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Abstract: Advanced liver diseases have very high morbidity and mortality due to associated
complications, and liver transplantation represents the only current therapeutic option. However,
due to worldwide donor shortages, new alternative approaches are mandatory for such patients.
Regenerative medicine could be the more appropriate answer to this need. Advances in knowledge of
physiology of liver regeneration, stem cells, and 3D scaffolds for tissue engineering have accelerated
the race towards efficient therapies for liver failure. In this review, we propose an update on liver
regeneration, cell-based regenerative medicine and bioengineering alternatives to liver transplantation.

Keywords: liver regeneration; end-stage liver diseases; regenerative medicine; liver tissue bioengineering;
liver bioreactors

1. Introduction

Acute and chronic liver diseases are leading causes of morbidity and mortality worldwide,
accounting for about 1–2 million deaths annually [1]. The most prominent causes of acute liver failure
include viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease (NAFLD), drug-induced
liver injury, and autoimmune liver disease [2,3].

Liver transplantation is the ultimate solution in the treatment of such severe liver dysfunctions.
Despite the relatively high postoperative survival rate, there are many problems to be solved, however,
including a chronic donor shortage, immune rejection, and ethical issues. Therefore, cell-based
regenerative therapies and novel technologies such as liver-on-chip [4] and bioprinted liver [5] are
expected to be the next-generation therapies.

These innovative approaches are all based on the extraordinary capacity of the liver to regenerate.
For this reason, increasing our knowledge of liver regeneration mechanisms could bring significant
benefits in the treatment of liver failure and may help patients needing large liver resections
or transplantation.

In the present review, we propose an update on liver regeneration, cell-based regenerative
medicine approaches, and bioengineering alternatives to liver transplantation, along with futuristic
approaches to overcome hurdles in liver tissue engineering.

2. Liver Regeneration

2.1. Overview of Liver Development

Hepatocytes and cholangiocytes, the two main liver cell types, are derived from the endoderm
germ layer. This layer develops from the anterior primitive streak during gastrulation and is identifiable
6 h post-fertilization in zebrafish, by embryonic day 7.5 in mouse, and in the third week of human
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gestation [6]. The endodermal germ layer forms a primitive gut tube in which the regions of foregut,
midgut, and hindgut can be identified. Fate mapping studies in mouse indicate that the embryonic liver
originates from the ventral foregut endoderm by embryonic day 8.0 of gestation (e8.0) [6]. The hepatic
endoderm cells, identified as hepatoblasts by e9.5, delaminate from the epithelium and invade the
adjacent mesenchyme of the septum transversum to form the liver bud [7,8]. The hepatoblasts
are bipotential cells and, during maturation, those residing next to the portal veins become biliary
epithelial cells, while the majority of hepatoblasts in the parenchyma differentiate into hepatocytes [9].
During this process, the liver acquires its characteristic tissue architecture [10]. The balance in the
numbers of hepatocytes and cholangiocytes from hepatoblasts is strictly controlled by integrated
signaling and transcriptional pathways. The differentiation of hepatoblasts towards a biliary epithelial
phenotype is controlled by the Jagged–Notch pathway [11,12], while hepatocyte differentiation is
promoted by hepatocyte growth factor (HGF) and oncostatin M (OSM) [13]. Gradually, as the liver’s
development proceeds towards the final stages of maturation, which begins by e13 and continues
until several weeks after birth, there is a marked decline in the number of hepatoblasts [14]. However,
some of the bipotent progenitor cells do not differentiate and gradually stop proliferating, establishing
the pool of hepatic progenitor cells (HPCs) [15].

2.2. Homeostasis and First Line of Response to Injury

The liver has a variety of functions fundamental to homeostasis, including bile secretion,
metabolism, serum proteins production, glycogen storage, and drug detoxification. Since the Ancient
Greek era with the famous “Prometheus” myth, the liver has been known to have a strong intrinsic
regenerative ability in vivo. Thanks to a number of evolutionary protections, this physiological process
of liver regeneration allows the recovery from even substantial hepatic damage caused by toxins or
viral infections [16].

Hepatic regeneration, enabling the liver to continue to perform its complex functions despite a
significant injury, is crucial to the survival of mammals and is therefore evolutionarily conserved and
pathways leading to its completion are essentially redundant [17].

