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Abstract: Rhabdomyosarcoma, the most common soft tissue sarcoma noted in childhood,
requires multimodality treatment, including chemotherapy, surgical resection, and/or radiation
therapy. The majority of the patients with localized rhabdomyosarcoma can be cured; however,
the long-term outcomes in patients with metastatic rhabdomyosarcoma remain poor. The standard
chemotherapy regimen for patients with rhabdomyosarcoma is the combination of vincristine,
actinomycin, and cyclophosphamide/ifosfamide. In recent clinical trials, modifications of the
standard chemotherapy protocol have shown improvements in the outcomes in patients with
rhabdomyosarcoma. In various type of malignancies, new treatments, such as molecular targeted
drugs and immunotherapies, have shown superior clinical outcomes compared to those of standard
treatments. Therefore, it is necessary to assess the benefits of these treatments in patients with
rhabdomyosarcoma. Moreover, recent basic and clinical studies on rhabdomyosarcoma have reported
promising therapeutic targets and novel therapeutic approaches. This article reviews the recent
challenges and advances in the management of rhabdomyosarcoma.

Keywords: rhabdomyosarcoma; chemotherapy; molecular targeted drug; immunotherapy;
therapeutic target

1. Introduction

Rhabdomyosarcoma (RMS) arises from immature cells with the ability to differentiate into skeletal
muscle cells in the future. RMS can arise from soft tissues, such as the skeletal muscle, connective tissue,
bone, bladder, prostate, testis, nose, orbit, and anus [1]. Approximately 70% of the patients with RMS
are diagnosed before the age of 10 years; however, RMS can also develop in adolescents and adults.
It is a relatively rare cancer that accounts for only 5–8% of all childhood malignancies but is the most
commonly noted type of soft tissue sarcoma in childhood. RMS is classified as embryonal RMS (ERMS),
alveolar RMS (ARMS), pleomorphic RMS (PRMS), and spindle cell/sclerosing RMS (SRMS), based
on the histological features [2–4]. Chromosomal translocations of t(2;13)(q35;q14) or t(1;13)(q36;q14)
are detected in most patients with ARMS. Approximately 60% of the patients with ARMS express
PAX3-FOXO1 and 20% of those express PAX7-FOXO1 [5,6]. The PAX-FOXO1 chimeric protein functions
as an active transcription factor, leading to oncogenic transformation by inducing the expression of
abnormal genes. Previous studies have reported that PAX-FOXO1 fusion proteins have oncogenic
potential and function as dominant oncogenes in promoting tumorigenesis in fusion-positive RMS [7,8].
In contrast, specific chimeric genes are not associated with ERMS and the other types of RMS; however,
these tumors are often associated with various chromosomal abnormalities, which, in turn, lead to the
inactivation of the tumor suppressor gene p53 pathway [9,10]. Skapek et al. reported that positivity
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for PAX3-FOXO1 or PAX7-FOXO1 significantly correlated with worse event-free survival (EFS) and
overall survival (OS) [11]. Based on these reports, PAX-FOXO1 may be considered a strong potential
therapeutic target and biomarker predicting prognosis in RMS patients with PAX-FOXO1 translocation.

Standard treatment of RMS comprises chemotherapy (vincristine, actinomycin D,
and cyclophosphamide/ifosfamide), radiation therapy, and surgical tumor excision. Although most
patients with localized RMS can be cured, the outcomes in those with metastatic or recurrent RMS remain
poor [12,13]. Approximately 15% of the patients with RMS have metastatic lesions at diagnosis [14],
and long-term EFS in patients with metastatic RMS is <20% [15–17]. Therefore, there is a need to
develop systemic treatments, which have better oncological and functional outcomes with long-term
safety, for patients with RMS. Several basic and clinical studies have been carried out on various
treatment strategies, including modified or novel chemotherapy protocols, molecular targeted drug
therapy, immunotherapy, and new therapeutic approaches for RMS. In this review article, the recent
challenges and advancements in the treatment of RMS are discussed.

