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Abstract: It is known that the development of foci of chronic inflammation usually accompanies body
aging. In these foci, senescent cells appear with a pro-inflammatory phenotype that helps maintain
inflammation. Their removal with the help of senolytics significantly improves the general condition
of the body and, according to many indicators, contributes to rejuvenation. The cells of the immune
system participate in the initiation, development, and resolution of inflammation. With age, the
human body accumulates mutations, including the cells of the bone marrow, giving rise to the cells
of the immune system. We assume that a number of such mutations formed with age can lead to the
appearance of “naive” cells with an initially pro-inflammatory phenotype, the migration of which to
preexisting foci of inflammation contributes not to the resolution of inflammation but its chronicity.
One of such cell variants are monocytes carrying mitochondrial mutations, which may be responsible
for comorbidity and deterioration in the prognosis of the course of pathologies associated with aging,
such as atherosclerosis, arthritis, osteoporosis, and neurodegenerative diseases.

Keywords: aging; somatic mutations; inflammation; CHIP; bone marrow; monocytes; chronification
of inflammation; mitochondria

1. Introduction

Inflammation is an evolutionarily developed, very complex process aimed at restoring
the status quo in the body. Any accidental changes to it should, in most cases, reduce its
functionality and efficiency. If we believe that inflammation restores the structure and
functions of the body, then a decrease in the efficiency of this process should slow down
the recovery processes or do it poorly, leading to the development of chronic inflammation.

The key players in inflammation are immune cells. Among them, macrophages play
a special role. Macrophages are involved in inflammatory processes in a variety of ways:
they present antigens, they phagocytize objects with signs of foreign genetic information, as
well as any cellular debris, they regulate the work of other cells, including both cells of the
immune system and others (smooth muscle cells, endotheliocytes, cells of connective tissue).
It is macrophages that complete inflammation, as they say, contribute to its resolution.
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The precursors of macrophages, monocytes, are constantly formed during the work of
the bone marrow, and then these cells spread throughout the body. In the case of an already
existing inflammatory process, monocytes/macrophages migrate to the inflammation zone,
begin to take part in it, and largely determine the fate of this inflammatory focus. We can
consider one of the special cases, apparently quite common. A monocyte has a mitochon-
drial mutation that leads to mitochondrial instability. The destruction of mitochondria leads
to the appearance of mitochondrial DNA in the cytoplasm of cells. Monocyte/macrophages
are equipped with various receptors of innate immunity. PRRs (pattern recognition re-
ceptors) recognize mitochondrial DNA (which bears a resemblance to bacterial one) as a
foreign object, and the cell begins to trigger inflammation exactly as if bacteria had entered
the body. The macrophage starts to work as a sensor for a bacterial attack in its absence.
When such a macrophage migrates to an area of pre-existing inflammation, the possibility
that the inflammation will never be completed increases. It is important to introduce here
two subpopulations of macrophages, M1 and M2. M1 macrophages, also called classically
activated, respond to stimuli such as LPS, IFN-γ, and are important producers of pro-
inflammatory cytokines. M2 macrophages are also called alternatively activated, respond
to stimuli such as IL-4 or IL-13, and produce anti-inflammatory cytokines.

Such a mechanism should combine various inflammatory processes within one or-
ganism and have an effect similar to that of senescent cells. In the area of inflammation,
changes in the extracellular matrix occur, the structure of tissues is disturbed, and their
functionality decreases.

In recent years, many scientists have been working on senolytics—substances that
selectively kill senescent cells. Senolytics can induce actual rejuvenation of the body,
measured by various parameters. It is believed that the main mechanism of action of
senolytics is to suppress inflammatory processes. Senescent cells acquire senescence-
associated secretory phenotype (SASP) over time and, due to inflammation, accelerate and
generalize aging processes. The corresponding term, inflammaging, has also appeared,
which closely links the processes of inflammation and aging. Inflammation and telomere-
dependent cell senescence can reinforce each other in accelerating aging [1,2].

Thus, if a certain mechanism contributes to the intensification of inflammatory pro-
cesses in the body, we can assume that this mechanism accelerates aging. In our review, we
will further consider more specific aspects of the influence of mutations in somatic cells of
the bone marrow on the course of inflammatory processes.

