ¡ BA79 K156E
BK79 ¡ SI87 Y155H-K189R
SI87 ¡ BE89 G135E-N145K-N193S
BE89 ¡ BE92 E135K-K145N-E156K
BE92 ¡ WU95 N145K-G172D
WU95 ¡ SY97 K62E-K156Q-E158K
SY97 ¡ FU02 Q156H
FU02 ¡ CA04 K145N-Y159F
CA04 ¡ BR07 S193F-D225N
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SY/05-rg-W222R. The results of serologic experiments showed
that these mutants had antigenic profiles that differed from those
of the parental wild-type strains (see Table S4 in the supplemental
material). The Pearson correlation coefficient between antigenic
distances estimated by using HI data and those estimated by using
HA1 sequence data was 0.7148 (see Table S4), indicating that
other residues outside the dominant epitope sites also contribute
to antigenic drift.

Antigen-Bridges can predict the antigenic variants for the next
influenza season(s). The key component of selecting influenza vac-
cine strains is comparing the antigenic properties of circulating influ-
enza viruses with those of viruses from previous seasons. Thus, an
effective sequence-based antigenic variant identification system
would be expected to predict the antigenic profile of a virus on the
basis of historical training data. We used historical training data
(from 1968 to the year to be predicted) to test the prediction accura-
cies of our model for future seasons. The threshold value used to
define an influenza antigenic variant was 2 units (25). The prediction
accuracy measures the percentile of predicted antigenic variants
matching the antigenic variants in the benchmark data. Our results
had an average accuracy of 83% (n � 18 years, from 1990 to 2007) for
predicting antigenic variants emerging in the coming year (see Ta-
ble S5 in the supplemental material). The prediction accuracy de-
creased to approximately 70% when we used the algorithm to predict
antigenic variants coming in the next 5 years.

Although no sequence-based quantitative algorithm to measure
influenza antigenic distance existed prior to this study, a few groups
reported finding residues to be associated with antigenic variations of
H3N2 virus. For example, Liao et al. found 25 residues via multiple
and logistic regression analyses of HA mutations and HI values (26),
and Smith et al. identified 44 residues via simple sequence alignments
(16). To compare the effectiveness of our proposed computational
method in quantifying antigenic distance to that of published residue
sets and to confirm the validity of the 39 identified sites, we per-
formed comparative analyses using historical data spanning from
1968 to 2003. Our results demonstrated that combining our 39 pre-
dicted sites and the weight matrix derived from Antigen-Bridges
yields the best prediction accuracy (see Table S5 in the supplemental
material). Furthermore, using the weight matrix derived from
Antigen-Bridges improved the prediction accuracy of the 25-residue
set (26) and 44-residue set (16).

Large-scale sequence-based antigenic profiling suggested
less-punctuated changes in antigenic evolution of H3N2 sea-
sonal influenza viruses. Using publicly available nonredundant

FIG 2 Experimental validation of select predicted residues’ ability to drive
antigenic drift events. In total, 17 single-, double-, or multiple-site mutants of
the residues shown in Table 1 were generated (see Table S2 in the supplemental
material for the list). HI experiments were performed with these mutants and
their corresponding wild-type strains (JO/33, NA/933, and SY/05). The exper-
imentally generated mutants are denoted by the suffix “EXP.” To facilitate the
comparison, we used Antigen-Bridges to project the mutated HA (Fig. 1). The

(Continued)

Figure Legend Continued

computationally simulated mutants (Table 1) are denoted by the suffix “SIM.”
For example, 145EXP in Fig. 2A represents an experimentally derived N145K
mutant of JO/33 wild-type virus, whereas 145SIM is a computer-simulated
N145K mutant of JO/33s HA sequence. Here, 1 unit corresponds to a 2-fold
change in HI value. The overall Pearson’s correlation coefficient r between the
experimental and predicted antigenic distance matrices is 0.7148 (see Table S4
in the supplemental material). The two testing antigenic clusters are labeled in
gray and blue, respectively. The viruses in white are not antigenically defined.
The wild-type strains used in experiments are marked in yellow. The experi-
mentally generated mutants are marked in pink if they are located in the
antigenic cluster where their corresponding wild-type strain is located and in
purple if in the expected antigenic cluster by mutation(s). The computation-
ally generated mutants are marked in maroon if they are located in the anti-
genic cluster where their corresponding wild-type strain is located and in green
if in the expected antigenic cluster by mutation(s).
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HA1 sequences (n � 3,332), we generated an exhaustive H3 anti-
genic map. Phylogenetically, the H3 influenza A viruses isolated
from 1968 to 2012 show a gradual change over time (Fig. 3A). The
previously reported 13 antigenic clusters were on this map, al-
though some viruses did connect the antigenic clusters (Fig. 3B).
The results of further analyses showed that the multiple residues
that we had previously identified as causing some of the antigenic
drifts (Table 1) did not always appear simultaneously. For exam-
ple, the mutations K62E, K156Q, and E158K caused the antigenic
drift from cluster WU95 to SY97 (Table 1), with the predominant
viruses in the WU95 and SY97 clusters having 62K-156K-158E
and 62E-156Q-158K residues, respectively. H3N2 viruses with
62K-156K-158E residues were predominant in 1996, and those
with 62E-156Q-158K residues were predominant after the au-
tumn of 1997. In February and March 2007, a few intermediate
viruses connected the WU95 and SY97 clusters, and these viruses
had 62K-156K-158K, 62K-156Q-158K, or 62E-156K-158K resi-
dues (see Table S6 in the supplemental material and http://sysbio
.cvm.msstate.edu/H3N2MachineLearning). Thus, antigenic
changes in H3N2 viruses are more likely to occur gradually than
simultaneously.

