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Preserving genome integrity in human cells via 
DNA double-strand break repair

ABSTRACT  The efficient maintenance of genome integrity in the face of cellular stress is vital 
to protect against human diseases such as cancer. DNA replication, chromatin dynamics, cel-
lular signaling, nuclear architecture, cell cycle checkpoints, and other cellular activities con-
tribute to the delicate spatiotemporal control that cells utilize to regulate and maintain ge-
nome stability. This perspective will highlight DNA double-strand break (DSB) repair pathways 
in human cells, how DNA repair failures can lead to human disease, and how PARP inhibitors 
have emerged as a novel clinical therapy to treat homologous recombination-deficient tu-
mors. We briefly discuss how failures in DNA repair produce a permissive genetic environ-
ment in which preneoplastic cells evolve to reach their full tumorigenic potential. Finally, we 
conclude that an in-depth understanding of DNA DSB repair pathways in human cells will 
lead to novel therapeutic strategies to treat cancer and potentially other human diseases.

INTRODUCTION
Genome integrity is paramount to sustaining the blueprint of life in 
both somatic and germ cells. Human cells rely on an intricate and 
highly regulated surveillance system that relentlessly scans the ge-
nome for issues that could compromise the integrity of DNA. Envi-
ronmental and endogenous insults to DNA arise from a myriad of 
sources including free radicals from the oxygen we breathe, reactive 
metabolic byproducts, and other biochemical reactions in the cell. 
While multiple DNA repair pathways strive to correct damage, at 
times, these repair systems are pushed beyond their limits leading 
to the accumulation of mutations that result in human diseases such 
as cancer. DNA double-strand breaks (DSBs) pose a particularly 

large threat as these lesions lead to cell death if left unrepaired. In 
this brief review, we will focus on two extensively studied pathways 
utilized in human cells for the repair of DNA DSBs: nonhomologous 
end-joining (NHEJ) and homologous recombination (HR). These 
two DSB repair pathways result in dramatically different outcomes in 
terms of genome fidelity and may play a significant role in the un-
derlying accumulation of mutations that lead to neoplastic transfor-
mation. HR proteins have recently been found to play an important 
role in DNA replication by protecting stalled forks from degradation 
and facilitating fork restart by processing lesions that impede the 
fork. These discoveries have fueled interest in understanding how 
PARP inhibitors (PARPi) may trap PARP1 on DNA creating a physical 
blockade to replication and require the action of HR proteins to re-
pair and restart forks. As PARPi selectively kill HR-deficient tumors 
(e.g., BRCA-deficient tumors), understanding how DNA DSB repair 
proteins respond to and process DNA damage has important clini-
cal implications.

CANONICAL PATHWAYS FOR REPAIR OF 
CHROMOSOMAL BREAKS
DNA DSBs are regarded as the most cytotoxic form of DNA dam-
age and occur as a result of normal cellular processes, ionizing ra-
diation (IR), and chemotherapeutics (Limp-Foster and Kelley, 2000; 
Lees-Miller and Meek, 2003; Lieber, 2010; Kelley, 2012). The cell 
must repair DSBs in a timely manner; failure to do so can lead to 
genetic disorders, aging, and cancer. In human cells, DSBs are re-
paired via two essential pathways linked to the cell cycle (Figure 1A, 
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top): NHEJ and HR, or homology-directed repair (HDR) (Lieber, 
2010; Frit et al., 2014). Each pathway employs a distinct set of core 
repair proteins forming functional repair complexes. The NHEJ 
pathway is the principal (and most rapid) pathway for DSB repair, is 
active throughout the cell cycle, and involves pairing, processing, 
and ligation of the broken ends. NHEJ also functions in B- and T-cell 
immune diversifying pathways by joining DSBs formed during V(D)J 
and class switch recombination (Lieber, 2010; Ramsden et al., 2010). 
The HDR pathway is active during DNA replication in S/G2 phase. A 
resection step commits the cell to repair by HDR resulting in single-

stranded DNA (ssDNA) tails which can then invade the sister chro-
matid template to initiate the homology search, strand pairing, and 
exchange of genetic information (Daley and Sung, 2014).