After the loss of tissue or an injury, the liver responds with fine-tuned pathways of regeneration
via the activation of a wide array of signaling and transcriptional factors. As such, after surgical
partial hepatectomy, the liver’s mass and function are restored within a week [16]. In epithelial tissues
with a high turnover, such as the intestines and the skin, cellular renewal and tissue homeostasis is
performed by a pool of stem cells. In the liver, however, the turnover is low with a mature hepatocyte
having a life expectancy of about 200 days [18]. The general assumption, until recently, was that all
mature hepatocytes were able to divide to ensure normal liver homeostasis [19,20]. Now the prevailing
theory is that regeneration of the liver after resection is a compensatory hyperplasia rather than a
true restoration of the liver’s original gross anatomy and architecture [21] (Figure 1A). The degree of
hyperplasia is precisely controlled so that the process stops once an appropriate liver-to-bodyweight
ratio has been achieved.

2.3. Hepatic Stem Cells and Second Line of Response to Liver Injury

Hepatic regeneration can be inhibited by several pathologic conditions. These include diabetes
mellitus, malnutrition, aging, infection, chronic ethanol consumption, biliary obstruction and,
more generally, chronic liver diseases. A common feature of all chronic liver diseases is progression to
fibrosis, characterized by an increased production of matrix proteins, induced mainly by activated
hepatic stellate cells, and a decreased matrix remodeling. With fibrosis there is usually diffuse
inflammation and hepatocyte death, with evidence of an increase in the proportion of senescent
hepatocytes, with the cell cycle arrested at G1/S transition. The rate of hepatocyte telomere shortening,
which hampers cell division, has also been shown to correlate with the rate of progression of fibrosis [22].
Altogether, these data support the concept that the progression of liver fibrosis is associated with an
impaired liver regeneration.
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Figure 1. Schematic representation of mechanisms of liver regeneration. (A) After liver damage in 
normal conditions, the principal ways to restore hepatic mass are hyperplasia and hypertrophy. (B) 
In the cirrhotic liver, the normal regeneration process is impaired and hepatic progenitor cells are 
involved in restoring liver functions. 
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and regenerative potential of HPCs have been questioned, however. Farber was the first to report on 
the presence of a liver progenitor cell population in 1956, when he identified small cells with a high 
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the chemically-induced inhibition of native hepatocytes, in conjunction with the stimulation of liver 
regeneration. Lineage-tracing experiments have localized the adult human equivalent of these progenitor 
cells in the canal of Hering in the periportal regions of the hepatic lobules [27].  

HPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, and to form 
hepatocyte buds, repopulating the damaged parenchyma in specific situations in vivo, in what is 
called “oval cell proliferation" in rodent models, and a “ductular reaction" in humans [28–30]. 

On activation, when the adult hepatocytes are unable to regenerate the injured liver, due either 
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Figure 1. Schematic representation of mechanisms of liver regeneration. (A) After liver damage
in normal conditions, the principal ways to restore hepatic mass are hyperplasia and hypertrophy.
(B) In the cirrhotic liver, the normal regeneration process is impaired and hepatic progenitor cells are
involved in restoring liver functions.

It has been hypothesized that, during chronic liver injury, when hepatocyte proliferation is
impaired, the HPCs or oval cells orchestrate the regeneration process [23] (Figure 1B). The existence
and regenerative potential of HPCs have been questioned, however. Farber was the first to report
on the presence of a liver progenitor cell population in 1956, when he identified small cells with a
high nucleus-to-cytoplasm ratio in the liver, that he called “oval cells” [24]. Subsequent works [25,26]
demonstrated that these cells were activated in animal models of liver injury and had a bipotential ability
to differentiate into hepatocytes and bile duct cells. Most of the data have come from animal models
with the chemically-induced inhibition of native hepatocytes, in conjunction with the stimulation of
liver regeneration. Lineage-tracing experiments have localized the adult human equivalent of these
progenitor cells in the canal of Hering in the periportal regions of the hepatic lobules [27].

HPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, and to form
hepatocyte buds, repopulating the damaged parenchyma in specific situations in vivo, in what is called
“oval cell proliferation" in rodent models, and a “ductular reaction" in humans [28–30].

On activation, when the adult hepatocytes are unable to regenerate the injured liver, due either to
senescence or cell cycle arrest, the HPCs proliferate in the portal zone and migrate towards the central
vein in the liver lobules, gradually going through different states of maturity and function along the
way, according to the so-called “streaming liver hypothesis” [29–31].

While the above is the most widely-accepted theory, work by Kuwahara et al. [32] suggests that
it may be an oversimplification and that the liver might have a multi-tiered system of regeneration.
There may be up to four potential stem cell niches in the canal of Hering, the intralobular bile ducts,
the periductal mononuclear cells, and the peribiliary hepatocytes.

However, despite the accumulating evidence of HPC proliferation in liver injury, the extent of
these cells’ contribution to the natural history of human liver disease, and the triggers that activate this
cell population are still not well understood.

