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A B S T R A C T   

Purpose: This study aimed to demonstrate the correlations between the altered functional con-
nectivity patterns in the triple-network model and cognitive impairment in patients with cerebral 
small vascular disease (CSVD). 
Methods: Resting-state functional magnetic resonance imaging data were obtained from 22 pa-
tients with CSVD and 20 healthy controls. The resting-state data were analyzed using independent 
component analysis and functional network connectivity (FNC) analysis to explore the functional 
alterations in the intrinsic triple-network model including the salience network (SN), default 
mode network (DMN), and central executive network (CEN), and their correlations with the 
cognitive deficits and clinical observations in the patients with CSVD. 
Results: Compared to the healthy controls, the patients with CSVD exhibited increased connec-
tivity patterns in the CEN-DMN and decreased connectivity patterns in the DMN-SN, CEN-SN, 
intra-SN, and intra-DMN. Significant negative correlations were detected between the intra-DMN 
connectivity pattern and the Montreal Cognitive Assessment (MoCA) total scores (r = − 0.460, p 
= 0.048) and MoCA abstraction scores (r = − 0.565, p = 0.012), and a positive correlation was 
determined between the intra-SN connectivity pattern and the MoCA abstraction scores (r =
0.491, p = 0.033). 
Conclusions: Our study findings suggest that the functional alterations in the triple-network model 
are associated with the cognitive deficits in patients with CSVD and shed light on the importance 
of the triple-network model in the pathogenesis of CSVD.   
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1. Introduction 

Cerebral small vessel disease (CSVD) is a common age-related disease leading to various clinical, imaging, and pathologic deficits 
caused by perforating cerebral small vessels, such as arterioles, venules, and capillaries [1]. As the aging population increases, the 
incidence of CSVD is also rising. Statistically, CSVD accounts for approximately 25 % of ischemic stroke and most intracerebral 
hemorrhage in older people worldwide [2,3]. It is characterized by multiple structural alterations visibly on brain magnetic resonance 
imaging (MRI) in older people, including but not limited to lacunar infarct (LI), white matter hyperintensity (WMH), cerebral 
microbleed (CMB), and enlarged perivascular space (PVS), which are considered the core neuroimaging findings of CSVD [1,4,5]. Of 
these, the prevalence rate of WMH is as high as 70 % in the Chinese population [6]. Moreover, cognitive decline is a major consequence 
of CSVD, resulting in impairments in executive function, processing speed, attention, and memory [7]. All these heterogenous syn-
dromes not only disrupt normal cerebral blood flow and alter cerebral function, but also result in vascular cognitive deficits and 
dementia [8,9]. Patients may be detected with CSVD based on imaging signs during a general neurological examination, but they may 
be completely asymptomatic from a cognitive perspective. Therefore, the underlying neuromodulatory mechanisms involved in CSVD 
with cognitive impairment still require further elucidation. 

In the last decade, neuroimaging technology has been used extensively to diagnose and identify CSVD in vivo, particularly MRI 
[10]. However, conventional MRI detects only significant structural lesions, which are downstream consequences [10,11]. The human 
brain is a complex patchwork of interconnected regions, each with its own specialized function. However, these regions do not work in 
isolation, but rather communicate and cooperate with each other through different functional networks. Functional MRI (fMRI) 
technology has received great attention and has become an important tool for reflecting functional change of cerebral intrinsic net-
works associated with the cognitive impairment in neurological diseases [12,13]. Recent fMRI studies have investigated the functional 
alterations in CSVD with a focus on some core brain regions, including the three major regulatory networks: the default mode network 
(DMN), salience network (SN), and central executive network (CEN) [14–16]. These networks are sets of brain regions that show 
synchronized activity at rest or during task performance, and reflect distinct cognitive processes or mental states [17,18]. 