NHEJ
As depicted in Figure 1 (left middle), the core (or minimal) NHEJ 
complex is composed of the Ku70/Ku80 heterodimer (Ku), DNA Li-
gase 4 (LIG4)-XRCC4 complex (LX), and the XRCC4 Like factor (XLF). 
NHEJ can facilitate highly efficient repair of blunt and compatible 
DNA ends that do not require additional processing steps. However, 

FIGURE 1:  Molecular pathways of human DNA DSB repair. (A) DSB repair pathways are strongly regulated by the cell 
cycle, with NHEJ (left side) active throughout the cell cycle, whereas HDR (right side) acts mainly during replication and 
is utilized for the repair of damaged replication forks. Each pathway utilizes different repair factors and pathway choice 
is regulated by diverse requirements including: chromatin environment, site of damage, type of lesion, extent of 
damage, and proximity to ongoing replication and transcription. All of these factors influence the recruitment, retention, 
and exclusion of various repair and DDR factors via unknown mechanisms. Following formation of DSBs, DDR is 
activated by the PI3-like kinases: ATM, DNA-PK, and ATR. NHEJ (left) accumulation of 53BP1 at damage sites, binding 
of Ku, and formation of XLF, XRCC4, and LIG4 filament complexes facilitate end bridging and ligation. Depending on 
the complexity of the damage, other factors such as DNA-PKcs-Artemis and polymerases may be recruited to allow 
further processing. HR (right) is utilized for repair of damaged/stalled replication forks and involves recruitment of 
BRCA1 along with a suite of nucleases and associated protein complexes (CtIP, MRE11/RAD50/NBS1, BLM/EXOI, 
DNA2) to initiate resection. Following resection, ssDNA is bound by RPA. BRCA2 is essential for stabilizing RAD51 
filaments and promoting strand invasion and the homology search. BRCA1 remains associated with the damage to 
enable further recruitment of BRCA2 via PALB2. Following the homology search further steps are required for the 
resolution of the resulting DNA junctions. (B) Fork remodeling and fork protection in replication stress. Current models 
propose topological stress (e.g., cross-linked DNA) or a lesion formed ahead of the replication fork will result in reversal 
of the replication fork mediated by factors such as RECQ1 and SMARCAL1. Following fork reversal, the reversed 
nascent DNA is likely protected by multiple HDR-associated proteins including BRCA2, RAD51, and RAD52 (note: 
several DNA repair factors have been omitted from the figure for clarity).
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the core NHEJ repair complex is modular and can recruit other re-
pair factors to the break if processing is required (Chang et  al., 
2017). These factors include a nuclease complex composed of Ku, 
DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and 
Artemis, nucleases (Werner’s Syndrome [WRN], EXO1), polymerases 
(Polμ, TdT), and others (Lieber, 2010). Additionally, LIG4 was re-
cently shown to direct processing choice prior to ligation (Conlin 
et al., 2017; Reid et al., 2017). The initial step of NHEJ repair in-
volves the binding of Ku to DNA ends which acts as a cornerstone 
for the recruitment and assembly of a functional NHEJ complex 
(Figure 1, left). Following assembly, a dynamic pairing of the ends 
forms a synaptic complex, allowing for end alignment and ligation 
of the broken ends. While two early biochemical studies have sug-
gested a possible role for DNA-PKcs in mediating synapsis (DeFazio 
et al., 2002; Weterings et al., 2003), numerous other studies have 
shown that efficient synapsis and joining are predominantly medi-
ated by Ku, XLF, XRCC4, and LIG4 (Ahnesorg et al., 2006; Lu et al., 
2007; Wu et al., 2007; Li et al., 2008; Akopiants et al., 2009; Hammel 
et al., 2010; Andres and Junop, 2011; Hammel et al., 2011; Ropars 
et al., 2011; Wu et al., 2011; Andres et al., 2012; Roy et al., 2012; 
Mahaney et al., 2013; Brouwer et al., 2016; Nemoz et al., 2018; Liu 
et al., 2019; Zhao et al., 2019).

Perhaps surprisingly, we and others have observed that XLF, 
XRCC4, and LIG4 form multimeric filaments both in vitro and in cells. 
These extended structures can facilitate pairing, synapsis, and align-
ment of the broken ends, while partial disruption of these filaments, 
via abrogated XLF–Ku interaction, results in repair deficit and radia-
tion sensitivity (Ropars et  al., 2011; Andres et  al., 2012; Mahaney 
et al., 2013; Reid et al., 2015; Brouwer et al., 2016; Nemoz et al., 
2018). It is important to note that despite these observations, we still 
have a very limited understanding of these filamentous complexes, 
including their structural, biochemical, and biophysical properties as 
well as how they form and localize in cells, their specific functional 
roles, and their interaction with chromatin. Further biochemical and 
structural studies of these complexes and the assembly and stability 
of the NHEJ machinery will provide new and improved strategies for 
targeting DSB repair and therapy resistance.