2. Chemotherapy

Patients with RMS require multidisciplinary treatment, including chemotherapy, surgical resection
and radiation therapy (RT). Multi-drug chemotherapy regimens significantly improved the outcome
in patients with localized RMS, although no marked improvement has been observed in patients
with metastatic RMS [18]. Standard chemotherapy regimens for RMS in North America include
vincristine, actinomycin D, and cyclophosphamide (VAC), whereas those in Europe include ifosfamide,
vincristine, and actinomycin D (IVA) [19–21]. In a randomized trial comparing the VAC and IVA
regimens, significant differences in the clinical outcomes were not observed [22]. In contrast, high-dose
chemotherapy was thought to improve the outcomes compared to standard chemotherapy in patients
with metastatic RMS. However, it was reported that a significant improvement was not observed
in patients treated with high-dose chemotherapy compared to that in those treated with standard
chemotherapy, although an increased incidence of treatment-related adverse events (AEs) was observed
in patients with high-dose chemotherapy [23]. Furthermore, high-dose chemotherapy with stem-cell
rescue did not show a significant advantage for the treatment of metastatic RMS [24]. In contrast,
doxorubicin has been widely used for the treatment of soft tissue sarcomas. However, its role in the
treatment of RMS remains controversial. To evaluate the efficacy of the addition of doxorubicin in the
standard multidrug regimen, a multicenter randomized controlled phase 3 trial was conducted by the
European pediatric Soft tissue sarcoma Study Group (EpSSG; Table 1) [25]. In the study, 484 patients
with RMS were randomly assigned to the IVA group and IVA with doxorubicin group. The three-year
EFS rates of the IVA group and IVA with doxorubicin group were 63% and 68%, respectively (p = 0.33).
Severe AEs, including leukopenia, anemia, thrombocytopenia, gastrointestinal disorder, and infection
were more commonly noted in the IVA with doxorubicin group. Furthermore, two treatment-related
deaths were reported in the IVA with doxorubicin group. Based on the results, the authors concluded
that addition of doxorubicin in the standard chemotherapy regimen did not lead to a significant
improvement in the clinical outcome of RMS. These studies indicated that the chemotherapy regimen
for RMS should be based on the VAC or IVA regimens, and that addition of doxorubicin or high-dose
chemotherapy was thought to have little benefit for patients with RMS.

In the pooled analysis of a phase 2 study conducted by the Intergroup Rhabdomyosarcoma Study
Group (IRSG) and the Children’s Oncology Group (COG) Soft Tissue Sarcoma Committee, the clinical
outcomes of multiagent regimens were compared in patients with high-risk RMS [26]. The overall
response rates were 52% for patients who received ifosfamide/doxorubicin (ID); 41%, those who
received ifosfamide/etoposide (IE); 55%, those who received vincristine/melphalan (VM); 49% those
who received topotecan; 50%, those who received topotecan/cyclophosphamide (TC); and 45%, those
who received irinotecan. The disease control rates in the ID, IE, and VM group were higher than those
in the topotecan, TC, and irinotecan group. These results indicated that the addition of topotecan or
irinotecan to the chemotherapy regimen had no benefit for the management of RMS.



Cancers 2020, 12, 1758 3 of 18

Recently, it was reported that the addition of low-dose maintenance chemotherapy after standard
chemotherapy improved the outcome in patients with RMS (Table 1). In a phase 3 clinical trial, 371
patients with high-risk RMS were randomly assigned to standard chemotherapy group and standard
chemotherapy with maintenance chemotherapy (low-dose of vinorelbine and cyclophosphamide)
group (NCT00339118) [27]. The five-year disease-free survival (DFS) rates were 78% for the patients
with maintenance chemotherapy and 70% for the patients without maintenance chemotherapy.
The five-year OS rates for the patients with and without maintenance chemotherapy were 87% and
74%, respectively (p < 0.001). This study indicated that the addition of maintenance chemotherapy to
standard chemotherapy can improve the outcome in patients with high-risk RMS.

A clinical trial was conducted to assess the efficacy of a modified chemotherapy regimen
for reducing treatment-associated toxicity in RMS patients. In a phase 3 study conducted by the
COG, the efficacy of substituting VAC by vincristine and irinotecan (VI) for half of the duration of
chemotherapy was assessed in 448 patients with intermediate-risk RMS (Table 1) [28]. In that study,
the cumulative doses of cyclophosphamide in the VAC group and VAC/VI group were 16.8 g/m2 and
8.4 g/m2, respectively. Although a significant improvement in the oncological outcome in VAC/VI
group was not observed, the VAC/VI group showed less severe hematologic toxicity. These results of
the study suggest that the VAC/VI regimen is a candidate for alternative standard therapy in patients
with intermediate-risk RMS.

Trabectedin, a synthetic alkaloid isolated from the marine ascidian, Ecteinascidia turbinate, reduces
disease progression and mortality rates for various types of soft tissue sarcoma [29]. In a phase 2 study
of trabectedin conducted by the COG, 23 patients with RMS, 16 with Ewing’s sarcoma, and 11 with
other soft tissue sarcomas underwent trabectedin treatment [30]. Among the 40 evaluable patients,
one patient had a partial response (PR), three patients had stable disease (SD), and 36 patients had
progressive disease (PD). This result suggested that trabectedin monotherapy was not sufficient to
control recurrent sarcomas in patients with RMS, Ewing sarcoma, and other sarcomas. However,
trabectedin is commonly used as a second-line and subsequent chemotherapeutic agent for soft tissue
sarcoma, and additional clinical research is required to assess its usefulness in patients with RMS.