The DMN mainly consists of the posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC) that are active when the 
brain is at rest and is shown to involve self-referential processing and memory retrieval [19,20]. The CEN, anchored in the dorsolateral 
frontoparietal cortex, is involved in higher-order cognitive processes, including working memory and executive control [21–23]. 
Moreover, the SN mainly locates in the anterior cingulate cortex (ACC) and anterior insula which are associated with detecting and 
responding to salient stimuli and responsible for switching between the DMN and the CEN [24]. These functional networks contribute 
to the triple-network model that offers a powerful perspective for investigating cognitive and affective dysfunction in psychiatric and 
neurological disorders [25]. The triple-network model proposes that the DMN and CEN are mutually inhibitory under the regulation of 
the SN, meaning that if a task activates one of these networks, the SN will suppress the activity of the other network. This ensures that 
the brain can switch and balance effectively between different cognitive states [26,27]. Although functional alterations of these 
networks in CSVD have been investigated independently, only a few studies have examined the functional alterations in the 
triple-network model in CSVD, which may underlie a potential correlation with CSVD-associated cognitive impairment [28,29]. 
Therefore, further research is warranted to address these research gaps. 

In this study, the Montreal Cognitive Assessment (MoCA) scale is chosen as the cognitive assessment tool due to several reasons. 
The MoCA scale is widely used as a reliable and valid tool with multiple cognitive domains, allowing for a more comprehensive 
assessment of cognitive function in patients with CSVD. Moreover, its brevity and ease of administration make it suitable for use in 
clinical practice [30]. By utilizing this scale, we aimed to obtain a reliable and accurate measurement of cognitive impairment in 
patients with CSVD. Therefore, we proposed the following hypotheses: (1) patients with CSVD have abnormal resting-state functional 
alterations in the triple-network model and (2) the functional alterations in these networks have significant associations with 
CSVD-related cognitive deficits. 

2. Methods 

2.1. Participants 

This study included consecutive patients with CSVD who were hospitalized in the Department of Neurology from November 2020 
to June 2022. The inclusion criteria were as follows: (1) age equal to or greater than 45 years old; (2) MRI showing significant imaging 
characteristics of CSVD, including WMH, LIs, CMB, PVS, or cerebral atrophy; (3) with or without dizziness, memory loss, or gait 
instability. Patients who met the following exclusion criteria were excluded: (1) cerebral cortical or watershed infarction, or non- 
lacunar infarction with diameter >20 mm in the cortex; (2) white matter lesions caused by non-vascular factors; (3) acute cerebral 
hemorrhage; (4) Alzheimer’s disease (AD), Parkinson’s disease, epilepsy, multiple sclerosis, central nervous system infection, 
craniocerebral trauma, intracranial tumor, or other diseases causing cognitive impairment; (5) obvious mental illness or alcoholism; or 
(6) any other severe systemic disease. Participants were classified according to their educational level using the following five cate-
gories: (1) illiterate, (2) primary school, (3) junior high school, (4) senior high school, and (5) university. Each participant provided 
signed informed consent before enrollment. This study was approved by the Ethics Committee of Jiangning Hospital, Nanjing, Jiangsu 
Province, China (2016YFC1300500). 
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2.2. MoCA scale assessment 

The MoCA scale is a valid tool for evaluating cognitive function, with a maximum score of 30 points [30]. All participants were 
administered a Chinese version of the MoCA (MoCA Beijing) [31]. The MoCA scale assesses multiple cognitive dimensions including 
visuospatial/executive function, naming, attention, language, abstraction, delayed recall and orientation. The test duration is 
approximately 10 min, and a score below 26 indicates the presence of cognitive impairment and dementia. 