Detection of antigenic drifts by Antigen-Bridges. A signifi-
cant antigenic cluster emerged in 2009 and 2010 that corresponds
to the change of the H3N2 vaccine candidate from A/Brisbane/10/
2007(H3N2) to A/Perth/16/2009(H3N2) (27). The antigenic dis-
tance between the 2 viruses is about 2.39 units on our antigenic
map, supporting the need for this change. In February 2012, the
WHO suggested using A/Victoria/361/2011(H3N2)-like virus as
the influenza vaccine candidate for the upcoming influenza sea-
son in the autumn of 2012. Antigen-Bridges indicates that the
antigenic distance between A/Perth/16/2009(H3N2) and the
2012-2013 Northern Hemisphere vaccine candidate A/Victoria/
361/2011(H3N2) is only 0.44 unit (Fig. 3D). Sequence compari-
son results show that 9 residues differ between A/Perth/16/
2009(H3N2) and A/Victoria/361/2011(H3N2) (E1): S45N

(antibody-binding site C), T48I (site C), K62E (site E), K144N
(site A), A198S (site B), T212A (site D), S214I (site D), V223I, and
N312S. Among these residues, K62E, K144N, and T212N were
detected sporadically in the 2009-2010 season, more frequently in
the 2010-2011 season, and predominantly in the 2011-2012 sea-
son.

Residues 62 and 144 are among the predominant antigenicity-
associated sites identified by Antigen-Bridges. However, Antigen-
Bridges also indicated a large extent of antigenic diversity among
the epidemic H3N2 strains in the 2011-2012 season (Fig. 3). Be-
sides those mutations in A/Victoria/361/2011(H3N2) (E1), se-
quence analyses showed that the common mutations D53N
(antibody-binding site C) and N145S (site A) appeared in some
strains but without clear temporal patterns. Both mutations are
among our 39 predicted antigenicity-associated sites and could
contribute to the large extent of antigenic diversity among the
epidemic strains of the 2011-2012 season (Fig. 3D).

Estimated antigenicity of the variant H3N2 viruses using
Antigen-Bridges. In 2011 and 2012, more than 300 zoonotic in-
fections with a variant H3N2 (H3N2v) virus were reported in
people attending state fairs in the United States (28). In a proof-
of-principle test of our model’s ability to estimate the antigenicity
of an emerging virus, we produced a sequence-based antigenic
map of the H3N2v viruses. This map suggested that the H3N2v
isolates were antigenically related to the isolates in the BE92 and
WU95 antigenic clusters (Fig. 3). This result was confirmed by HI
data, which showed that the H3N2v viruses reacted to postinfec-
tion antisera raised against A/Ann Arbor/03/1993(H3N2) (AN/
03), JO/33, or NA/933 (see Table S7 in the supplemental material).
The percentages of sequence identity between H3N2v and either
AN/03, JO/33, or NA/933 were 87.24% to 90.27%. On the basis of
the public sequences, A/New York/571/1996(H3N2) has the
smallest antigenic distance from these H3N2v viruses, varying
from 0.44 to 0.98 units, with corresponding percentages of se-
quence identity from 89.36% to 89.97%.
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FIG 3 HA1 sequence-based H3N2 antigenic mapping. (A) Phylogenetic tree of H3N2 viruses (1968 to 2012). The selected vaccine strains recommended by the
WHO are annotated in this tree. (B) The antigenic map of H3N2 influenza A virus based on nonredundant HA1 sequences (n � 3332). The scoring function was
trained by using HI datasets of viruses from 1968 to 2007. The sequences with HI values are marked in color, and others are gray. (C) An antigenic submap of
H3N2 viruses isolated from 1991 to 2001. The recently emerged swine origin H3N2v isolates (51) are marked in cyan. (D) An antigenic submap of H3N2 viruses
isolated from 2004 to 2012. The viruses are color coded by year, with vaccine strains annotated in enlarged spheres. (E) The map of cluster WU95 and SY97,
showing the gradual change. The viruses marked in yellow have 1 or more of the predominant mutations that drive antigenic drift from WU95 to SY97.
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DISCUSSION

The proposed computational framework integrates a machine
learning approach with an antigenic mapping approach and
quantifies influenza antigenic distance on the basis of HA1 se-
quence. In this study, this framework is applied and validated in
H3N2 influenza A viruses. H3N2 is used as an example because
antigenic drift occurred more frequently in H3N2 viruses than in
any other subtypes of seasonal influenza viruses, including H1N1,
2009 H1N1, and influenza B viruses. Furthermore, the human
vaccine strain used against the H3N2 virus was updated more
frequently than those against other subtypes. For example, the
vaccine strain against H3N2 virus has been updated at least 27
times since 1968 (20 times from 1977 to 2009) but only 9 times for
H1N1 virus from 1977 to 2009 and 15 times for influenza B virus
from 1972 to 2011. However, our method can be easily adapted to
study other influenza subtypes. Because antibody binding sites
may differ among subtypes of influenza A viruses, we will likely
need to derive a subtype-specific quantification function. For ex-
ample, the results of our recent study of H5N1 highly pathogenic
avian influenza virus suggested that the antigenicity-associated
sites of H5N1 viruses are not necessarily the same as those of
H3N2 and H1N1 viruses (29). To use this method for other sub-
types of influenza A viruses, we can use serologic data of the target
subtype to train and build a subtype-specific scoring function.