The kinase activity of the Ataxia Telangiectasia mutated (ATM) 
protein is crucial for the DNA damage response (DDR). Both ATM 
and DNA-PKcs phosphorylate several relevant factors associated 
with DNA damage signaling, yet the repair-specific role of DNA-
PKcs is still subject to uncertainty. The previously ascribed cellular 
role of DNA-PKcs in NHEJ may stem from its functional requirement 
exemplified in V(D)J recombination. During V(D)J recombination, 
the DNA-PKcs-Artemis complex facilitates the opening of terminal 
hairpins at coding ends prior to ligation. However, some studies 
have demonstrated that DNA-PKcs is dispensable for joining blunt 
signal ends (Kulesza and Lieber, 1998). Several reports place the role 
of DNA-PKcs and Artemis at the repair of complex DNA lesions; 
however, one recent study indicated that depletion of DNA-PKcs 
had no effect on the efficiency of DSB repair by NHEJ (Liu et al., 
2019). These conflicting findings indicate that further studies are 
required to determine the contribution of DNA-PKcs to the NHEJ 
repair process. Consequently, the use of DNA-PK inhibitors as a 
means to block NHEJ repair must be carefully reexamined in both 
research and clinical applications (Brandsma et al., 2017).

HR AND COMPLEX DNA LESIONS
Experimentally induced DNA DSBs derived from IR, radiomimetic 
chemotherapeutics, or nuclease-induced DSBs, while readily avail-
able in the laboratory setting, may not be relevant to the sources of 
DNA damage that ultimately result in mutations necessary for 

neoplastic transformation. Clearly, cancer cells are susceptible to 
DNA damage. The majority of our clinical efforts (chemotherapeu-
tics, radiation) to eliminate rapidly dividing tumor cells are based on 
a therapeutic index that can damage the genome of a tumor cell 
beyond its capacity for repair while sparing normal cells. The major-
ity of DNA DSBs in the human genome are expected to be dealt 
with by the NHEJ machinery. However, complex lesions resulting 
from cross-linking agents, topoisomerase inhibitors, PARPi, and 
other agents that induce topologically complex structures likely rely 
on HDR for eventual repair. HDR utilizes many more factors than 
NHEJ including nucleases (e.g., MRE11, EXO1, DNA2), recombina-
tion mediators (e.g., BRCA1, BRCA2, PALB2, RAD52), recombinase 
complexes (e.g., RAD51, RAD51 paralogues, RPA, RAD54), heli-
cases, and resolvases (Delacote and Lopez, 2008; Cerbinskaite 
et al., 2012). The complete HDR reaction and its regulation are still 
subject to much uncertainty as it contains many sequential steps 
and subprocesses that occur over an extended period of time (6–12 
h compared with 1 h for NHEJ) (Reid et al., 2015; Whelan et al., 
2018), where each of these steps requires the initiation and/or com-
pletion of prior steps, and their interruption can lead to diverse re-
pair intermediates and byproducts. The key steps (see illustration in 
Figure 1, right) of HDR consists of the following: 1) resection of ds-
DNA by nucleases, 2) loading of RAD51 onto RPA-coated ssDNA to 
form the nucleoprotein filament (mediated by BRCA2), 3) strand in-
vasion and homology search, and 4) resolution of the resulting DNA 
structure (Holliday junctions). While NHEJ provides the most rapid 
form of repair throughout the cell cycle, during DNA replication, HR 
and NHEJ are active and can facilitate repair. Since the NHEJ path-
way is reactive toward blunt dsDNA ends, whereas the HR pathway 
requires long ssDNA, it has been postulated that the resection of 
dsDNA by HR nucleases is a decisive step in pathway choice 
(Symington and Gautier, 2011; Shao et al., 2012; Sun et al., 2012). 
Experimental and clinical evidence have confirmed the importance 
of HDR in complex and replication-associated lesions, as patients 
and cell lines with HDR defects are exquisitely sensitive to cross-
linking agents (e.g., cisplatin, mitomycin C) and PARPi.