2. Nuclear DNA Mutations in Hematopoietic Cells

With age, cells in our body accumulate somatic mutations, and somatic mosaicism
develops in many tissues [3]. These mutations occur by chance and, therefore, in most cases
they usually have no effect, or the effect is negative and in rare cases positive. In contrast
to germline mutations, which can be eliminated by selection, somatic mutations in most
cases are retained in tissues and are little subject to elimination. Based on this property,
theories of aging were previously proposed based on the progressive accumulation of
somatic mutations. A random change in the properties of cells within tissues should have
a clear negative effect on the processes of normal development and maintenance of the
body [4–6]. At the same time, few cases are known when the mechanism of the negative
action of random mutations is directly described. Cancer patients are an exception. It
should be noted that the rate of development of mosaicism is higher in rapidly dividing
tissues, including bone marrow [7]. If the mutation gives the cells an advantage in growth,
survival, etc., clones of altered cells, including cells of the immune system, can be formed.

The development of modern sequencing methods has made it possible to conduct
very in-depth studies of the stability of the genome, including the possibility of working
with individual cells. In the last decade, there have been a lot of works evaluating somatic
mutations in blood cells. Initially, researchers were interested in the issues of carcinogenesis.
Therefore, special attention was paid to genes, whose participation in carcinogenesis has
been confirmed repeatedly. It turned out that somatic mutations occur more often than
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expected [8–10]. For example, in the article by Jaiswal et al. [11], peripheral blood whole-
exome sequencing of 17182 people without hematological abnormalities was analyzed.
Changes in 160 genes (small insertions, deletions, and single nucleotide variants) that are
involved in the development of hematologic cancers were investigated. The results of this
work and several others [8–10] showed high and extremely varying mutation frequencies.
Surprisingly, among all mutations, mutations of three genes are very common in different
people: DNMT3A (DNA methyltransferase 3 alpha), TET2 (ten-eleven translocation 2), and
ASXL1 (additional sex combs-like 1) genes. Less common mutations are JAK2 (Janus kinase
2), TP53, GNAS, PPM1D, and some other genes (Figure 1).
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Figure 1. 10 most frequently mutated genes implicated in hematologic cancers (modified from [11]).
693 samples were investigated.

It turned out that the frequency of these mutations increases with age. According to
the same work [11], mutations in genes implicated in hematologic cancers under the age of
40 are very rare. Further, the frequencies increase steadily: after 60 years of life, it is 5.6%,
after 70 years—9.5%, after 90 years, the frequency reaches 18.4% (Figure 2).
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It is clear that these rates greatly exceed the incidence of clinically diagnosed hemato-
logic cancer in the general population since a set of mutations is required for the formation
of cancer. Although these people have an increased risk of developing blood cancer, real
illness is very rare, and the condition has been named clonal hematopoiesis of indetermi-



Biomedicines 2022, 10, 782 4 of 16

nate potential, or CHIP [12]. Subsequently, an alternative term appeared: age-related clonal
hematopoiesis (ARCH) [13]. Long-term studies have shown the stability of such clones (at
least 10 years) [14,15].

The detection rates of mutations depend on the type of analysis and the method of their
detection [16]. In the paper by Zink et al. [17], investigators performed non-biased whole-
genome sequencing without candidate driver mutations and increased the prevalence of
mutations: from 0.5% in people under 35 years old to 50% or more in people over 85 years
old. In research conducted by Young et al. [18], they used a special error correction method,
due to which they found mutations in DNMT3A and TET2 in 95% of healthy 50–60-year-old
individuals studied.

To estimate the prevalence of somatic mutations and changes in their frequencies, the
development of new, more advanced technologies is required. However, it can already be
argued that clonal hematopoiesis is very common already in middle age. Later in life, this
phenomenon becomes almost ubiquitous [18].

At this stage of understanding, it is difficult to determine why clonal expansion
occurs mainly only of particular mutations. It can be assumed that this process is influ-
enced by both genetics and environmental factors, as well as changes in the bone marrow
during aging [19,20]. One suggested explanation might be that if mutations lead to pro-
inflammatory changes, such cells may have a survival advantage [21]. These questions
require further study.

Anyway, the range of mutations leading to clonal hematopoiesis is much wider than
the target genes involved in the study of carcinogenesis. An increased frequency of clonal
hematopoiesis is found in cancer patients with different tumor localization [22–24]. This
may be caused by the predisposition to carcinogenesis, as well as a reaction to chemother-
apy (direct mutagenic effect of drugs and increased cell proliferation in response). The
presence of clonal hematopoiesis in these cases worsens the prognosis also due to increased
cardiovascular risks [25–27].