2.4. Liver Regeneration, Inflammation, and Gender

Liver regeneration is closely linked to inflammation. Indeed, hepatic inflammation is a complex
process originating in response to specific stress stimuli, which modulates the outcome of liver damage [33].
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The inflammatory response can have both hepato-protective and detrimental effects. A controlled
inflammatory reaction could be adjuvant to tissue regeneration, promoting the re-establishment
of homeostasis. On the other hand, excessive and permanent inflammation could exacerbate the
severity of hepatic parenchymal damage contributing to the irreversible decline of liver function [34].
Given its fundamental role, the inflammatory process is strictly controlled at a molecular and cellular
level. Both resident (Kupffer) cells and circulating immune cells (lymphocytes and monocytes) are
involved [33]. Among the molecular pathways involved in liver regeneration, IL-6 and IL-22 produced
by activated natural killer (NK) and T cells in the liver induce activation of the signal transducer and
activator of transcription 3 (STAT3) [35,36], while interferon-γ (IFN-γ) produced by B and T cells
activates STAT1, inhibiting liver fibrosis and regeneration [37,38].

In a recent study [39], we demonstrated that a different immune response (in terms of the
composition and maturation status of the cells involved) influence liver regeneration in males
and females. The liver is known to be a gender-dimorphic organ in mammals, exhibiting sex-related
differences in various aspects, such as the profile of steroid and drug metabolism [40], the number of
hepatocytes and Kupffer cells [41], and the regeneration rate [42,43]. We demonstrated that female mice
showed a more rapid recruitment of monocytes and F4/80highCD11bhigh cells, and that the delay in
recruitment of the same cells in male mice was controlled directly by the androgen receptor. Evidence
from patients with drug-induced liver injury (DILI) confirms these observations, suggesting that
males show a delay in regenerative response to an acute liver injury, possibly related to a maturation
shift in monocytes. These findings might provide interesting starting points for new, gender-specific
biomarkers, or for novel therapeutic interventions targeting monocyte recruitment or sex-hormone
signaling [44,45]. Larger observational or prospective trials are needed, however, to better understand
sex-dependent immune mechanisms in DILI.

3. Alternatives to Liver Transplantation

Liver transplantation (LT) is a widely-recognized treatment for patients with end-stage liver
disease. Since the first success story reported by Thomas Starzl in 1967 [46], the short- and long-term
outcomes of transplanted patients have gradually improved thanks to advances in the management of
immunosuppressant therapies, more appropriate donor-recipient matching, and a better treatment of
post-transplant comorbidities [47].

In recent years, we have witnessed an increasing number of patients worldwide on the waiting
list for a transplant, but the number of available donors has not increased accordingly [48]. This gap
between the patients needing a transplant and the donor organs available is a key issue in LT, with a
mortality risk while on the waiting list of approximately 15% [49,50].

Liver regenerative medicine could cope with the donor shortage by using innovative approaches
based on cell therapy and tissue/organ engineering. In the following sections, we briefly describe these
ground-breaking alternatives to LT. Figure 2 summarizes the principal cell sources available for cell
therapy and liver bioengineering, with their pros and cons.

3.1. Cell-Based Regeneration Therapy

As the demand for donor organs grows, therapeutic alternatives to liver transplantation must
be sought. One such possible alternative is cell therapy, which may have two roles in the treatment
of chronic liver diseases. Its first role is to control disease progression by stimulating endogenous
regeneration and inhibiting fibrosis, thus ideally eliminating the need for liver transplantation [51].
When liver transplantation cannot be avoided, cell therapy may act as a bridge to surgery supporting
liver function and, potentially, reducing the waitlist mortality rate. During the last ten years, hepatocytes,
macrophages and stem cells have been transplanted with vary-ing degrees of success.
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Figure 2. Schematic representation of the principal cell sources available for cell therapy and liver
bioengineering, with brief description of their pros and cons. HEPs: hepatocytes; HPCs: hepatic
progenitor cells; MSCs: mesenchymal stem cells; HSCs: hematopoietic stem cells; EPCs: endothelial
progenitors cells; iPSCs: induced pluripotent stem cells; ESCs: embryonic stem cells.