Surveillance data show that new antigenic drift variants of ep-
idemiological importance contain a mean of 13.2 HA amino acid
substitutions, with more than half of them in antigenic sites (20).
Our proposed computational model identified 39 antigenicity-
associated sites, with the dominant sites determining the antigenic
drift events from 1968 to 2007. Ndifon et al. (30) presented a
competitive model to predict antibody escape, proposing that an-
tigenic drift events would be associated with amino acid changes
that occur in epitopes with high neutralization efficiencies (i.e.,
epitopes A, B, and D) rather than in those with low neutralization
efficiencies (i.e., epitopes C and E). Supporting this prediction, the
major residues our algorithm identified are in epitopes A and B.
Among these predicted sites, 142, 156, 193, 219, and 225 have been
linked to egg adaptation (31). More studies are needed to estimate
the effect of these sites on our scoring function.

The proposed model quantifies antigenic distance based only
on HA1 sequences. Although the NA gene of H3N2 also under-
goes antigenic drift (32), HA’s effect on the antigenic profile is
dominant over that of NA in both B- and T-cell priming because
of HA-NA competition (33). Nevertheless, NA’s effect on influ-
enza antigenicity will be explored to optimize the scoring func-
tion.

During influenza surveillance, tens of thousands of influenza
viruses are isolated, and immunologic assays such as HI and MN
are performed to detect antigenic variants. Although this is a ro-
bust system, issues such as the reduction seen in H3N2 virus bind-
ing to red blood cells (34, 35) can lead to problems performing and
interpreting HI assays. Furthermore, because antigenic character-
ization is relatively labor-intensive, only a small portion (gener-
ally, fewer than 20%) of the influenza isolates sequenced will be
antigenically characterized. In the absence of a reliable, cost-
efficient, high-throughput assay, the sequence-based method pro-
posed in this study can be used to substantially bolster the vaccine
strain selection process. Our sequence-based method can signifi-
cantly shorten influenza variant detection time and increase influ-

enza surveillance coverage. Furthermore, this method can serve as
an initial screen of antigenic variants and reduce current assay
workloads in influenza surveillance, because few of the antigenic
variants detected by using this sequence-based method are se-
lected for experimental validation.

MATERIALS AND METHODS
Antigen-Bridges algorithm. (i) Generation of sequence-derived dis-
tance matrix for machine learning. Two scoring functions, namely bi-
nary function and pattern-induced multisequence alignment (PIMA)
function (36, 37), were used to generate the similarity matrix x. In the
binary scoring function, the score of a pair of amino acids is 1 if they are
different, and it is 0 otherwise. In the PIMA scoring function (37), the
score of a pair of amino acids is shown in http://sysbio.cvm.msstate.edu
/H3N2MachineLearning/FIGW2.pdf. A comparison shows that PIMA
performs slightly better than binary function in accuracy; therefore, PIMA
was used throughout this study (http://sysbio.cvm.msstate.edu
/H3N2MachineLearning/TABLEW1.pdf).

(ii) Generation of the HI-derived antigenic distance matrix for ma-
chine learning. As we did in our earlier study of antigenic maps, we sorted
the viruses and antisera by temporal order (14). The resulting HI table had
a banded structure: the entries in the diagonal zone of this matrix were
composed of high reactors and missing values, whereas the entries in the
rest of the matrix were either low reactors or missing values (http://sysbio
.cvm.msstate.edu/H3N2MachineLearning/FIGW3.pdf). To minimize the
effects of low reactors, the temporal model that was created by using the
mathematical and computer modeling of the dynamic systems approach
(14) with a window size of 12 years was adapted to generate the long-
distance matrix Mlong (long function). The Mlong value was used to
learn the weight matrix wlong.

We also recovered HI values without using a temporal model. The
local function recovered only HI values spanning an interval of 12 years,
and average values were used for entries having multiple learning pro-
cesses because of the sliding window. The short-distance matrix Mshort
(short function) was used to learn the weight matrix wshort.

(iii) Antigenicity determining feature selection using machine
learning. Ridge regression for feature selection is a machine learning
strategy that is effective for selecting a small to moderate number of good
features; in addition to Antigen-Bridges, Lasso (38) was applied to our
data. We found that the proposed Antigen-Bridges method had a predic-
tion accuracy that was slightly better than that of the more conventional
Lasso method, with the added advantages of being more stable and more
computationally efficient than Lasso.

Specifically, let x � [1,x=] and w � [w0, w1, w2, . . ., w329]. Then, ridge
regression can be performed to obtain w by solving the following optimi-
zation equation:

Minimizew

1
2
�y � xw�

2
2 � ��w�2

where the regularization parameter � can be tuned to optimize accuracy.
The larger the weight value, or wj, of a residue j, the greater the influence
the residue site will have on the antigenic distance quantification. To
optimize the parameter � in the ridge regression variable selection form,
we set � to be 0.01, 0.1, 1, 10, 100, 350, 400, 1,000, or 10,000. A comparison
of the outcomes showed that a � value of 350 yielded the highest accuracy,
0.8378, in predicting the antigenicity of viruses (see Table S8 in the sup-
plemental material).