2.3. Acquisition of fMRI images 

Resting-state fMRI data were obtained using a 3.0 T scanner (SIEMENS MAGNETOM Vida) with a 64-channel receiver array head 
coil. Participants were asked to lie quietly with their eyes closed and not move their heads. High resolution T1-weighted three- 
dimensional structural images were acquired utilizing a sagittal magnetization-prepared rapid gradient echo sequence consisting of 
the following parameters: repetition time (TR) = 5000 ms, echo time (TE) = 2.98 ms, flip angle (FA) = 9◦, matrix size = 256 × 256, 
field of view (FOV) = 230 × 230 mm, slice thickness = 1.0 mm, and slice number = 176. The structural sequence took 8 min and 22 s. 
Functional images were obtained axially using an echo-planar imaging sequence with the following parameters: TR = 2000 ms, TE =
30 ms, slice number = 36, slice thickness = 4 mm, gap = 0 mm, FOV = 230 mm × 230 mm, matrix size = 64 × 64, FA = 90◦, and 
volumes = 230. The scanning plane was parallel to the anterior commissure-posterior commissure line, and the functional data were 
collected using a parallel imaging acquisition approach with an acceleration factor of two. The functional sequence took 7 min and 52 
s. 

2.4. Preprocessing of fMRI data 

Image preprocessing was performed using the Resting-state fMRI Data Analysis Toolkit plus v1.24 (http://restfmri.net/forum/). 
The first 10 time points were discarded to avoid signal instability during the initiation of the examination. The remaining 220 vol were 
then processed as follows: slice-timing adjustment, realignment, and spatial normalization into Montreal Neurological Institute space 
(resampling voxel size = 3 × 3 × 3 mm3), followed by smoothing with a 6-mm Gaussian kernel. The data of only those participants who 
exhibited a head motion of less than 2.0 mm displacement or a 2.0◦ rotation in any direction were included. The mean frame-wise 
displacement (FD) was calculated to represent instantaneous head motion [32]. 

2.5. Group independent component analysis (ICA) of fMRI data 

The fMRI data were parcellated using the Group ICA of fMRI Toolbox (GIFT 4.0b) (http://icatb.sourceforge.net/) to extract in-
dependent intrinsic component networks [33,34]. The preprocessed data were decomposed via the minimum description length 
criteria with the first 120 spatial independent components (ICs) selected for dimension reduction, which preserved more than 99 % of 
the variance [35]. Using the Infomax algorithm, the data were then concatenated and reduced by principal component analysis to 
improve the reliability of the decomposition and retain 100 group-level ICs. Subsequently, the GICA-3 back-reconstruction step was 
performed to separate single-subject components from the aggregate components. Finally, the spatial component maps were 
visualized. 

Additionally, the static functional network connectivity (FNC) analysis was conducted to determine the relationship between the 

Table 1 
Demographic and clinical data of patients with CSVD and healthy controls.   

Patients with CSVD (n = 22) Healthy controls (n = 20) t/χ2 p value 

Age (years) 63.182 (7.992)a 59.700 (4.378)a 1.772 0.086 
Sex (male/female) 13/9 10/10 0.349 0.554 
Education level   3.566 0.488 
illiterate 3 1   
primary school 7 6   
junior high school 8 8   
senior high school 1 4   
university 3 1   
MoCA total scores 23.364 (4.776)a / / / 
visuospatial/executive 4.000 (2.000, 5.000)b / / / 
naming 3.000 (2.000, 3.000)b / / / 
attention 1.500 (0.000, 4.000)b / / / 
language 6.000 (5.000, 6.000)b / / / 
abstraction 3.000 (2.000, 3.000)b / / / 
delayed recall 2.000 (1.000, 2.000)b / / / 
orientation 6.000 (6.000, 6.000)b / / / 

CSVD: cerebral small vascular disease; MoCA: Montreal Cognitive Assessment. 
a normally distributed data, mean (standard deviation). 
b non-normally distributed data, median (interquartile range). 
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different intrinsic ICs of the triple-network model. A band-pass filter (0.01–0.15 Hz) was applied to reduce the potential influence of 
low-and high-frequency noise on the time course. Pearson correlation coefficient was performed between each paired ICs to determine 
the pairwise FNC patterns. 