3.1.1. Hepatocytes

Primary hepatocytes are the cells traditionally used for cell therapy in chronic liver diseases.
It has been demonstrated that splenic or portal vein infusions of hepatocytes could induce modest
reductions in ammonia levels and encephalopathy in both animal models and humans [52]. However,
there are several important limitations to the use of human hepatocytes in the treatment of chronic
liver diseases. One of the most important drawbacks is the difficulty of isolating a sufficient quantity of
high-quality, metabolically-active cells. Hepatocytes are typically harvested from livers not suitable for
transplantation, with a consequent variability in their quantity and quality [53]. Hepatocytes also rapidly
lose their proliferative ability when cultured in vitro, and they are sensitive to freeze-thaw damage so
their viability and engraftment are affected by culture and cryopreservation methods [54]. Innovative
technologies that can expand, maintain, mature, and create hepatocytes in vitro, or alternative sources
of cells are consequently required for future cell-based therapies for liver diseases.

3.1.2. Macrophages

Evidence has emerged from numerous human and animal studies of liver fibrosis being a
two-way process and potentially reversible. The main regulator of this dynamic fibrogenesis-fibrosis
resolution paradigm seems to be the hepatic macrophage [55,56]. This apparently dichotomous
effect of macrophages in liver fibrosis is attributable to the balance of profibrotic and restorative
macrophages [57]. A better understanding of the mechanisms controlling this process could yield
novel monocyte/macrophage-based cell therapies.

Technological advances in the stem-cell field could lead to therapeutic approaches based on the
autologous propagation of monocytic populations, or possibly their derivation from embryonic stem
cell components. A monocyte/macrophage-based approach to damping liver fibrosis has already been
attempted in animal models. Thomas et al. [58] examined the therapeutic potential of exogenous bone
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marrow (BM) cells, and those of the monocyte-macrophage lineage in particular, in a mice model
of chronic liver injury. They found that the intraportal administration of differentiated BM-derived
macrophages (BMMs) improved liver fibrosis, regeneration, and function via a wide range of reparative
pathways, with a therapeutic benefit. On the other hand, liver fibrosis was not significantly ameliorated
by the infusion of macrophage precursors, and it was even exacerbated by whole BM cells. Thanks to
paracrine signaling from the BMMs to larger populations of endogenous cells, their effect was amplified.
As a consequence, a modest number of donor BMMs could exert whole-organ changes—encouraging
a translational perspective and suggesting a future clinical potential.

3.1.3. Pluripotent Stem Cells

Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass of the
blastocyst. These cell were first characterized in 1998 by Thomson et al. [59]. They have pluripotency
and can potentially differentiate into all somatic cells [60]. Numerous studies have demonstrated
the differentiation of ESCs into hepatocyte-like cells that express a number of hepatocyte-related
genes and mimic liver function [61–65]. ESC-derived hepatocytes also have the typical morphology
of mature hepatocytes and are able to colonize liver tissue after transplantation, promoting the
injured liver’s recovery via cell replacement and stimulating endogenous regeneration [63,66–68].
Despite these promising results and the favorable characteristics of human ESCs, such as a good
resistance to cryopreservation, practical and ethical barriers have always precluded their application in
clinical practice.

Human induced pluripotent stem cells (iPSCs) have recently emerged as a way of bypassing the
ethical concerns associated with the use of ESCs [69]. The iPSCs are derived by reprogramming mature
somatic cells induced by different transcription factors [70]. Their characteristics of self-renewal and
pluripotency make iPSCs good substitutes for ESCs, and an appealing source of normal human cells
that can differentiate into virtually any somatic cell type, including hepatocytes. The hepatocyte-like
cells (HLCs) derived from human iPSCs could provide a stable source of hepatocytes for multiple
applications, including cell therapy, disease modelling, and drug safety screening [71,72]. Protocols
adopted to differentiate human ESCs and human iPSCs into HLCs mimic the developmental pathway
of the liver during embryogenesis, and have vastly improved in recent years. Nevertheless, several
issues regarding the safety and reproducibility of iPSCs still need to be settled before their real clinical
application, including tumorigenicity and teratoma formation, the debate on their immunogenicity,
long-term safety and efficacy, and the optimal reprogramming and manufacturing processes [73–75].
Constant progress is nonetheless being made in reprogramming technologies, and in new and improved
manufacturing methods.

3.1.4. Adult Stem Cells

Stem cells are valid alternative sources of cells for the treatment of liver diseases. They could
potentially be involved in modulating the liver’s regenerative processes to reduce scarring in cirrhosis,
and to down-regulate immune-mediated liver damage. Stem cells could also be differentiated into
hepatocytes for cell transplantation, or used in extracorporeal bioartificial liver systems [76].

Different types of adult stem cells have been tested over the years, including hematopoietic
stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and hepatic
progenitor cells (HPCs) [77–80].