Although these recent clinical trials did not report significant improvements in the outcomes of
RMS, gradual improvement has been noted on modification of the standard chemotherapy regimens.
Additional clinical studies are required to improve the outcomes in patients with RMS, especially in
patients with metastatic RMS.

Table 1. Recent clinical trials on chemotherapy in patients with Rhabdomyosarcoma (RMS).

Years Phase Chemotherapy Regimen N Patients Clinical Significance Ref.

2019 III IVA with or without
maintenance

chemotherapy (VC)

371 Non-metastatic RMS

Five-year DFS:
77.6% with IVA/VC and

69.8% with IVA (p = 0.06) [27]

Five-year OS:
86.5% with IVA/VC and

73.7% with IVA (p = 0.01)

2018 III IVA with or without Dox 484 Non-metastatic RMS
Three-year EFS:

67.5% with IVA/Dox and
63.3% with IVA (p = 0.33)

[25]

2018 III VAC or VAC/VI
(substitution for half of

VAC course by VI)

448 Intermediate-risk RMS

Four-year EFS:
63% with VAC and 59%
with VAC/VI (p = 0.51)

[28]
Four-year OS:

73% with VAC and 72%
with VAC/VI (p = 0.80)

less hematologic toxicities
with VAC/VI
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Table 1. Cont.

Years Phase Chemotherapy Regimen N Patients Clinical Significance Ref.

2012 II Trabectedin 50
Recurrent sarcoma: RMS
(23), EWS (16), and other

sarcomas (11)

PR 2.5%, SD 7.5%,
and PD 90% [30]

IVA: ifosfamide, vincristine, and dactinomycin; VC: vinorelbine and cyclophosphamide; VAC: vincristine,
dactinomycin, and cyclophosphamide; VI: vincristine and irinotecan; RMS, rhabdomyosarcoma; EWS, Ewing
sarcoma; DFS: disease-free survival; OS: overall survival; EFS: event-free survival; Dox: doxorubicin; PR, partial
response; SD, stable disease; PD, progressive disease.

3. Molecular Targeted Drugs

While conventional anticancer drugs destroy not only cancer cells, but also normal cells, molecular
targeted drugs are thought to specifically attack cells with target molecules involved in growth and
proliferation of cancer cells. These molecules, including insulin-like growth factor 1 receptor (IGF-1R),
platelet-derived growth factor receptor (PDGFR), vascular endothelial growth factor (VEGF), anaplastic
lymphoma kinase (ALK), mesenchymal-epithelial transition factor (MET), and mammalian target of
rapamycin (mTOR), are considered the candidates for molecular targets in patients with RMS [18]. To
reduce the incidence of treatment-related AEs and to improve outcomes in patients with soft tissue
sarcomas, including RMS, clinical trials for various molecular targeted drugs had been conducted
(Table 2).

Pazopanib, a multitargeted tyrosine kinase inhibitor, specifically inhibits VEGF receptor (VEGFR),
PDGFR, and c-kit [31]. In a phase 2 trial of pazopanib in patients with soft tissue sarcomas conducted
by the European Organization for Research and Treatment of Cancer-soft tissue and bone sarcoma
group (EORTC), prolonged progression-free survival (PFS) and OS were observed compared to those
for the controls [31]. Based on the results, the EORTC conducted a phase 3 trial in 372 patients with STS
(NCT00753688) [32]. The study patients with advanced soft tissue sarcomas were randomly assigned
into the pazopanib (800 mg, once daily) and placebo groups. In the study, mean PFS was 4.6 months in
the pazopanib group and 1.6 months in the placebo group (p < 0.0001). However, the OS was 12.5
months in the pazopanib group and 10.7 months in the placebo group, and there was no statistically
significant difference between the two groups (p = 0.25). Currently, pazopanib has been widely used
for the treatment of soft tissue sarcomas, including RMS, although the efficacy in patients with RMS
remains unclear. To assess the efficacy of pazopanib for the treatment of RMS, further clinical studies
in RMS patients are needed.