DNA REPAIR AT REPLICATION FORKS
Recent studies in the DNA repair field have focused on how DNA 
lesions can physically impede DNA replication fork progression and 
the role of HDR proteins in protecting stalled or blocked forks from 
nucleolytic degradation. The initial idea that replication forks may re-
verse course after encountering damage was proposed by Hotchkiss 
and Higgins (Hotchkiss, 1974; Higgins et al., 1976). These reversed 
forks are colloquially known as “chicken foot” structures due to the 
three toes representing the leading, lagging, and annealed nascent 
DNA essentially backing up the replication fork behind the damage 
(Figure 1B). Fork reversal allows replication to essentially “stall” for 
time while the DNA repair machinery repairs the damage and pre-
pares the fork to reinitiate replication. Zellweger et al. (2015) reported 
the visual evidence of these structures by electron microscopy, that is, 
the presence of ssDNA at regressed forks in response to genotoxic 
agents such as camptothecin or replication stress through hydroxy-
urea treatment (Zellweger et  al., 2015). Further evidence demon-
strated that RAD51 was present at reversed forks and may protect 
regressed arms from nucleolytic degradation (Hashimoto et al., 2010; 
Schlacher et al., 2011). Improved techniques such as iPOND (isolation 
of proteins on nascent DNA) and super resolution microscopy have 
now identified several proteins at stalled forks: SMARCAL1, ZRANB3, 
HLTF, RECQ1, Bloom’s Syndrome (BLM), WRN, FBH1, Fanconi Ane-
mia (FA) proteins, and many others (Betous et al., 2013; Kolinjivadi 
et al., 2017; Taglialatela et al., 2017; Zadorozhny et al., 2017).
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It remains unclear why so many proteins involved at different 
steps of DNA repair are enriched at stressed replication forks, but 
undoubtedly cells have a vested interest in paying close attention to 
molecular events that threaten genomic integrity. BRCA1 and 
BRCA2 have been found to play key roles at damaged replication 
forks either in protecting the DNA from nucleolytic degradation 
and/or providing an HDR-dependent path to fork restart. Consider-
able uncertainties exist with respect to the properties and mecha-
nisms of fork protection-degradation and reversal processes and 
whether they are distinct from HDR intermediates at collapsed rep-
lication forks. Biochemical and/or superresolution microscopy-
based cell biological evidence that BRCA1/2, RAD51, and related 
factors play a direct role in fork protection/restart remains elusive; 
however, these studies are eagerly anticipated.

THE BRCA PARADOX: CANCER DRIVER 
AND ACHILLES’ HEEL
Women who inherit a pathogenic germline mutation in BRCA2 face 
a serious lifetime risk of breast and ovarian cancer, whereas men 
face increased risk of pancreatic, prostate, and also breast cancer. 
BRCA2 is involved in the HDR pathway of DNA DSB repair first dis-
covered through its interaction with RAD51, a central player in HR 
(Wong et al., 1997). The RAD51 protein forms a nucleoprotein fila-
ment on ssDNA and initiates a search for homology presumably in 
the sister chromatid (Benson et al., 1994). BRCA2 acts as a “media-
tor” to both bind and load RAD51 onto resected DNA DSBs (Jensen 
et  al., 2010; Chatterjee et  al., 2016). In the absence of BRCA2, 
RAD51 functions are compromised and HDR repair is short circuited. 
Loss-of-function mutations in BRCA1/2 and other HDR pathway 
genes (e.g., PALB2, RAD51 paralogues) can be leveraged therapeu-
tically as they confer sensitivity to cross-linkers, platinum agents, 
and PARPi.