2.6. Statistical analysis 

All statistical analyses were performed using the SPSS 24.0 statistical software package (IBM Statistics for Windows, version 24.0). 
Demographic data differences between the two groups were determined using a two-tailed t-test for continuous variables with a 
normal distribution or with the Mann–Whitney U test for continuous variables with a non-normal distribution. Categorical covariables 
were analyzed using the chi-square or Fisher’s exact tests. For the statistical analysis of the fMRI data, the FNC differences between the 
two groups were considered significant after controlling for age, sex, and education level as covariates (false discovery rate correlation 
with a threshold of 0.05). The correlations between the abnormal FNC patterns and cognitive impairment were evaluated by partial 
correlation analyses with age, sex, and education level as covariates. A p value of <0.05 was considered statistically significant. 

3. Results 

3.1. Demographics and clinical characteristics 

Five patients with CSVD were excluded because of their excessive head motion. Therefore, the final cohort consisted of 22 patients 
with CSVD and 20 control participants. There were no significant between-group differences with regard to age, sex, and education 
level (p > 0.05) (Table 1). Moreover, no difference in mean FD was observed between the CSVD (0.25 ± 0.13) and control (0.20 ±
0.14) groups (t = − 1.264, p = 0.215). 

3.2. Component selection of the triple-network model 

In this study, 100 ICs were obtained, among which eight components were selected as the main components of the triple-network 
model for further analysis according to prior studies [36–38] (Fig. 1). The CEN (IC2 and IC31) mainly consists of the dorsolateral 
prefrontal cortex (dlPFC), along with part of the inferior parietal lobule (IPL) and superior parietal lobule (SPL). The DMN (IC21, IC27, 
IC81, and IC98) predominantly comprises the mPFC, PCC, precuneus, and angular gyrus. The SN (IC30 and IC54) largely includes the 
ACC, insular cortex, and part of the PFC. 

3.3. Group-level FNC analysis 

A FNC matrix with the dimensions of 8 × 8 (selected ICs) × 42 (participants) was generated. patients with CSVD exhibited an 
increased connectivity pattern in the CEN (IC31)-DMN (IC81) and decreased connectivity patterns in the DMN (IC21)-DMN (IC81), 
DMN (IC27)-DMN (IC98), DMN (IC81)-SN (IC30), DMN (IC81)-SN (IC54), DMN (IC98)-SN (IC54), CEN (IC2)-SN (IC30) and SN (IC30)- 
SN (IC54) (Fig. 2). 

Fig. 1. The spatial maps of the eight main components in the triple-network model. DMN: default mode network; CEN: central executive network; 
IC: independent component; SN: salient network. 
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3.4. Correlation analysis 

Significant negative correlations were found between the DMN (IC27)-DMN (IC98) connectivity pattern and the MoCA total scores 
(r = − 0.460, p = 0.048) and MoCA abstraction scores (r = − 0.565, p = 0.012), and a positive correlation was detected between the SN 
(IC30)-SN (IC54) connectivity pattern and the MoCA abstraction scores (r = 0.491, p = 0.033) (Fig. 3(A–C)). 

4. Discussion 

In this study, we used resting-state fMRI to investigate the organization of the triple-network model in patients with CSVD, focusing 
on the inter- and intra-network functional connectivity patterns in the SN, DMN, and CEN. Consistent with our hypothesis, we obtained 
the following results: 1) the abnormal SN-centered cross-component FNC patterns in the triple-network model were significantly 
impaired in patients with CSVD, and 2) the decreased SN- and CEN-centered intra-network functional connectivity patterns signifi-
cantly correlated with cognitive function. The abnormal FNC patterns mainly overlapped with the key nodes of the three networks, 
including the subregions of the dorsal ACC (dACC) and insula in the SN, the mPFC and PCC in the DMN, and the dlPFC and IPL in the 
CEN. Furthermore, other inter-network FNC patterns showed no significant correlations with the MoCA scores. 