Ridge regression can assign a weight to each residue via learning. How-
ever, it is important to determine which residues predominantly drive
influenza antigenicity, because not all residues in HA1 affect antigenicity.
To determine the number of predominant residues, we plotted the root
mean square error (RMSE) curve based on the variation of the number of
residues (http://sysbio.cvm.msstate.edu/H3N2MachineLearning/FIGW4
.pdf). The smaller the RMSE is, the better the learning results will be. Our
results suggest that approximately 40 residues are enough to achieve the
best performance.
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To increase the feature selection stability and to minimize the likeli-
hood of overfitting and false-positive errors, we randomly replaced 20%
of the influenza viruses in each run of ridge regression learning and then
selected 40 sites from each run for analysis. A total of 100 runs were
performed, and the detection rates on each site were used as the confi-
dence level for whether the site was an antigenicity-associated site. In these
100 runs, 60 individual residues were detected. The residues with a boot-
strap value of at least 50 were deemed to be antigenicity-associated sites:
39 sites were thus identified (see Table S1 in the supplemental material).

(iv) Sequence-based antigenic distance-predicting function. After
determining the antigenicity-associated sites and their corresponding
weights by using machine learning, we quantified the antigenic distance
using the following function:

y � w0 ��
i�0

p

wix1

where the similarity x is derived by PIMA as described above, and w0

is a parameter optimized through cross-validation methods. To quan-
tify the entries in the diagonal zone (http://sysbio.cvm.msstate.edu
/H3N2MachineLearning/FIGW3.pdf), wshort was used; otherwise,
wlong was used. The constant term w0 was 1.3958 for long distances and
0.5676 for short distances. Here, we adapted a linear function instead of
using a nonlinear prediction function by reducing the computational bur-
dens and increasing the scalability of the proposed method. However, we
will explore using a nonlinear function in a future study. Note that the
weight could be either positive or negative, because not all mutations will
change influenza antigenicity in the same direction.

(v) Performance assessment. On the basis of the 39 single-mutation
sites identified by the proposed computational model (see Table S1 in the
supplemental material), the antigenic distances of viruses in year k �
[1990, 2003] were predicted from their HA protein sequences by using the
viruses in some year span before k as training data. Five schemes (Pred1,
Pred2, Pred3, Pred4, and Pred5) were applied. Pred1 predicts the pairwise
distances of viruses in each pair of consecutive years k and k � 1 for k �
[1990, 2003] by using viruses in [1968, k � 1] as training data. Pred2
predicts the distance between viruses in year k � 2 and those in years k and
k � 1 by using viruses in [1968, k � 2] as training data. Similar definitions
hold for Pred3, Pred4, and Pred5 (see Table S5 in the supplemental ma-
terial).

Antigenic distances larger than 4-fold (as measured by HI titer) were
treated as significant changes in antigenicity (25). The 4-fold change (2
units of antigenic distance) was used as the threshold to partition each pair
of antigens into 2 categories, nonvariant or variant. Antigenic distances
larger than 2 units were treated as variant (i.e., positive). We tested the
prediction accuracy using viruses isolated after 1990 because of the pau-
city of viruses isolated from 1968 to 1989. The prediction accuracy mea-
sures the percentiles of antigenic variants (i.e., true positive) and nonvari-
ants (i.e., true negative) in the testing samples. The prediction was
documented as being true positive if the antigenic distance predicted by
Antigen-Bridges was indeed an antigenic variant when the pairwise anti-
genic distance measured by antigenic mapping using HI data was 2 units
or more. Likewise, the prediction was documented as being true negative
if the antigenic distance predicted by Antigen-Bridges was an antigenic
nonvariant when the pairwise antigenic distance measured by antigenic
mapping by using HI data was less than 2 units. A total of 6,909 pairs of
antigenic distances were used in this training and testing.

The Prediction receiver operating characteristic (ROC) curve is a
graphical plot of the sensitivity, or true-positive rate, against the false-
positive rate, or 1 specificity, and yields a binary classification system with
different decision thresholds. The ROC curves were constructed using
different antigenic distance thresholds to partition each pair of antigens
into two categories, nonvariant or variant. The threshold values for the
classifier boundary range from 0.1 to 7 in increments of 0.1; thus, each
ROC curve includes 70 points. The ROC curve shows a systematic profile
of the predictive performance of Antigen-Bridges (see Fig. S2 in the sup-
plemental material). The prediction accuracy can be evaluated on a ROC

curve by using the threshold of 2 units of antigenic distance as the decision
threshold. All curves show that all 5 prediction schema (Pred1 to Pred5)
have a true-positive rate of 70%, with a false-positive rate of less than 20%.
Pred1 outperformed other methods (see Fig. S2).

Besides ROC curves, we also assess the performance by comparing
RMSE and Pearson correlation coefficient (CC) as we did before (14).
Usually, a smaller RMSE and a higher CC indicate better performance.

(vi) Comparison with other reported sets of antigenicity-
determined features. To prove the effectiveness of the identified 39 resi-
dues in antigenic distance measurements, we compared the predictive
accuracies of our 39-residue set with that of 2 reported antigenicity-
associated residue sets: a 25-residue set proposed by Liao et al. (26) and a
44-residue set proposed by Smith et al. (16). The data and accuracy defi-
nition used here is the same as the one described in the “Sequence-based
antigenic distance-predicting function” section. Because neither Liao et
al. (26) nor Smith et al. (16) reported a quantitative function, we used 2
approaches to compare the prediction accuracy of their predominant res-
idues to those of ours: (i) assign equal weights to each residue and (ii)
assign weights by using our algorithm Antigen-Bridges.