HSCs are the predominant population of stem cells in bone marrow, and express the surface
marker CD34. HSCs can easily be isolated in the bloodstream after treatment with mobilizing agents,
the most widely-studied and often-used of which is the granulocyte-colony stimulating factor [81].
Hepatocyte-like cells derived from HSCs have been demonstrated to support liver regeneration [82,83].
Different mechanisms have been suggested, such as the de novo generation of hepatocytes through
transdifferentiation or the genetic reprogramming of resident hepatocytes through cell fusion [84,85].
However, the most plausible hypothesis is that the clinical benefit of HSC therapy occurs through
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paracrine signaling interactions involving various cytokines and growth factors, that stimulate
regeneration and neoangiogenesis [86,87].

Endothelial progenitor cells (EPCs) can be found in both peripheral blood vessels and bone
marrow, and their main function is to participate in the neovascularization of damaged tissue [88,89].
In the context of cell therapy for liver diseases, one animal study demonstrated that the transplantation
of EPCs led to a lessening of liver fibrosis [79]. ESCs are also able to promote hepatocyte proliferation
and increase matrix metalloproteinase activity [90]. All these effects are related to an increased secretion
of specific growth factors [91,92].

Another promising cell treatment for liver diseases is based on mesenchymal stem cells (MSCs),
a population of multipotent progenitors capable of differentiating towards adipogenic, osteogenic and
hepatogenic lineages, with a low immunogenicity [93]. Bone marrow is considered the main source of
MSCs [94], but alternative sources are being examined, such as adipose tissue [95], placenta, amniotic
fluid, umbilical cord blood, and umbilical cord [96,97]. Our research has focused on umbilical cord
MSCs. We demonstrated in an animal model that, when systematically administered, these cells can
repair acute liver injury [97]. The ability of the same cells to repair tissue damage was also demonstrated
in a chemically-induced intestinal injury in immunodeficient mice [98]. We and other authors have
demonstrated that MSCs have the capacity to provide both metabolic and trophic support due to
their potential for hepatocytic differentiation, and their secretion of anti-inflammatory, anti-apoptotic,
immunomodulatory, and pro-proliferative factors [97–99]. This leads to liver function being restored
via the repair of damaged tissue, the suppression of inflammation, and the stimulation of endogenous
regeneration through paracrine effects [100].

Cell-based therapy using HPCs could potentially regenerate the liver during chronic diseases.
Multiple protocols have been established for isolating HPCs in fetal and rodent models, and cell
differentiation protocols are available for progenitor cells derived from the human liver or biliary
tree [101–103]. Due to the low number of these cells in the liver, the use of autologous HPCs is
probably unfeasible. The use of expanded fetal or syngeneic HPCs is more likely, though this
approach raises questions regarding the engraftment rate of transplanted cells, and the need for
immunosuppressant therapy. Despite the theoretical feasibility of such approaches, we still have
only a limited understanding of HPCs, their precise role in liver pathophysiology, and how the entire
process of regeneration/differentiation is regulated. Given the possible disadvantages of HPC activation,
which might exacerbate disease progression or prompt the onset of cancer [104], all these issues warrant
further study and careful examination before any therapeutic approaches could be applicable.

3.1.5. Hepatic Organoids

Considered as a bridge between liver cell therapy and liver bioengineering, hepatic organoids are
functional three-dimensional (3D) in vitro models of the liver consisting of a spherical monolayer of
epithelium that preserves the key physiological features of the liver [105]. Liver organoids are typically
obtained by isolating and expanding stem cells or hepatic progenitor cells.

Liver organoids show a limited spontaneous differentiation during maintenance and expansion.
For this reason, protocols for establishing organoids were divided into two steps. The first relied on
proliferation culture conditions for the establishment and expansion of hepatic organoids. Then, in a
second step, proliferative signals were removed, and differentiation towards hepatocyte-like cells was
induced. These culture conditions enabled organoids to be obtained with 30–50% fulfilling hepatic
characteristics [106], but without the complete functional repertoire of adult hepatocytes—a drawback
shared by HPC-to-hepatocyte differentiation.

Differentiated hepatic organoids transplanted into mouse models of liver failure have demonstrated
a capacity for engraftment and repopulation of the damaged liver, with partial rescue of liver
function [105]. Equivalent human liver organoids transplanted into mice with acute liver damage were
able to produce human albumin and alpha-1-antitrypin, with secretion levels comparable with those
after the transplantation of adult hepatocytes [101].
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Three-dimensional liver tissue has also been engineered by using human iPSCs to derive
hepatocytes in co-culture with mesenchymal and endothelial cells [107]. When transplanted into
mice, these liver buds were vascularized and matured to synthesize serum proteins and carry out
detoxifying functions.