The term “therapy associated clonal hematopoiesis” has appeared. In this case, the
frequency of mutations associated with resistance to therapy increases in cells, for example,
tumor suppressor genes, such as TP53 and PPM1D [22–24,28,29]. Most intriguingly, clonal
hematopoiesis is associated with a 40–50% increase in risk for all-cause mortality [8,11].

This is indicated by several investigations, including those with extensive coverage.
Mosaicism was examined in 151,202 blood samples, and 8342 mosaic chromosomal alter-
ations were found. These changes are more than the tenfold elevated risk of subsequent
hematological cancer, and detectable mosaicism roughly doubled the risk for all-cause
mortality (corrected for age, sex, and smoking status) [30].

The risk level is comparable to that of smoking [17]. The increased risk of all-cause
mortality cannot be explained by the increased risk of hematologic neoplasms, which are
relatively rare. What explanation can we offer? An association of CHIP with coronary heart
disease and ischemic stroke was observed. Since atherosclerosis is the leading cause of
death in the elderly, this explanation, in principle, passes.

3. Cells with Mutations Responsible for CHIP Are Often Characterized by
Pro-Inflammatory Changes
3.1. DNMT3A

As noted above, changes in the DNMT3A gene are most often involved in clonal
hematopoiesis in the elderly. This gene belongs to a family of cytosine methylases. They
catalyze the addition of the methyl group to genomic DNA. Thus, the DNMT3A gene is
involved in the epigenetic regulation of gene expression [31].

Many studies reveal that DNMT3A is involved in the regulation of inflammation at
the level of cells—key participants (macrophages, T-lymphocytes, and mast cells). Through
gene editing, it was shown that the loss of DNMT3A function in hematopoietic cells
contributed to the development of heart failure by increasing inflammation. It has been
shown that transplantation of cells with an altered DNMT3A gene results in an increased
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accumulation of macrophages in the heart of mice after angiotensin II administration.
DNMT3A-deficient macrophages have an increased expression of pro-inflammatory cy-
tokines and chemokines such as IL-6, CXCL1, CXCL2, and CCL5 following stimulation with
LPS [32]. The DNMT3A gene has been shown to restrict the development of inflammation
by suppressing the expression of IL-13 in T helper-2 cells [33].

It has been shown that the product of the DNMT3A gene restrains inflammatory
pathways in mast cells [34]. The DNMT3A gene product is involved in the regulation of in-
flammation by influencing the polarization of T-cells [35,36]. Thus, it is clear that DNMT3A
has many immunomodulatory properties with a predominance of anti-inflammatory activ-
ity. The mechanism of such properties is not fully clear, but they seem to be associated with
the epigenetic regulation of transcription factors’ activity.

3.2. TET2

TET2 is one of the most common genes, mutations of which lead to an increased risk of
death due to cardiovascular diseases. More than 130 TET2 mutations have been described.
Most mutations result in loss of function [8,11,37].

The product of TET2 (ten-eleven translocation 2) converts 5-methylcytosine into 5-
hydroxymethylcytosine—it is the first step in the cytosine demethylation process. Thus,
TET2, as well as DNMT3A, is involved in the epigenetic regulation of gene expression.

Studies involving Tet2-deficient macrophages revealed they have an increased ex-
pression of pro-inflammatory cytokines after LPS stimulation. Increased levels of IL-1β,
IL-6, and CCL5, but not CXCL1 and CXCL2. This distinguishes the expression profile
from DNMT3A-deficient macrophages [32]. One possible reason for the clonality of TET2
mutations is that they cause an increased hematopoietic stem cell self-renewal. Moreover, in
animals with TET2 deficiency, extramedullary hematopoiesis is observed, with an increase
in monocytes and neutrophils within the spleen [38,39].

In experiments simulating the effect of TET2 mutations on the development of atheros
clerosis, TET2–deficient hematopoietic cells were transplanted into Ldlr−/− mice prone to
atherosclerosis [40]. The acceleration of the development of atherosclerosis was observed.
Further, transplantation of cells with myeloid-specific ablation of Tet2 was sufficient for
the effect. Probably it is the cells of myeloid origin; most likely, macrophages mediate the
acceleration of atherosclerosis with TET2 mutations [40].

The heterozygosity for the TET2 mutation of the transplanted cells was sufficient to
accelerate atherosclerosis, albeit to a lesser extent. In a similar article [10], it was also shown
that Tet2-deficient macrophages accelerate the development of atherosclerosis and have
pro-inflammatory properties, expressed in increased production of cytokines, including
IL-1β. The authors suggest that the effect on atherosclerosis is mediated by the increased
recruitment of monocytes to the affected area through increased CXCR2 signaling. It is
known that the content of IL-1β is increased in the plaques of atherosclerotic mice.