Here, our primary findings were predominantly SN-oriented decreased connectivity patterns in patients with CSVD, along with 
several specific overlapping regions in the DMN and CEN. These affected brain regions are involved in functions such as motor 
execution, emotional processing, and cognitive control [39]. The SN receives convergent input from multiple sensory modalities and is 
sensitive to internal signals associated with the autonomic nervous system to process physiological information. This process enables 
the allocation of appropriate resources to monitor and respond to important stimuli for cognitive behaviors [40,41]. When a salient 
stimulus or cognitive task is at hand, the SN functions as a switch between the DMN and CEN by suppressing the former and activating 
the latter, thereby facilitating prompt reaction through its connection with the dlPFC [27]. A large community study using ecological 
momentary assessment of daily self-control and resting-state functional MRI examination to investigate the intrinsic organization of 
the triple-network model showed that higher SN-centered network connections were related to increased self-control [42]. Therefore, 
the SN-centered regulation of cross-network interactions in the triple-network model may be an important aspect of cognitive control. 
Furthermore, these findings suggest that the SN-centered abnormalities may cause the imbalance in the triple-network model due to 
abnormal suppression or activation in the DMN and CEN. These dysfunctional patterns lead to inefficient cognitive control and reduced 
cognitive reaction. 

Fig. 2. Group-level differences in static functional network connectivity patterns among the triple-network model between the patients with ce-
rebral small vascular disease and healthy controls. The abbreviations are shown in Fig. 1 legend. 

Fig. 3. Correlations between the abnormal functional network connectivity patterns and cognition-related characteristics in patients with cerebral 
small vascular disease. MoCA: Montreal Cognitive Assessment. The other abbreviations are shown in Fig. 1 legend. 
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Our findings in the triple-network model are similar to the results that suggest a direct causal influence between asymmetric 
patterns in the core regions of the SN, DMN, and CEN and cognitive controllability [43]. The SN showed greater complex connectional 
relationships and a dominant role in driving interactions among the SN, DMN, and CEN. A previous study indicated that patients with 
mild cognitive impairment exhibited altered whole-brain functional connectivity (FC) of the cingulate cortex, including decreased FC 
patterns in the ACC [44], similar to our results. Additionally, an experimental animal study showed that the activation of the ACC 
might alleviate cognitive deficits [45]. Furthermore, the disengagement of the DMN from the SN and CEN under high cognitive load 
was caused by reduced outflow signals from the PCC [43]. However, we found a disconnection between the SN and posterior DMN in 
the resting state. These findings support the role of resting-state abnormalities in the cingulate cortex, offering a fresh perspective and 
better understanding of the brain mechanisms of cognitive impairment in CSVD. Furthermore, Li et al. proposed that in patients with 
AD, enhanced SN function might necessitate additional resources to maintain brain function and compensate for the decreased DMN 
function, contributing to an abnormal mapping of internal events and external stimuli, and ultimately resulting in clinical cognitive 
decline [28]. In contrast, our study showed decreased SN-centered network connections but increased inter-network connectivity 
patterns between the DMN and CEN. This discrepancy might be due to the differences in the cognitive levels between patients with 
CSVD and AD. Therefore, the neural mechanism of the triple-network model holds potential clinical significance for evaluating 
cognitive impairment and progression. 