Current research is aiming for the clinical application of liver buds suitable for hepatic
administration via the portal vein in patients in need of a liver transplant [108]. Among the different
cell sources, adult stem cells directly derived from hepatic tissue are preferred. Indeed, drawbacks of
human iPSCs or trans-differentiated cells used in the design of clinical solutions concern their exposure
to genetic modifications through reprogramming factors, and their genomic instability, particularly in
long-term cultures [109].

Moreover, liver organoids provide a novel platform for research on: 1) liver development and
regeneration; 2) detoxification and metabolism; 3) liver disease modelling; and 4) adult stem cell biology.

3.2. Liver Tissue Bioengineering

Tissue engineering could offer various solutions for reducing the waiting list by creating
biocompatible scaffolds and extracorporeal liver devices suitable for either in vitro or in vivo
applications [110].

In the last two decades, a growing number of studies demonstrated that 3D cultures have a number
of advantages over traditional two-dimensional (2D) cell cultures [110,111]. A physiologically 3D
microenvironment is crucial to the development of in vitro tissue models, particularly for such complex
tissues as the liver, in which the interaction between hepatocytes, hepatic stellate cells, and extracellular
matrix (ECM) creates the microenvironment of the hepatic lobules [112].

The search for efficient biocompatible scaffolds aims to create organic or polymeric constructs
that mimic the liver ECM and replicate functional characteristics such as cell adhesion, viability,
growth, and proliferation. The principal strategies are based on biomaterials such as polymer-based
3D constructs, decellularized ECM, or bioprinting 3D constructs.

Another recent approach involves the development of bioreactors to improve various functions of
hepatocytes that are seeded in constructs. In bioreactors, a real 3D microenvironment niche is created
to improve cell attachment, growth, and proliferation, with a marked improvement in liver metabolism
and function [110]. A more sophisticated technology is the liver-on-chip: A combination of bio-reactor
techniques and microfluidic devices to sustain the phenotype of hepatocytes and liver-specific functions
in long-term culture [113].

Below we provide an overview of such bioengineering approaches, and Figure 3 shows the main
pros and cons of each of them.

3.2.1. Decellularized Extracellular Matrix

A new approach to liver regenerative medicine involves generating 3D organs with a decellularized,
native liver bioscaffold that can be repopulated with parenchymal and non-parenchymal cells [114].
The liver’s native ECM has a complex composition and topography, serving as a structure for cell-ECM
adhesion, interaction, and polarity, with implications for the regulation of cell morphology, proliferation,
differentiation, and viability interactions [115]. Donor organs unsuitable for transplantation are used to
create whole-liver scaffolds which are subsequently reseeded with healthy cells to create transplantable
liver grafts. The scaffolds maintain the native liver architecture and ECM composition, which allows
for proper cell homing and function. Decellularization techniques were introduced in the 1980s [116],
but the concept of whole-organ decellularization was developed later by Ott and colleagues in
mice hearts [117]. This technique was later adapted for liver engineering purposes [118], with the
preservation of the chemical composition and structure of the ECM with structurally intact vessels,
and bile ducts. This bioscaffold was then recellularized with hepatocytes and endothelial cells.
The recellularized graft transplanted in vivo and perfused ex vivo demonstrated mature liver functions.
Further improvements in the technique were obtained over the years, such us multistep cell seeding,
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the use of stem cells (MSCs, fetal hepatocytes, iPSCs) [119–121], optimization of the decellularization
cocktail, and perfusion without any thrombus formation [122]. The feasibility of this technique was
also demonstrated in larger animal models [123], and even in humans [124], bringing the approach to
clinical scale.Bioengineering 2019, 6, 81 9 of 20 
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All these studies demonstrated that decellularized livers hold great potential as a therapeutic
approach, but numerous pitfalls remain. First, the technique allows for the successful seeding and
culture of hepatocytes, but colonization of the bile duct with functional cells and the achievement
of an intact vascular network remain to be perfected. Another important issue before whole liver
bioscaffolds can be used in clinical practice is the lack of a suitable source of cells, which should
be readily available and renewable because successful liver recellularization demands hundreds
of millions of cells. The limited availability and inability to expand primary hepatocytes has led
researchers in the field to search for a new cell source. Although many groups have attempted to
overcome the problem by using fetal liver cells, stem cells or iPSCs, the production of such huge
numbers of hepatocytes is still far beyond current technical capability.

Another hurdle that should be promptly addressed is “sample to sample” variation due to the
unique condition of each donor deriving from the use of discarded livers [125]. The next goals of
bioengineering research will be to solve these problems.