Selection of the mutations that drove historical antigenic drift
events. In addition to knowing the number of residues determining in-
fluenza antigenicity, it is important to understand the mutations that
drove historical antigenic drift events. Here, the machine learning model
was applied subsequently to 2 adjacent virus clusters among the groups
HK68, EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97, FU02,
CA04, and BR07. Similar to the method of antigenicity-associated site
selection, selection of these mutations was made according to the RMSE
curve, and each residue was assigned a weight, which was used to generate
the scoring function as an equation (3). To determine the effect of each
mutation, we used this scoring function to identify the single-site or
multiple-site mutations driving antigenic drifts. The criteria to be deemed
a predominant mutation were that a given mutation would move an in-
fluenza virus from its parental wild-type strain position to the center of the
subsequent antigenic cluster in a corresponding antigenic map. The min-
imum set of mutations needed for the 12 historical H3N2 antigenic drift
events are listed in Table 1 (see also Fig. 2 and http://sysbio.cvm.msstate
.edu/H3N2MachineLearning/FIGW5.pdf for simulation cartographies).
The residues associated with these antigenic drifts were a subset of those
identified in our earlier analyses as being antigenicity-associated sites (see
Table S1).

Surface residue and glycosylation site identification. GETAREA
software (http://curie.utmb.edu/getarea.html) (39) was used to predict
whether or not residues were on HA’s surface. H3N2’s three-dimensional
HA structure (Protein Data Bank [PDB] identifier [ID] 2VIU) was used as
the template. A total of 142 residues were predicted to be located at the HA
protein’s surface (http://sysbio.cvm.msstate.edu/H3N2MachineLearning
/TABLEW2.pdf).

NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) was used to
identify potential glycosylation sites, and no antigenicity-associated sites
were identified as being glycosylation sites. The 13 potential glycosylation
sites are at residues 8, 22, 38, 45, 63, 81, 122, 126, 133, 144, 165, 246, and
285 and occur in one or more sequences of the 512 test viruses. Among
these sites, residues 63, 126, 133, and 144 are among those 39 residues
predicted to predominantly affect antigenicity. However, residue 144 was
not predicted to be a glycosylation site among sequences of viruses iso-
lated from 1968 to 1972, but it is predicted to drive antigenic drift from
cluster HK68 to EN72 (Table 1). Because no antigenicity-associated sites
were identified as being glycosylation sites, the number of glycosylation
sites in H3N2 virus is relatively small, and glycosylation status can be
affected by factors other than protein sequence. Thus, our prediction
function does not consider glycosylation.

Viruses, sera, and serologic and sequence datasets. The H3N2
influenza viruses used were provided by the Centers for Disease Control
and Prevention and BEI Resources (see Table S2 in the supplemental
material). The ferret antisera were generated by using 6- to 8-week-old
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ferrets that had HI baseline titers less than 1:10 against A/Brisbane/
10/2007(H3N2), A/Brisbane/59/2007(H3N2), and A/California/4/2009
(H1N1). The H3N2 HI table used for training contains sequences of
512 viruses and 133 serum samples collected from 1968 to 2007 and was
created by combining an HI table containing data from 1968 to 2003 (16)
and a sub-HI table containing data from 2002 to 2007 (40). The selected
viruses must have been tested against at least 5% of the 133 serum sam-
ples, and their full-length HA1 sequences must be available in public
databases. The 512 H3N2 viruses were grouped into 13 clusters:
HK68, EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97, FU02,
CA04, and BR07 (16). The full HI data are in Table S2. The HI table and
viral sequences used are available at http://sysbio.cvm.msstate.edu
/H3N2MachineLearning.

The HA1 sequences of 5,878 viruses isolated from 1968 to 2012 (in-
cluding 9 swine origin viruses) and 26 vaccine strains were downloaded
from the influenza virus resources (41). With 512 sequences from the
benchmark data, there are 6,390 sequences in total. After removing re-
dundant sequences, 3,332 sequences, including those of 5 H3N2v viruses
(42), remained for the following analyses. These sequences were aligned
by using MUSCLE (43) and reordered by isolation year to form the align-
ment file (http://sysbio.cvm.msstate.edu/H3N2MachineLearning/)

Antigenic map construction and phylogenetic tree construction.
The serologic data-based antigenic maps were constructed directly from
HI data by using AntigenMap3D (14, 44). First, the antigenic distance
matrices were measured by using the sequence-based antigenic distance
predictive function, and then classical multidimensional scaling (45) was
used to generate the antigenic map, which was visualized by using Jmol
(46).

Phylogenetic trees were generated by using GARLI version 0.95 (47) to
perform the maximum likelihood estimation method, and the bootstrap
values were generated by using PAUP* version 4.0 beta (48) to implement
neighbor-joining methods.

Experimental validation. The mutagenesis, reverse genetics, and
serologic assays were conducted as described (29). Briefly, the HAs of
A/Johannesburg/33/1994(H3N2), A/Nanchang/933/1995(H3N2), and
A/Sydney/05/1997(H3N2) were used as the templates for mutagenesis
with the QuikChange II site-directed mutagenesis kit. All mutations were
confirmed by sequencing. Viruses were generated by using pHW2000
clones of the mutated HAs and appropriate NAs, with the 6 remaining
genes belonging to A/Puerto Rico/8/34(H1N1) (49). The mutagenesis tar-
geted 2 types of residues: (i) those with mutations predicted to play a
dominant role in driving antigenic drift from cluster BE92 to WU95, from
cluster WU95 to SY97, and from cluster SY97 to FU02 (Table 1) and (ii)
those with mutations predicted to play a dominant role in driving anti-
genic drift from cluster BE92 to WU95, cluster WU95 to SY97, or cluster
SY97 to FU02 that were also predicted to be antigenicity-associated sites
(see Table S1 in the supplemental material). A total of 19 mutants (17
single-site mutants and 2 multiple-site mutants) were rescued (see Ta-
ble S2). Despite four trials, the single mutant JO/33-E158K was not res-
cued.