A significant result of this work is that the authors revealed an increased level of
inflammation in different tissues of mice transplanted with Tet2 knockout bone marrow.
Inflammatory infiltrates in the lungs and liver, the development of prominent xanthomas
in the spleen and middle ear, marked foam-cell accumulation, and glomerulosclerosis in
the kidney were observed [10].

The mechanism of action of TET2 mutations may consist of the suppression of the tran-
scriptional activation of pro-inflammatory genes by TET2 via recruiting histone deacetylase
2 to the gene promoter [41]. This may be true for both IL-1β and NLRP3 components [40].

3.3. JAK2

The JAK2 gene is also one of the most common variants of mutated genes in the
hematopoietic system. JAK2 is a member of the Janus family of cytoplasmic non-receptor
tyrosine kinases. The JAK-STAT signal transduction pathway is responsible for mediating
signals of over fifty cytokines, growth factors, and hormones, including erythropoietin and
thrombopoietin [42].
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The most common JAK2 mutation is designated as JAK2V617F. It occurs in both
myeloproliferative disorders and clonal hematopoiesis [43]. A blood test of 19,958 adult
persons showed that 3.1% of individuals harbor this mutation [44]. Acceleration of murine
heart failure was shown when transplanting bone marrow cells carrying the JAK2V617F
mutation into mice [45]. At the same time, an increased level of pro-inflammatory mediators
within the hearts was shown.

In a similar work, transplantation of bone marrow cells carrying the mutation JAK2V6
17F to Ldlr−/− atherosclerosis-prone mice led to the acceleration of the development of
atherosclerosis [46].

JAK2V617F macrophages has an increased expression of pro-inflammatory cytokines,
which activated inflammasomes, increased p38 MAPK signaling, and decreased activity of
c-Mer tyrosine kinase, a key molecule mediating efferocytosis. It is worth noting that the
authors noticed a high prevalence of incomplete erythrophagocytosis, which they associate
with decreased expression of CD47 (a “don’t eat me” signal) on JAK2V617F erythrocytes.

Both human and murine neutrophils carrying JAK2V617F mutations have an increased
ability to form NET. It is known to increase the risk of thrombosis [47].

The pro-inflammatory changes that accompany the JAK2V617F mutation served
as the basis for the inclusion of anti-inflammatory drugs in the treatment protocols for
patients with myeloproliferative diseases. Over the past decades, these have included
corticosteroids, interferons, immunomodulatory imide drugs, and, more recently, JAK
inhibitors [48].

4. Mitochondrial DNA Mutations and Their Impact on Proinflammatory
Cellular Phenotype

The association of atherosclerosis with impairment of mitochondrial function was
discovered at the level of clinical manifestations, oxidative stress, and other risk factors [49].
It was found that the impairment of mitochondrial function can be related to medial degen-
eration and arterial aging [50] because of changes in the expression of genes regulating the
number of mitochondria. The correction of mitochondrial functional activity can delay the
process of aging in the case of arterial vessels.

Several recent studies provide pieces of evidence supporting the connection between
mtDNA mutations and atherosclerosis. These studies were conducted on arterial wall
samples and leukocytes obtained from atherosclerosis patients. The majority of identified
mutations are related to mitochondrial transfer RNA, mitochondrial ribosomes, and dif-
ferent mitochondrial-encoded respiratory complex subunits. It has been proposed that
the presence of these mutations triggers mitochondrial dysfunction and, therefore, ROS
production, which enhances the appearance of atherosclerotic plaques and increases the
thickness of the intima and medial layers in carotid arteries [51].

Cancer is associated with impaired energy production in the cell and inflammation.
The events leading to cancer development are often related to chronic inflammation and
infection. Thus, mitochondria are crucially involved in cancer development, including the
process of immune reaction. Unrestricted tumor development can be connected with the
suppression of the process of immune response related to inflammation [52].

Cancer growth and impairments in mitochondrial functions may be caused by mtDNA
mutations [53]. Dysregulation of energy production in the cell is associated with mitochon-
drial dysfunction and characterizes the process of oncogenesis [54,55]. Inflammation and
cellular homeostasis can be affected by pathological changes in mitochondrial function
during cancer [56–58]. An interesting observation was recently made by Smith et al. Their
study revealed a contribution of mtDNA mutations to cancerogenesis and aging via an
OXPHOS impairment. The authors linked the age-associated accumulation of mtDNA
mutations to OXPHOS deficiency, which promotes metabolic remodeling. Consequently, it
can functionally contribute to accelerated intestinal cancer development [59,60].