3.2.2. Biopolymer Constructs

In modern tissue engineering, efforts are being made to make natural biomaterials mimic the natural
hepatic ECM. The main components of these scaffolds are collagen and hyaluronic acid. The latter
strongly supports cell attachment, proliferation, differentiation, growth, and migration. Immature
and mature hepatocytes express CD44, the surface receptors for hyaluronic acid, so biopolymers
with hyaluronic acid and its derivatives have more adhesive power for hepatocytes. They can retain
hepatocyte viability for 4 weeks [126].
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Other natural biomaterials used in the construction of bioactive scaffolds are alginate, chitin,
chitosan, silk, Matrigel®, and sponge. Matrigel® is a scaffold consisting of a mixture of ECM proteins
derived from the basal membranes of murine chondrosarcoma, which contains laminin, heparan sulfate
proteoglycan, and collagen type IV [127]. It has been used in numerous studies to culture hepatocytes
and induce the hepatic differentiation of stem cells [97,128].

Although hydrogels formed by natural biomaterials such as alginate and Matrigel® are biocompatible
and improve the generation of cell-to-cell and cell-to-matrix interactions, they have some important
limits that prevent their clinical application. The main shortcomings of such biomaterials are their
uncontrollable physicochemical properties, degradability, lack of regenerative ability, and inconsistent
mechanical properties. Moreover, due to the xenogenic and tumorigenic origin of Matrigels, they are
not an optimal support for clinical applications in liver bioengineering [129].

By comparison with natural biomaterials, synthetic materials offer a wide range of properties
and a better control over them. Scaffolds containing biodegradable polymers, such as polylactic acid,
polyglycolic acid, polyanhydrides, polyfumarates, polyorthoesters, polycaprolactones, poly-L-lactic
acid, and polycarbonates facilitate cell regeneration, transplantation, and degradation on time [130].
The biocompatibility of bioengineered matrices and scaffold adhesion properties could also be improved
by chemically modifying these polymers (e.g., by incorporating proteins and special bioactive domains),
stimulating cell attachment and migration, and thereby facilitating liver tissue repair [131].

While natural and synthetic materials support the successful culture of hepatocytes,
these constructs fail to perfectly reproduce the microenvironment of the liver essential to a functional
liver cell activity. For this reason, their therapeutic potential is limited.

3.2.3. Bioprinted Scaffolds

Although the use of biomaterials in 3D culture has improved the settings for liver tissue engineering,
it has some limitations. These include the difficulty of creating complex biological structures and
designs due to size, material, compositional, and technological constraints [132]. An innovative solution
to these problems involves using bioprinted scaffolds, tissue-mimicking constructs created by means
of a bioprinting process with biocompatible materials (i.e., bio-inks) [133]. Advances in bioprinting
technology have enabled the creation of more complex 3D structures using combinations of different
biomaterials and cell types [134]. The chance to totally customize the prints also guarantees the complete
personalization of such scaffolds and their applications. The available bioprinting modalities include
extrusion, inkjet, and laser-assisted bioprinting [135]. Extrusion bioprinting, the most often-used
bioprinting modality in biomedical research, allows for a strong degree of customization with few
restrictions on the cells used [134]. The choice of biomaterials is more restrictive, however, as they are
either easy to print or ideal for cell culture, but typically not both [136]. The ideal characteristics of
bio-inks for extrusion bioprinting are viscosity to enable printing, associated with an adequate elasticity
to maintain their structure, while also maintaining cell viability and supporting cell function [132].

The most common biomaterials used for bioprinting are collagen, alginate, polyethylene glycol
(PEG), hyaluronic acid, fibrin, gelatin, or polycaprolactone, each with unique properties [133]. With the
exception of collagen, these biomaterials need the addition of a cross-linker that could adversely affect
the cells. For this reason, they should be appropriately balanced to guarantee the best biocompatibility of
the bio-ink being used [133]. Although collagen is an ideal material for in-vivo-like tissue replication, it is
a poor bio-ink because it has a time- and temperature-sensitive cross-linking [137]. A multi-component
hybrid bio-ink is therefore a potential solution for achieving ideal physiological relevance and
bio-printability. Unfortunately, durable 3D construct fabrication requires the incorporation of chemical
stabilizers, such as polycaprolactone, showing the limitations of bio-inking technologies in mimicking
both the biochemical composition and the complex 3D structure of the liver.

Another important challenge in 3D bioprinting is how to fabricate and mimic cellular
microenvironments from molecular to macroscopic scales for tissue engineering and regenerative
medicine. Using this approach, the researcher aims to create a whole functional liver suitable for
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transplantation, but some important issues, such as vascularization, should be addressed before this
methodology can really be implemented.