HI titer assays were performed as described (29) by using 0.5% turkey
red blood cells. The MN assay was adapted from the protocol of the Cen-
ters for Disease Control and Prevention (50).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org
/lookup/suppl/doi:10.1128/mBio.00230-13/-/DCSupplemental.

Figure S1, TIF file, 7.3 MB.
Figure S2, TIF file, 2.2 MB.
Table S1, DOCX file, 0.1 MB.
Table S2, DOCX file, 0.1 MB.
Table S3, DOCX file, 0.1 MB.
Table S4, DOCX file, 0.1 MB.
Table S5, DOCX file, 0.1 MB.
Table S6, DOCX file, 0.1 MB.
Table S7, DOCX file, 0.1 MB.

Table S8, DOCX file, 0.1 MB.

ACKNOWLEDGMENT

We thank Zhu Guo and Jianqiang Ye for their comments, Zhipeng Cai for
technical assistance, and Xiyan Xu for providing H3N2 influenza A vi-
ruses.

This study was supported by RC1AI086830 from the U.S. National
Institutes of Health.

REFERENCES
1. CDC. 2010. Estimates of deaths associated with seasonal influenza—

United States, 1976 –2007. MMWR Morb. Mortal. Wkly. Rep. 59:
1057–1062.

2. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson
LJ, Fukuda K. 2003. Mortality associated with influenza and respiratory
syncytial virus in the United States. JAMA 289:179 –186.

3. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox
NJ, Fukuda K. 2004. Influenza-associated hospitalizations in the United
States. JAMA 292:1333–1340.

4. Harper SA, Fukuda K, Uyeki TM, Cox NJ, Bridges CB, Centers for
Disease Control and Prevention (CDC) Advisory Committee on Im-
munization Practices (ACIP). 2004. Prevention and control of influenza:
recommendations of the Advisory Committee on Immunization Practices
(ACIP). MMWR Recomm. Rep 53:1– 40.

5. Wilson IA, Cox NJ. 1990. Structural basis of immune recognition of
influenza virus hemagglutinin. Annu. Rev. Immunol. 8:737–771.

6. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. 1982. The antigenic
structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype).
Cell 31:417– 427.

7. WHO Writing Group, Ampofo WK, Baylor N, Cobey S, Cox NJ, Daves
S, Edwards S, Ferguson N, Grohmann G, Hay A, Katz J, Kullabutr K,
Lambert L, Levandowski R, Mishra AC, Monto A, Siqueira M, Tashiro
M, Waddell AL, Wairagkar N, Wood J, Zambon M, Zhang W, Zhang
W. 2012. Improving influenza vaccine virus selection: report of a WHO
informal consultation held at WHO headquarters, Geneva, Switzerland,
14 –16 June 2010. Influenza Other Respi. Viruses 6:142–152.

8. Kilbourne ED, Smith C, Brett I, Pokorny BA, Johansson B, Cox N.
2002. The total influenza vaccine failure of 1947 revisited: major intrasu-
btypic antigenic change can explain failure of vaccine in a post-World War
II epidemic. Proc. Natl. Acad. Sci. U. S. A. 99:10748 –10752.

9. de Jong JC, Beyer WE, Palache AM, Rimmelzwaan GF, Osterhaus AD.
2000. Mismatch between the 1997/1998 influenza vaccine and the major
epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-
induced antibody response to this strain in the elderly. J. Med. Virol.
61:94 –99.

10. Lee MS, Chen JS. 2004. Predicting antigenic variants of influenza
A/H3N2 viruses. Emerg. Infect. Dis. 10(8):1385–1390.

11. CDC. 2012. Update: influenza A (H3N2)v transmission and guidelines—
five states, 2011. MMWR Morb. Mortal. Wkly. Rep. 60:1741–1744.

12. Huang JW, King CC, Yang JM. 2009. Co-evolution positions and rules
for antigenic variants of human influenza A/H3N2 viruses. BMC Bioin-
formatics 10(Suppl 1):S41.

13. Mansfield KG. 2007. Viral tropism and the pathogenesis of influenza in
the mammalian host. Am. J. Pathol. 171:1089 –1092.

14. Cai Z, Zhang T, Wan XF. 2010. A computational framework for influ-
enza antigenic cartography. PLoS Comput. Biol. 6:e1000949. doi: 10.1371/
journal.pcbi.1000949.

15. Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Jr, Wilson IA. 2010.
Structural basis of preexisting immunity to the 2009 H1N1 pandemic
influenza virus. Science 328:357–360.

16. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF,
Osterhaus AD, Fouchier RA. 2004. Mapping the antigenic and genetic
evolution of influenza virus. Science 305:371–376.

17. Shih AC, Hsiao TC, Ho MS, Li WH. 2007. Simultaneous amino acid
substitutions at antigenic sites drive influenza A hemagglutinin evolution.
Proc. Natl. Acad. Sci. U. S. A. 104:6283– 6288.