Despite BRCA2 mutation carriers possessing one wild-type copy 
of the allele, tumors from most patients display loss-of-heterozygos-
ity (LOH) and are null for BRCA2 function. In some patients with 
germline mutations, the wild-type BRCA2 allele is retained in the 
tumor (Maxwell et al., 2017), and in this scenario, perhaps haploin-
sufficiency alone may favor tumor formation. When LOH has oc-
curred in the tumor, the molecular ordering of events that underpin 
loss of the wild-type allele remains largely unknown and the genetic 
environment permissive for loss of BRCA2 function is an active area 
of investigation. This is an important point as BRCA2 knockout in 
mice is early embryonic lethal and knockout/knockdown in human 
cell culture models is usually associated with inviability (Feng and 
Jasin, 2017). This raises a somewhat paradoxical situation whereby 
BRCA2 is essential for cellular growth and viability, and yet, loss of 
BRCA2 can drive tumorigenesis in a specific genetic context. Fur-
thermore, BRCA-deficient tumors are compromised for HDR repair 
providing a unique opportunity for therapeutic intervention with 
PARPi. Recent genetic studies have pointed toward a role for BRCA2 
in stabilizing RAD51 at stalled replication forks and have postulated 
that fork protection is critical in response to PARPi (Schlacher et al., 
2011; Ray Chaudhuri et al., 2016). Surprisingly, the HDR functions of 
BRCA2 and RAD51 appear dispensable in the replication fork pro-
tection model. Adding further to the controversy, a recent study 
demonstrated treatment of BRCA mutant cells results in increased 
replication fork speed rather than reduced velocity or fork stalling/
collapse (Maya-Mendoza et al., 2018). Clearly, more work needs to 
be done to parse out mechanistically why BRCA proteins, and more 
generally the HDR pathway, is required to manage PARPi-mediated 
damage. To date, very few studies have utilized reconstituted bio-
chemical assays using purified proteins and defined DNA substrates 

to address the mechanistic details of PARPi-dependent DNA le-
sions. We propose that biochemically defined systems, single mol-
ecule analysis, and superresolution visualization of these repair pro-
teins at PARPi-induced lesions will greatly facilitate our understanding 
of how these clinically important molecules specifically kill HDR-de-
ficient cells.

PARPI: THE DNA REPAIR BLOCKBUSTER DRUG
The discovery that BRCA mutant cells are selectively killed by PARPi 
(Bryant et al., 2005; Farmer et al., 2005) opened up a completely 
new therapeutic avenue for patients carrying germline BRCA muta-
tions. Lynparza (otherwise known as Olaparib) was the first FDA-
approved PARPi for the treatment of patients with BRCA-deficient 
ovarian cancer (Kim et al., 2015) and despite vigorous research over 
the past 15 years into the underlying mechanisms, we still do not 
know why HDR-deficient cells are selectively targeted by PARPi and 
how HDR-competent cells are spared. Multiple PARPi formulations 
have emerged from pharmaceutical companies in various stages of 
development from preclinical testing to FDA approval; many ques-
tions remain surrounding issues of potency and optimal treatment 
regimens.

PARP1 is the founding family member of a class of DNA damage 
sensors involved in attaching poly (ADP-ribose) PAR chains to itself 
(a term denoted PARylation) and target proteins at DNA lesions 
(Lord and Ashworth, 2017). Knockout of PARP1 and a second family 
member, PARP2, is individually viable in a mouse knockout; how-
ever, the double knockout PARP1–/–PARP2–/– is embryonic lethal 
(Menissier de Murcia et al., 2003). It is thought that PARP1 signals 
the presence of DNA damage, recruits various DNA repair proteins 
to the lesion, and eventually disengages from the DNA (through 
autoPARylation of itself) once appropriate DNA repair enzymes 
have been recruited (Lindahl et al., 1995; Pommier et al., 2016; Lord 
and Ashworth, 2017). The protein PARG (poly (ADP-ribose) glycohy-
drolase) acts as a negative regulator of PARP1 removing PARylation 
marks and thus, shutting down the DDR (Barkauskaite et al., 2015). 
The majority of PARP research has focused on PARP1, but interest-
ingly, all clinical PARPi can inhibit both PARP1 and PARP2. The con-
cept of “PARP trapping” whereby the PARP1 protein becomes stuck 
in front of a progressing replication fork has recently gained favor as 
the proposed mechanism of action (Murai et al., 2012, 2014). Some 
models suggest that prevention of catalytic PARylation underlies the 
synthetic lethal effects of PARPi; however, inhibition of PARylation 
does not seem to track with the cytotoxicity of different PARPi (Murai 
et al., 2012). The physical impediment of trapped PARP1 appearing 
as a DNA lesion may explain why removal or bypass can only be 
achieved using an HDR-dependent mechanism hence explaining 
the severe sensitivity of BRCA and other HDR-deficient cells. 
Whether HDR-deficient cells exposed to PARPi die by apoptosis or 
a mitotic catastrophe-like death from unreplicated DNA remaining 
following mitosis is still an open question.