Asthma, cystic fibrosis, pulmonary fibrosis, pulmonary hypertension, and chronic
obstructive pulmonary disease (COPD) are associated with dysfunction in mitochondria
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and dysregulated inflammation in the lungs [61–63]. More precisely, mutations in mito-
chondrial genes NLRX1 and MAVS were associated with COPD [64–66]. In addition to that,
patients with this disease were shown to have a lower amount of mitochondria, a change in
mitochondrial DNA content, impaired mitochondrial functions in skeletal muscles [67–70]
and alveolar macrophages [71], mitochondrial fission associated with the degradation of
lung tissue [72].

Autoimmune rheumatic diseases (ARD) are related to autoreactive self-inducing
adaptive and innate immune reactions, which result in tissue damage. Such examples are
systemic lupus erythematosus (SLE) and rheumatoid arthritis. Unregulated activation of
innate and adaptive immune responses induces chronic inflammation and is essential for
ARD development during every step [73]. Monocytes, macrophages, and their cytokines
are the key components of autoimmune disease development [74].

Mitochondrial abnormalities can cause the release of mtDNA and stimulate the im-
mune response, which is linked to various neurological diseases. mtDNA content and
ccf-mtDNA in plasma and CSF have been analyzed in a number of these diseases. Among
such diseases are major depressive disorder, Alzheimer’s disease, Parkinson’s disease,
multiple sclerosis, schizophrenia, and others. The range of mutations causes accumulation
of damage in different ways during the pathogenesis of neurodegenerative disorders. Moya
et al. propose that accumulation of defective mitochondria due to impaired mitophagy
and the stimulation of oxidative stress are common factors that link mtDNA-dependent
inflammation within these pathologies [75].

The evidence was found that impairments in mitochondrial function can stimulate
human synoviocytes’ inflammatory response with its modulation in the direction of the
greater increase due to the induction by IL-1β [76]. The work of Caric et al. provides
pieces of evidence that in iNOS, BCL-2 and MMP-9 are involved in the regulation of hip
osteoarthritis [77].

An interesting observation was made that most of the identified mtDNA mutations
are mild or non-pathogenic, so they may not be a cause of a certain pathogenic phenotype
development. Recently, some investigations have revealed multiple mtDNA mutations
linked to hypertension, which allows the suggestion of its maternal transmission. Thus,
aberration of the tRNA levels causes the decreased rate of mitochondrial protein synthesis
and a reduction in mitochondrial protein levels in the mutant cells, altered complex I/III
activity, electron leakage, and enhanced ROS production. Subsequently, a damaged mi-
tochondrial respiratory chain caused a vicious cycle: increased ROS production means a
higher rate of mtDNA mutations and cell death. Thus, MtDNA mutations and deletions
contribute to oxidative stress and mitochondrial dysfunction, which may be involved in the
development and pathogenesis of CVD, in particular, hypertension and atherosclerosis [78].

The variety of human diseases associated with inflammation is also characterized
by excessive ROS production. It is not a surprise that mitochondrial dysfunction is also
involved in human diseases with underlying inflammatory pathologies, such as diabetes
mellitus and cardiac dysfunction [79].

The increase in the level of mitochondrial ROS can contribute to cell death caused by
apoptosis and lymphopenia, and increased inflammation can be caused by necrosis of SLE
lymphocytes [80].

The mechanism of pathogenicity in ARD may be related to the impaired removal
of apoptotic cells by macrophages leading to the accumulation of apoptotic cell-related
autoantigens, including oxidized proteins [80]. Apoptotic cells, which were not removed
by macrophages, experience secondary necrosis, membrane disruption, and intracellular
components, including proteins, get released in the extracellular environment causing
inflammation due to the induction of autoreactive B- and T-cells [81].