18. Jin H, Zhou H, Liu H, Chan W, Adhikary L, Mahmood K, Lee MS,
Kemble G. 2005. Two residues in the hemagglutinin of A/Fujian/411/02-
like influenza viruses are responsible for antigenic drift from A/Panama/
2007/99. Virology 336:113–119.

19. Zhou R, Das P, Royyuru AK. 2008. Single mutation induced H3N2

Sun et al.

8 ® mbio.asm.org July/August 2013 Volume 4 Issue 4 e00230-13

http://sysbio.cvm.msstate.edu/h3n2machinelearning
http://sysbio.cvm.msstate.edu/h3n2machinelearning
http://sysbio.cvm.msstate.edu/h3n2machinelearning/
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00230-13/-/DCSupplemental
http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.00230-13/-/DCSupplemental
http://dx.doi.org/10.1371/journal.pcbi.1000949
http://dx.doi.org/10.1371/journal.pcbi.1000949
mbio.asm.org


hemagglutinin antibody neutralization: a free energy perturbation study.
J. Phys. Chem. B 112:15813–15820.

20. Ansaldi F, Icardi G, Gasparini R, Campello C, Puzelli S, Bella A,
Donatelli I, Salmaso S, Crovari P. 2005. New A/H3N2 influenza variant:
a small genetic evolution but a heavy burden on the Italian population
during the 2004 –2005 season. J. Clin. Microbiol. 43:3027–3029.

21. Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM. 1999. Predicting
the evolution of human influenza A. Science 286:1921–1925.

22. Rubinstein ND, Mayrose I, Halperin D, Yekutieli D, Gershoni JM,
Pupko T. 2008. Computational characterization of B-cell epitopes. Mol.
Immunol. 45:3477–3489.

23. Air GM, Laver WG, Webster RG. 1990. Mechanism of antigenic varia-
tion in an individual epitope on influenza virus N9 neuraminidase. J.
Virol. 64:5797–5803.

24. Shu B, Garten R, Emery S, Balish A, Cooper L, Sessions W, Deyde V,
Smith C, Berman L, Klimov A, Lindstrom S, Xu X. 2012. Genetic
analysis and antigenic characterization of swine origin influenza viruses
isolated from humans in the United States, 1990 –2010. Virology 422:
151–160.

25. Smith DJ, Forrest S, Ackley DH, Perelson AS. 1999. Variable efficacy of
repeated annual influenza vaccination. Proc. Natl. Acad. Sci. U. S. A. 96:
14001–14006.

26. Liao YC, Lee MS, Ko CY, Hsiung CA. 2008. Bioinformatics models for
predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics
24:505–512.

27. Fiore AE, Uyeki TM, Broder K, Finelli L, Euler GL, Singleton JA,
Iskander JK, Wortley PM, Shay DK, Bresee JS, Cox NJ, Centers for
Disease Control and Prevention (CDC). 2010. Prevention and control of
influenza with vaccines: recommendations of the Advisory Committee on
Immunization Practices (ACIP), 2010. MMWR Recomm. Rep. 59:1– 62.

28. CDC. 2012. Evaluation of rapid influenza diagnostic tests for influenza A
(H3N2)v virus and updated case count—United States, 2012. MMWR
Morb. Mortal. Wkly. Rep. 61:619 – 621.

29. Cai Z, Ducatez MF, Yang J, Zhang T, Long LP, Boon AC, Webby RJ,
Wan XF. 2012. Identifying antigenicity-associated sites in highly patho-
genic H5N1 influenza virus hemagglutinin by using sparse learning. J.
Mol. Biol. 422:145–155.

30. Ndifon W, Wingreen NS, Levin SA. 2009. Differential neutralization
efficiency of hemagglutinin epitopes, antibody interference, and the de-
sign of influenza vaccines. Proc. Natl. Acad. Sci. U. S. A. 106:8701– 8706.

31. Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA,
Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ,
Paulson JC, Cox NJ, Klimov A, Donis RO. 2010. Receptor specificity of
influenza A H3N2 viruses isolated in mammalian cells and embryonated
chicken eggs. J. Virol. 84:8287– 8299.

32. Westgeest KB, de Graaf M, Fourment M, Bestebroer TM, van Beek R,
Spronken MI, de Jong JC, Rimmelzwaan GF, Russell CA, Osterhaus
AD, Smith GJ, Smith DJ, Fouchier RA. 2012. Genetic evolution of the
neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its
correspondence to haemagglutinin evolution. J. Gen. Virol. 93:
1996 –2007.

33. Johansson BE, Moran TM, Kilbourne ED. 1987. Antigen-presenting B
cells and helper T cells cooperatively mediate intravirionic antigenic com-
petition between influenza A virus surface glycoproteins. Proc. Natl. Acad.
Sci. U. S. A. 84:6869 – 6873.

34. Morishita T, Nobusawa E, Nakajima K, Nakajima S. 1996. Studies on the

molecular basis for loss of the ability of recent influenza A (H1N1) virus
strains to agglutinate chicken erythrocytes. J. Gen. Virol. 77:2499 –2506.

35. Nobusawa E, Ishihara H, Morishita T, Sato K, Nakajima K. 2000.
Change in receptor-binding specificity of recent human influenza A vi-
ruses (H3N2): a single amino acid change in hemagglutinin altered its
recognition of sialyloligosaccharides. Virology 278:587–596.