Additionally, our study demonstrated that the decreased intra-network FNC patterns within the SN and posterior DMN in patients 
with CSVD were significantly associated with cognitive impairment, particularly abstraction function. Moreover, the PFC is mainly 
associated with recognizing and leveraging abstract information of tasks, which is crucial in cognitive behavior and flexibility [46]. 
However, this differs from our observation and may be attributed to the damages in the regions involved in cognitive processing and 
control. Furthermore, previous neuroimaging studies on self-control used task-based fMRI to investigate the neurobiological basis and 
demonstrated that distinct brain regions are involved in cognitive control, with each region being associated with varied cognitive 
processes [42]. These differences in cognitive control were further shown to be associated with activity in the dlPFC that is involved in 
executive control and response inhibition [43,47], the insula and ACC that are implicated in performance monitoring [27], and the 
mPFC and PCC that are responsible for value-based decision-making [19,48,49]. In addition, Sandra et al. [50] observed that cognitive 
function training led to significant alterations of neural function in the dlPFC and PCC and significant associations between 
improvement in complex abstraction ability and an increase in cerebral blood flow in the dACC. All these aforementioned findings 
indicate the importance of exploring the altered modalities of the FNC in the triple-network model in patients with CSVD, which will 
help develop and evaluate effective treatments for CSVD via cognitive rehabilitation and other clinical interventions. 

The clinical significance of abnormal FNC patterns in the triple-network model is of great importance. These aberrant patterns can 
serve as valuable clues for deciphering and identifying the potential underlying mechanisms of cognitive deficits associated with 
CSVD. By examining the disrupted interactions between the DMN, CEN, and SN, we can gain insights into how CSVD affects cognitive 
functions. CSVD is known to cause various cognitive impairments, including but not limited to executive dysfunction, processing speed 
deficits, attentional deficits, and memory problems. Understanding the specific cognitive deficits seen in patients with CSVD enables us 
to establish a direct link between these deficits and the abnormal FNC patterns observed in the triple-network model. This knowledge 
not only helps improve our understanding of CSVD pathophysiology but also provides an opportunity to develop targeted interventions 
and treatments for cognitive dysfunction in patients with CSVD. Furthermore, the identification of potential neuroimaging biomarkers 
associated with CSVD and their associations with cognitive deficits has significant clinical implications. By identifying reliable bio-
markers, clinicians can improve the diagnosis and monitoring of CSVD, track disease progression, and predict individual prognosis. 
Additionally, neuroimaging biomarkers can be used to assess the effectiveness of therapeutic interventions and potentially guide 
treatment decisions for patients with CSVD. Overall, the investigation of abnormal FNC patterns in the triple-network model con-
tributes to our understanding of CSVD-related cognitive deficits and sheds light on the underlying pathophysiological mechanisms. It 
also holds promise for the development of neuroimaging biomarkers that can aid in the diagnosis, prognosis, and management of 
CSVD, ultimately improving patient outcomes. 

This study has several limitations. First, the main limitation of this paper is the small sample size. Due to the limited sample size, the 
reliability of the study results may be compromised, and there is a potential for missing or failing to observe small effects. An increased 
sample size should be prioritized to increase the statistical power for better supporting our findings. Second, the study design was 
cross-sectional, limiting our ability to explore the causal relationship between dysfunction of the triple-network model and cognitive 
impairment in patients over time. Longitudinal studies are needed in the future to answer this question. Third, in this study, only the 
relationship between the triple-network model and cognitive impairment in patients with CSVD was considered, while the investi-
gation of other important brain networks was not explored. Future research should further address and improve upon this aspect. 
Forth, structural abnormalities play a significant role in the pathological process of CSVD, but we do not make any assumption on the 
particular structure of the triple-network model. Therefore, further in-depth analysis and comparison will be needed in future studies. 
Lastly, whether global signal regression is performed has different effects on the topological properties and connectivity patterns of the 
brain network [51,52]. This emphasizes the importance of considering global signal regression when studying the topological prop-
erties of the brain network in the future. 

In conclusion, our study results suggest that altered FNC patterns in the triple-network model may play a crucial role in the 
pathophysiology of cognitive deficits in patients with CSVD. Furthermore, these findings will serve as a reference for future studies to 
explore the correlations between the FNC patterns in the triple-network model as well as other sensory networks, motor networks, and 
attention networks, which will ultimately help gain a comprehensive and nuanced understanding of the neural mechanisms underlying 
cognitive symptoms in patients with CSVD. 
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