Recent evidence suggests that Parkinson’s disease is also related to impaired mi-
tophagy, which leads to the release of mitochondrial DNA (mtDNA), which, in turn,
stimulates inflammation. Borsche et al. revealed that in individuals carrying mutations in
PRKN/PINK1, IL6 and circulating cell-free mtDNA levels can serve as markers of Parkin-
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son’s disease state and progression, respectively. This study demonstrates an essential
role of inflammation in Parkinson’s disease pathogenesis and, what is more, links this
process to mitochondrial function abnormalities [82]. Another study, performed by Sliter
et al., support these findings. They observed a strong inflammatory phenotype in both
Prkn−/− and Pink1−/− mice following exhaustive exercise and in Prkn−/− mutator
mice, which accumulate mutations in mitochondrial DNA (mtDNA). Inflammation re-
sulting from exhaustive exercise or mtDNA mutation can be rescued completely by the
concurrent loss of STING, a central regulator of the type I interferon response to cytosolic
DNA. The loss of dopaminergic neurons from the substantia nigra pars compacta and the
motor defect observed in aged Prkn−/− mutator mice are also rescued by loss of STING,
suggesting that inflammation facilitates this phenotype. Humans with mono- and biallelic
PRKN mutations also display elevated cytokines. These results support a role for PINK1-
and parkin-mediated mitophagy in restraining innate immunity disease. Therefore, the
authors hypothesize that parkin and PINK1 prevent inflammation and neurodegeneration
by clearing damaged mitochondria, thereby preventing increases in cytosolic and circu-
lating mtDNA, suggesting a new model for how mitophagy may mitigate Parkinson’s
disease [83].

Due to the function of mitochondria as a power plant of the cell, mtDNA is more
susceptible to the damage caused by oxidation than DNA localized in the nucleus [84].
The impairments of mtDNA can lead to defects in mitochondrial functions, which, in turn,
can generate more ROS causing repeated cycles of mtDNA damage. When the pressure
of oxidative stress is moderate, the mitochondrial machinery still can be recovered upon
the increase of copy number of mtDNA as compensation for the damaged one. However,
the further increase in ROS production can cause a decrease in mtDNA copy number and
impairment in mitochondrial activity [85].

One of the factors of aging is related to mitochondrial dysfunctions, changes in the
amounts of mitochondria in the cell, etc. [86]. The term inflammaging refers to the idea that
aging causes the formation of the pro-inflammatory situation in the organism [86], leading
to pathological (chronic) inflammation-causing mortality and decreasing the quality of life
in an older part of the population [87–89].

It is known that different processes involving mitochondria (oxidative phosphoryla-
tion, mitophagy, etc.) become impaired during aging [90,91]. In addition to that, defects in
mtDNA reparation cause the impairment of mitochondrial function and, as a result, accel-
erate aging [92]. Dysfunctions of mitochondria happening as the organism gets older even-
tually result in mitochondria-associated damage-associated molecular patterns (DAMPs)
being released and induction of innate immunity, and the development of age-associated
chronic diseases.

An interesting association between MACE (major adverse cardiovascular event) and
mtDNA4977 deletion was observed in the study by Vecoli et al. Short leukocyte telomere
length and high mtDNA4977 deletion showed independent and joint predictive value on
adverse cardiovascular outcomes and all-cause mortality in patients with CAD. These find-
ings strongly support the importance of evaluating biomarkers of physiological/biological
age, which can predict disease risk and mortality more accurately than chronological
age [93].

Experiments with mice carrying mutations in the mitochondrial polymerase gene have
produced remarkable results. These mice are referred PolgA, and in their mitochondria,
mitochondrial mutations accumulate during their lifetime. PolgA mice age rapidly, starting
from 6–8 months of age, and have significantly reduced longevity. They have various
pathologies associated with aging, including hair graying, alopecia, osteoporosis, hemopoi-
etic stem cell decline, cardiomyopathy, kyphosis, and frailty. The mouse phenotype became
extremely inflammatory. Contrary to expectations, no signs of ROS increase were found in
the tissues of these mice [94–96].

It is possible that mitochondrial mutations still lead to an increase in ROS since an-
tioxidants improve the state of PolgA mice [97]. There is a possibility that cells with
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mitochondrial mutations leading to an increase in ROS may be eliminated during devel-
opment, leading to accelerated senescence of progenitor cells [97]. An increase in ROS
damages telomeres and increases senescence accordingly. On the other hand, an increase in
ROS may just lead to apoptosis, which increases the turnover of progenitors, and so on.

The interpretation of experiments with “mutator” mice maybe that mitochondrial mu-
tations generally induce a pro-inflammatory response and trigger inflammation. Given the
significant difference in the lifespan of humans and mice, it can be assumed that mitochon-
drial mutations are of greater importance for humans since the number of mitochondrial
DNA replications (and, accordingly, the number of replication errors) in humans should be
significantly higher.