36. Valdar WS. 2002. Scoring residue conservation. Proteins 48:227–241.
37. Smith RF, Smith TF. 1992. Pattern-induced multi-sequence alignment

(PIMA) algorithm employing secondary structure-dependent gap penal-
ties for use in comparative protein modelling. Protein Eng. 5:35– 41.

38. Tibshirani R. 1996. Regression shrinkage and selection via the LASSO.
J. R. Stat. Soc. B Stat. Methodol. 58:267–288.

39. Fraczkiewicz R, Braun W. 1998. Exact and efficient analytical calculation
of the accessible surface areas and their gradients for macromolecules. J.
Comput. Chem. 19:319 –333.

40. Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ, Gregory V, Gust ID,
Hampson AW, Hay AJ, Hurt AC, de Jong JC, Kelso A, Klimov AI,
Kageyama T, Komadina N, Lapedes AS, Lin YP, Mosterin A, Obuchi M,
Odagiri T, Osterhaus AD, Rimmelzwaan GF, Shaw MW, Skepner E,
Stohr K, Tashiro M, Fouchier RA, Smith DJ. 2008. Influenza vaccine
strain selection and recent studies on the global migration of seasonal
influenza viruses. Vaccine 26(Suppl 4):D31–D34.

41. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T,
Ostell J, Lipman D. 2008. The influenza virus resource at the National
Center for Biotechnology Information. J. Virol. 82:596 – 601.

42. Garnier JL, Merino R, Kimoto M, Izui S. 1988. Resistance to tolerance
induction to human gamma globulin (HGG) in autoimmune BXSB/MpJ
mice: functional analysis of antigen-presenting cells and HGG-specific T
helper cells. Clin. Exp. Immunol. 73:283–288.

43. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accu-
racy and high throughput. Nucleic Acids Res. 32:1792–1797.

44. Barnett JL, Yang J, Cai Z, Zhang T, Wan XF. 2012. AntigenMap 3D: an
online antigenic cartography resource. Bioinformatics 28:1292–1293.

45. Triana-Baltzer GB, Gubareva LV, Klimov AI, Wurtman DF, Moss RB,
Hedlund M, Larson JL, Belshe RB, Fang F. 2009. Inhibition of neur-
aminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase
fusion protein. PLoS One 4:e7838. doi: 10.1371/journal.pone.0007838.

46. Chan RW, Chan MC, Wong AC, Karamanska R, Dell A, Haslam SM,
Sihoe AD, Chui WH, Triana-Baltzer G, Li Q, Peiris JS, Fang F, Nicholls
JM. 2009. DAS181 inhibits H5N1 influenza virus infection of human lung
tissues. Antimicrob. Agents Chemother. 53:3935–3941.

47. Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic anal-
ysis of large biological sequence datasets under the maximum likelihood
criterion. University of Texas at Austin, Austin, TX.

48. Swofford DL. 1998. PAUP*: phylogenic analysis using parsimony.
Sinauer, Sunderland, MA.

49. Ducatez MF, Cai Z, Peiris M, Guan Y, Ye Z, Wan XF, Webby RJ. 2011.
Extent of antigenic cross-reactivity among highly pathogenic H5N1 influ-
enza viruses. J. Clin. Microbiol. 49:3531–3536.

50. Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim W,
Fukuda K, Cox NJ, Katz JM. 1999. Detection of antibody to avian
influenza A (H5N1) virus in human serum by using a combination of
serologic assays. J. Clin. Microbiol. 37:937–943.

51. Lindstrom S, Garten R, Balish A, Shu B, Emery S, Berman L, Barnes N,
Sleeman K, Gubareva L, Villanueva J, Klimov A. 2012. Human infec-
tions with novel reassortant influenza A(H3N2)v viruses, United States,
2011. Emerg. Infect. Dis. 18:834 – 837.

Identify Influenza Antigenic Variant via Sequences

July/August 2013 Volume 4 Issue 4 e00230-13 ® mbio.asm.org 9

http://dx.doi.org/10.1371/journal.pone.0007838
mbio.asm.org

	Using Sequence Data To Infer the Antigenicity of Influenza Virus
	RESULTS
	Antigen-Bridges: sequence-based antigenic distance quantification by machine learning.
	Antigenic profiling derived from HA1 sequences by Antigen-Bridges matches the antigenic profile derived from serological data.
	Mutations driving H3N2 influenza antigenic drift predicted by Antigen-Bridges were validated by bench experiments.
	Antigen-Bridges can predict the antigenic variants for the next influenza season(s).
	Large-scale sequence-based antigenic profiling suggested less-punctuated changes in antigenic evolution of H3N2 seasonal influenza viruses.
	Detection of antigenic drifts by Antigen-Bridges.
	Estimated antigenicity of the variant H3N2 viruses using Antigen-Bridges.

	DISCUSSION
	MATERIALS AND METHODS
	Antigen-Bridges algorithm. (i) Generation of sequence-derived distance matrix for machine learning.
	(ii) Generation of the HI-derived antigenic distance matrix for machine learning. 
	(iii) Antigenicity determining feature selection using machine learning. 
	(iv) Sequence-based antigenic distance-predicting function. 
	(v) Performance assessment. 
	(vi) Comparison with other reported sets of antigenicity-determined features. 
	Selection of the mutations that drove historical antigenic drift events.
	Surface residue and glycosylation site identification.
	Viruses, sera, and serologic and sequence datasets.
	Antigenic map construction and phylogenetic tree construction.
	Experimental validation.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENT
	REFERENCES