GENOME INTEGRITY AND DNA REPAIR
Genome instability and dysfunctional DNA repair are linked to the 
etiology of severe human syndromes including developmental, im-
munological, and neurological disorders and cancer (McKinnon and 
Caldecott, 2007; Rass et al., 2007; Wilson et al., 2008; Lieber, 2010; 
Wu and Brosh, 2010; Wysham et al., 2012; Canugovi et al., 2013; 
Suhasini and Brosh, 2013; Vindigni and Gonzalo, 2013; Chang et al., 
2017). Some examples of inherited genetic syndromes resulting 
from dysfunctional DNA damage signaling or repair include: ATM, 
Nijmegen Breakage Syndrome (NBS1), BLM, WRN, FA, Hereditary 
Nonpolyposis Colorectal Cancer (MLH1, MSH2), and hereditary 
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breast and ovarian cancer (BRCA1, BRCA2, PALB2), among others. 
Genomic instability is likely the driving force that fuels neoplastic 
potential in the opposition of cellular factors aimed at suppressing 
cellular transformation. This hypothesis was elegantly proposed as 
the “mutator phenotype” by Larry Loeb in 1974 (Loeb et al., 1974). 
Accumulation of DNA damage followed by less than perfect repair 
offers a rich source of mutational events in critical gatekeeper path-
ways including tumor suppressor genes and oncogenes. In fact, 
these mutational events driven by DNA damage are likely the lynch-
pin mechanism overcoming the many barriers to transformation 
such as cellular proliferative capacity, angiogenesis, altered meta-
bolic pathways, and others (Hanahan and Weinberg, 2011). Achiev-
ing an ideal balance of genetic malleability to foster tumor growth is 
not an easy feat and probably explains why cancer incidence is not 
more prevalent in the human population. Of course, age is strongly 
correlated with increasing cancer rates reflecting the accumulation 
of DNA damage over time. Continued exploration of DNA repair 
networks will provide an unprecedented opportunity to reveal the 
underlying biology of malignant transformation. Elucidation of 
these networks will guide the development of novel therapeutic 
strategies with enhanced selectivity and reduced toxicity to cancer 
patients.

FINAL THOUGHTS AND CONCLUSION
Despite much progress in the past few decades, we still face sub-
stantial gaps in our knowledge surrounding DNA repair mecha-
nisms in human cells, how malfunctions lead to disease, and how 
DNA repair deficits can be further utilized in targeted therapy. 
While the first targeted DNA repair therapy—PARPi—has enjoyed 
its share of clinical successes for certain tumor types, resistance and 
relapse remain an ongoing problem. Many clever genetic and pro-
teomic screens conducted in BRCA-mutant cell lines have identi-
fied loss-of-function genes (53BP1, REV7, Shieldin complex) that 
confer resistance to PARPi (Jaspers et  al., 2013; Xu et  al., 2015; 
Gupta et  al., 2018; Noordermeer et  al., 2018); however, clinical 
identification of mutations in these specific genes in actual patent 
tumors has remained sparse. Surprisingly, studies from breast and 
ovarian patient tumors resistant to cisplatin and PARPi revealed 
secondary reversion mutations in BRCA1 and BRCA2 back to a 
“wild type-like” functional state and are a potential source of bona 
fide resistance (Edwards et  al., 2008; Sakai et  al., 2008; Christie 
et  al., 2017). Combination therapies including WEE1, ATRi, and 
CHK1/2 inhibitors that impair cell cycle checkpoint regulation are 
being tested in clinical trials with the hope they will potentiate 
PARPi toxicity. In order for physicians to select patients ideally 
suited for PARPi treatment and choose optimal combination thera-
pies to combat resistance mechanisms, a detailed understanding 
of the underlying mechanism of DNA repair and PARPi is greatly 
needed. Another barrier hindering the progress of new therapeutic 
interventions is the lack of strategies for targeting NHEJ—the ma-
jor DSB repair pathway. Further research focusing on the specific 
roles of the various structural proteins of the NHEJ machinery will 
provide much needed alternative approaches for targeting DNA 
repair (McFadden et al., 2014). Insights derived from concentrated 
efforts using basic experimental approaches, including biochemi-
cal, structural, and cell biology assays, along with advanced single-
molecule studies have great potential to fill in these important 
missing details.
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