At least, several possibilities can be envisioned as to how mitochondrial mutations
contribute to inflammation:

1. Mitochondrial mutations damage mitochondria. This can lead to their destruction
and facilitate the release of mitochondria-derived alarmins, including mtDNA.

2. Mitochondrial mutations are capable of weakening the energy potential of mitochon-
dria, leading to increased glycolysis. In the case of monocytes/macrophages, this may
contribute to the polarization in M1 [98,99].

3. Mitochondrial mutations can lead to an increase in ROS, which causes cellular dam-
age, leading to aging or cell death and contributing to the appearance of an aging-
associated pro-inflammatory phenotype (SASP).

4. Disruption of mitophagy and the corresponding release of mtDNA into and out of
cells. The circulating cell-free mitochondrial DNA appears in blood plasma [82,100].

We should note that all the described mechanisms lead to the circulation of mito-
chondrial alarmins throughout the body and also contribute to (possibly) reprogramming
of macrophages towards M1. From this, it can be concluded that an additional mecha-
nism of aging associated with blood cells spreads increased inflammation throughout the
body, contributing to the development of multiple pathologies associated with aging, i.e.,
increased comorbidity.

5. Mutations in Hematopoietic Cells Increase Inflammation at the Body Level, Thereby
Accelerating Aging

As shown above, the most common nuclear mutations in hematopoietic cells change
their phenotype towards increased inflammation. Mitochondrial mutations have a simi-
lar effect.

Leukocytes are directly involved in the processes of inflammation. These cells migrate
to the area of inflammation from the circulation and accumulate there. If these cells have
pro-inflammatory changes, then the existing focus of inflammation is less likely to go
into the resolving phase. On the contrary, pro-inflammatory cells should intensify the
process, and inflammation will continue or even spread further. For example, if cells have
mitochondrial mutations leading to mitochondrial destabilization, then such cells will carry
out their functions to fight infection, regardless of time, since the breakdown products of
mitochondria are similar to bacterial.

Interesting observations were made in the last years considering the Ercc1-deficient or
Ercc1-knockout mouse model. The Ercc1 gene encodes a crucial DNA repair protein, Exci-
sion repair cross-complementing group 1. These mice accumulate spontaneous, oxidative
DNA damage of the same kind as the wild-type (WT) mice, but at a faster rate. Moreover,
many features of natural murine aging, as well as human aging, are present in Ercc1-/∆
mice. Emerging use of these mice allows studying age-related signaling pathways, includ-
ing identifying different types of senescent cells and their key senescent cell anti-apoptotic
pathways (SCAPs). The most important use of this model is the evaluation in vivo of
senolytic drugs and other gerotherapeutics [101]. A study by Robinson et al. revealed the
oxidative stress origin of Ercc1-/∆-associated accelerated mutation accumulation. Their
findings state that nuclear genotoxic stress arises, at least in part, because of mitochondrial-
derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels
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of ROS, cellular senescence, and the consequent age-related physiological decline [102].
Another study conducted by Yosefzadeh et al. demonstrated that Vav-iCre+/−; Ercc1−/fl
mice were healthy into adulthood, then displayed premature onset of immunosenescence.
This process was accompanied by the attrition and senescence of specific immune cell
populations, along with impaired immune function, similar to changes that occur during
aging in wild-type mice. Another important observation is that non-lymphoid organs also
exhibited enhanced senescence and damage, which suggests that senescent, aged immune
cells can promote systemic aging [103].

About 20 years ago, the term “inflammaging” appeared [87,88]. This term combines
aging and inflammation and explains the relationship between chronic inflammation
and the development of aging-associated pathologies. It is known that aging in humans
is closely associated with sluggish, chronic inflammation [104,105]. It is believed that
the sources of such chronic inflammation can be senescent cells accumulating with age,
possessing SASP, various cellular debris, fragments of the extracellular matrix, etc. It
has been shown that many indicators of inflammation circulating in the blood are strong
predictors of age-related morbidity and mortality [106,107].

The position of inflammaging theory has been greatly strengthened in recent years
with the development of senolytics. Selective elimination of senescent cells from the body
caused not just a decrease in inflammation and an improvement in the physical functions
of many systems of the body but also increased life expectancy [108–110]. It finally became
clear that chronic inflammation is one of the mechanisms of aging.