3.3. Bioreactor Systems

Despite the great progress made in biomaterial development for tissue engineering, some challenges
need to be overcome. The most important limiting parameter in tissue engineering and bioprinting
concerns vascularization [138]. Without suitable vascularization, cells are subject to hypoxia, toxemia,
apoptosis, and immediate cell death. The bioreactor approach aims to overcome this limitation. In fact,
the bioreactor involves a designed or programmed fluid flow as an integral part of the culture format.
The flow in perfusion bioreactors enables a continuous exchange of nutrients, a better oxygen delivery,
and a physiological shear stress, influencing cell function in ways that are impossible to achieve in
static culture formats [139].

The evolution of bioreactor technologies has paralleled advances in the development of functional
biomaterial scaffolds [140]. The scaffold not only provides an adhesion surface for cells, but also
profoundly influences cell shape and gene expression relevant to cell growth and liver-specific functions.
Moreover, when placed as a separation between cells and the medium, the scaffolds act as a modulator
for water and nutrient transport from the medium to the cells, and discharge waste metabolites from
the cells to the medium [141].

Four principal types of bioreactors have been used for liver cell culture: 1) flat plate and monolayer;
2) hollow fiber; 3) perfused beds and scaffolds; and 4) encapsulation and suspension. With the exception
of type 1, the other bioreactors enable the 3D monoculture or co-culture of hepatocytes under tissue-
specific mechanical forces (pressure, shear stress, flow) [142,143]. Some of these bioreactors have
been used as bioartificial livers, charged with various types of liver cells, as a bridge for patients with
acute liver failure awaiting transplantation [144]. Now the challenge is to use cell-based bioreactors as
in vitro screening systems for drug toxicity, metabolism evaluation and potential clinical treatments.

Some parameters are crucial to hepatocyte vitality and functionality, including various biophysical
factors such as oxygenation, hemodynamics, and shear stress. Perfusion in bioreactor devices enables
the establishment of oxygen gradients and hepatic zonation, resulting in graded CYP expression and
metabolism [145,146]. A controlled oxygen gradient from 25 to 70 mmHg inside a hepatic bioreactor
creates a functional hepatocyte zonation similar to what is observed in vivo. Cell oxygenation could
be partially controlled by varying the medium flow rate, but may consequently exert a shear stress on
the hepatocytes. Flow rate should be carefully controlled since cell damage can occur. Hydrodynamic
stress induces ECM remodeling, scaffold degradation and changes in tissue composition, influencing
the device’s structural and mechanical properties. On the other hand, low flow rates limit the oxygen
supply, lead to nutrient deficiency, and reduce cell viability and survival probability [146].

The co-culture of hepatocytes and non-parenchymal cells is important for the reorganization of
hepatocytes in culture by secreting cytokines, nitric oxide, and matrix components [145,147]. Co-culture
is also useful for inducing liver-specific functions, preserving maximal levels of functional adhesion
molecule expression, and reducing the number of cells needed for a bioartificial liver [144].

The main limitation of the bioreactors is that not all critical liver functions can be replicated on the
desired level as yet. For this reason, based on the present state of the art, a unique bioreactor that can
faithfully reproduce all liver functions is still lacking.

3.4. Micro-Bioreactors and Liver-on-Chip

The combination of nanotechnology, microchips, and microfluidics in a single device has great
potential for applications in liver tissue engineering. Various strategies have been developed to obtain
micro-bioreactors. Microsystems technology has been used to fabricate 2D or 3D culture devices by
using different types of materials, like silicon, silicone elastomer, and biocompatible and biodegradable
polymers. Such systems typically exhibit laminar flow, similar to the environment in vivo, and allow
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the creation of microfluidic channels with larger surface-to-volume ratios suitable for oxygen and
nutrition supply [113].

Other interesting systems that exploit microfluidic technology are the so-called “liver-on-chip”
devices [148]. These systems consist of microchambers containing engineered tissue and living cell
cultures interconnected by a microfluidic network. Such organs on chips enable the study of human
phys-iology in an organ-specific context, and the development of novel in vitro disease models.
They have the potential to serve as replacements for animals used in drug development, toxin testing,
and screening for biothreats and chemical warfare agents [149].

4. Conclusions

In conclusion, regenerative medicine and bioengineering are cutting-edge technologies that look
promising as a final solution to the treatment of end-stage liver diseases. A better understanding of liver
regeneration and the development of in vitro systems that successfully mimic hepatocyte expansion
and differentiation will make autologous cell therapy a feasible alternative to liver transplantation.
The current scenario is also moving towards the successful development of whole bioengineered livers
and their effective use in clinical practice in lieu of liver transplantation.
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