VEGF plays an important role in regulating physiologic angiogenesis, and tumor cells induce
pathologic angiogenesis via production of VEGF [33]. Therefore, VEGF is considered a therapeutic
target in cancer. The efficacy of the anti-VEGF monoclonal antibody, bevacizumab, has been investigated
in various malignancies [34–36]. In a phase 1 study of bevacizumab in combination with topoisomerase
1 inhibitor, irinotecan, for recurrent/refractory pediatric solid tumors, the PR, SD, and PD rates were
30% (3/10), 30% (3/10), and 40% (4/10), respectively [37]. In the study, one of nine assessable patients
(11%) had grade 4 toxicity involving neutropenia and thrombocytopenia. These results suggest that
bevacizumab combined with irinotecan seems to be well-tolerated and has an antitumor effect in a
proportion of patients with pediatric malignancies.

Sorafenib is a multiple kinase inhibitor of the C-, B-RAF, VEGF-2,3, PDGFR-β, FLT3, and c-KIT
signaling pathways [38]. Maruwge et al. reported that sorafenib inhibited tumor growth in an in vitro
study and that sorafenib inhibited tumor growth and angiogenesis in a xenograft model of RMS [39].
In a phase 1 trial of sorafenib (200 mg/m2) for childhood solid tumors, including RMS and Wilms tumor
(NCT01502410), an objective response was not observed [40]. Another phase 2 study on sorafenib (200
mg/m2, twice a day) conducted by the COG in 21 patients with refractory solid tumors did not report
an objective response in the study patients [40]. In contrast, a phase 2 trial of sorafenib (400 mg, twice a
day) involving 101 patients with soft tissue sarcomas showed that 14% of the patients had PR and
33% of those had SD [41]. Although sorafenib showed clinical benefits in adult patients, clinical effects
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were not observed in pediatric patients. Reconsideration of the dose and frequency of sorafenib may
improve the outcomes in pediatric patients.

Crizotinib is a tyrosine kinase inhibitor targeting ALK, MET, ROS proto-oncogene 1 receptor
tyrosine kinase (ROS1), and RON [42–44]. In a multinational phase 2 clinical study of crizotinib for
advanced ARMS (EORTC90101, NCT01524926), the disease control rate was 14%; median PFS, 1.3
months; and median OS, 5.6 months [45]. In the study, the AEs noted were fatigue (39%), nausea (31%),
anorexia (31%), vomiting (15%), and constipation (15%). The results of the study indicated that the
clinical benefits of crizotinib can be expected in only a small proportion of the patients with ARMS.

Since Akt and mammalian target of rapamycin (mTOR) regulate cell metabolism, growth,
proliferation, and survival [46–48], these molecules are considered candidates for therapeutic targets for
cancers. Temsirolimus, a specific inhibitor of mTOR, can regulate cell growth, proliferation, and survival
in cancer cells [49–51]. In a basic research study, mTOR inhibitor showed antitumor activity by inhibition
of angiogenesis in xenograft models of RMS [52]. In a phase 2 study of temsirolimus, 52 patients with
glioma, neuroblastoma, or RMS were treated with 75 mg/m2 temsirolimus once weekly [53]. In the
study, the disease control rates in patients with high-grade glioma, neuroblastoma, and RMS were
41% (7 of 17 patients), 32% (6 of 19 patients), and 6% (1 of 16 patients), respectively. In another phase
1 study on combination therapy using perifosine and temsirolimus in patients with pediatric solid
tumors, 8 of 19 patients had SD and 11 patients had no objective response [54]. In the study, the most
commonly noted treatment-related toxicities (grade 3 or 4) were thrombocytopenia (38%), neutropenia
(24%), lymphopenia (24%), and hypercholesterolemia (19%). Although these studies suggested that
temsirolimus-based treatments are feasible and safe, the response to the treatment is limited in patients
with RMS.

IGF-1R, which is strongly expressed in RMS and is associated with tumor initiation and
progression [55,56], is considered a potential therapeutic target. In basic studies, cixutumumab,
a human monoclonal antibody against IGF-1R, showed antitumor activity in vitro and in vivo [57,58].
In a phase 2 study of cixutumumab conducted by the COG, patients with refractory solid tumors
underwent treatment with cixutumumab (9 mg/kg, intravenous, weekly) (NCT00831844) [59]. The study
included 102 patients with osteosarcoma, RMS, neuroblastoma, Wilms tumor, adrenocortical carcinoma,
hepatoblastoma, and synovial sarcoma. Among these patients, 4 of 20 patients with neuroblastomas
and 1 of 20 patients with RMS showed PR, and SD was observed in 14 patients (six patients with
neuroblastomas, three patients with RMS, two patients with synovial sarcoma, one patient with Wilms
tumor, one patient with osteosarcoma, and one patient with adrenocortical carcinoma). Another
study conducted by the COG investigated the efficacy of adding cixutumumab or temozolomide
to the standard chemotherapy regimen in 168 patients with metastatic RMS [60]. In this study, an
improvement in the outcome in response to the added cixutumumab or temozolomide was not
observed. In another phase 2 study on combination treatment with cixutumumab and temsirolimus in
43 patients with recurrent or refractory sarcoma, an objective response was not observed [61]. These
results indicated that cixutumumab seems to have only a small effect on the oncological outcomes in
patients with advanced RMS. Because RMS is only a small population of these studies, it is difficult
to assess the efficacies of the agents in patients with RMS. To assess the safety and efficacy of these
treatment in patients with RMS, further clinical trials dedicated to RMS are demanded.