The theory of aging based on the accumulation of somatic mutations was proposed
more than 50 years ago [111]. It explained in general terms that the accidental accumulation
of errors leads to a catastrophe of errors, expressed in a decrease in the optimal functioning
of all systems.

In our case, the accidental accumulation of mutations in cells involved in the execu-
tive mechanisms of inflammation prevents the effective (developed as a result of natural
selection) work of inflammation mechanisms to restore the lost status quo. This is a more
significant violation. On the other hand, the rate of occurrence and spread (formation of
clones) of mutations is higher in rapidly proliferating tissues (bone marrow), which also
increases the significance of such mutations [7].

A centenarian (105+) can be considered as a person with delayed aging or with the
characteristics associated with healthy aging [112]. The involvement of bone marrow
cell mutations (clonal hematopoiesis) in the process of such healthy aging has recently
received very significant confirmation. The study investigated somatic mutations in very
old people [113]. The work showed that people who have reached the age of 105+/110+ are
distinguished by the increased efficiency of DNA repair mechanisms, leading to a decrease
in the number of somatic mutations. They have a lower mutation load than younger,
healthy people.

Analysis of 7 genes involved in clonal hematopoiesis (DNMT3A, TP53, ASXL1, TET2,
SF3B1, PPM1D, JAK2) showed that, in addition to the JAK2 gene, all other genes in very
old people mutate less often than the same genes in controls with an average age of 68
years. At the same time, the differences for two separate genes are more than two times
(DNMT3A, ASXL1) and are quite significant.

It is possible that in cases of very old age, control over inflammation becomes a more
important factor of successful longevity, ensuring not only survival but the preservation of
capability and cognition [114].

6. Conclusions and Prospects

The mechanism of aging considered in this review (Figure 3) should be taken into
account as an important factor of the aging process:
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1. It begins to work and strengthens its activities in the process of life. This mechanism
is activated as mutations accumulate. At the same time, starting from middle age, its
effect is enhanced. If a person has hereditary mutations, the mechanism can work
from the very beginning of his/her life.

2. The action of the mechanism should enhance comorbidity. Since cells from the bone
marrow participate in inflammatory processes throughout the body and modify them,
inflammation is generalized and encompasses all organs and tissues. As a result, there
is a “synchronization” of inflammation in all organs and tissues, all systems become
decrepit, and the likelihood of a fatal outcome increases.

3. Knowledge of this mechanism allows us to hope for the possibility of counteracting it.
These interventions can be quite universal and not unique for each patient due to the
effect of CHIP.

4. Immediately, we would like to offer a universal treatment—bone marrow transplanta-
tion from young donors. This idea, of course, should work, but for various reasons, it
cannot be massively implemented.

5. Approximately 100 years ago, the idea of blood transfusion from young donors
for rejuvenation was developed in the USSR by the director of the world’s first
blood transfusion institute, Alexander Bogdanov (Malinovsky). He died in 1928
after regular blood transfusion as a result of the then-unknown Rh conflict. The
effect of blood transfusion can likely be quite long since it is not limited by the
time of survival of transfused cells in the blood but, possibly, will contribute to
the resolution of some of the sluggish inflammatory processes. If this scenario is
realized, then the bone marrow’s cells will no longer support these areas of chronic
inflammation. Interestingly, recent findings contribute to the beneficial effect of neutral
blood exchange (NBE) that resets the signaling environment to a pro-regenerative state
via dilution of old plasma. Comparative proteomic analysis performed by Mehdipour
et al. on serum from NBE, and a similar human clinical procedure of therapeutic
plasma exchange (TPE), showed a molecular re-setting of the systemic signaling
milieu, interestingly, elevating the levels of some proteins, which broadly coordinate
tissue maintenance and repair and promote immune responses. Investigators state
that significant dilution of autoregulatory proteins that crosstalk to multiple signaling
pathways (with their feedback loops) would, through changes in gene expression,
have long-lasting molecular and functional effects. Their further work admitted the
rejuvenating effect of NBE on the mouse brain [115,116].

6. Of course, the ideas of genomic editing of bone marrow stem cells look more realistic
nowadays. But these technologies are not sufficiently developed in our time and are
associated with health risks.
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7. Given the practice, aging people can be recommended with time-tested and well-
tolerated anti-inflammatory drugs (for example, aspirin) for continuous use.

8. A promising target may be circulating monocytes because they are key players in the
regulation of inflammation. A decrease in the proinflammatory status of monocytes
should reduce the level of most current inflammatory processes in the body and help
resolve some of the foci of chronic inflammation.
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