As PAX-FOXO1 is expressed in 80% of the tissues with ARMS but not in the normal tissues,
the chimeric transcription factor is considered a promising target in patients with ARMS. In a basic
research, lipid-prostamine-siRNA (LPR) nanoparticles targeting PAX-FOXO1 inhibited the production
of the fusion transcript and proliferation of RMS cells [62], and the LPR nanoparticles targeting
PAX-FOXO1 significantly inhibited tumor growth in a xenograft model of ARMS. In contrast, Bharathy
et al. reported that entinostat, a class-I specific histone deacetylase inhibitor, inhibited production
of the PAX3-FOXO1 fusion protein [63], and that entinostat induced sensitization to chemotherapy
by destabilization of PAX3-FOXO1 mRNA in RMS cells in vitro and in vivo. These basic studies
reported the potential of PAX-FOXO1 as a therapeutic target in RMS. Further preclinical studies on
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PAX-FOXO1-targeting treatment are needed to assess the usefulness of PAX-FOXO1 as a therapeutic
target for RMS.

Table 2. Clinical trials of molecular targeting agents for sarcomas.

Years Phase Treatment Target
Molecule N Patients Clinical Significance Ref.

2009 II Pazopanib
(800 mg, daily)

PDGF-α,
VEGF-1, 2, 3,
c-kit

142 Advanced STS
Disease control rate: 49% for
SS, 44% for LMS, and 39% for
other sarcomas

[31]

2012 III
Pazopanib
(800 mg, daily)
or placebo

PDGF-α,
VEGF-1, 2, 3,
c-kit

372 Metastatic STS

OS: 12.5 months with
pazopanib and 10.7 months
with placebo
PFS: 4.6 months with
pazopanib and 1.6 months
with placebo

[32]

2015 II
Sorafenib
(200 mg/m2,
oral)

PDGFRs,
VEGFRs, MAPK,
and c-kit

20 RMS (10) and Wilms
tumor (10) Objective response: 0% [40]

2013 II

Sorafenib
(400 mg, twice,
daily for 28
days)

PDGFRs,
VEGFRs, MAPK,
and c-kit

101 Advanced STS

PR, 14%; SD, 33%; PD, 49%,
unevaluable 8%
Median PFS: four months
Median OS: 12 months

[41]

2018 II
Crizotinib
(250 mg, twice,
daily)

MET, ALK,
ROS1 and RON 13 Advanced/metastatic

ARMS
Objective response rate 14%,
disease control rate: 14% [45]

2012 II Temsirolimus
(75 mg/m2) mTOR 52

High-grade glioma (17),
neuroblastoma (19),
and RMS (16)

Disease control rate: 41% for
glioma, 32% for
neuroblastoma, and 6% for
RMS

[53]

2014 II
Cixutumumab
(9 mg/kg,
weekly)

IGF-1R 114

Relapsed or refractory
solid tumors:
osteosarcoma (11), RMS
(20), neuroblastoma
(30), Wilms tumor (10),
Adrenocortical
carcinoma (10),
Hepatoblastoma (10),
and synovial
sarcoma (11)

PR: 20% for neuroblastoma
and 5% for RMS [59]

PDGFR, platelet-derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor; MAPK,
mitogen-activated protein kinases; ALK, anaplastic lymphoma kinase; ROS1, ROS proto-oncogene 1 receptor tyrosine
kinase; RON, Recepteur d’Origine Nantais; IGF-1R, insulin-like growth factor 1 receptor; RMS, rhabdomyosarcoma;
STS, soft tissue sarcoma; ARMS, alveolar rhabdomyosarcoma; LMS, leiomyosarcoma; OS, overall survival; PR,
partial response; SD, stable disease; PD, progressive disease; PFS, progression-free survival.

4. Radiation Therapy

RT is one of the standard treatment modalities used in the management of RMS [64,65]. Patients
with RMS are stratified into the low, intermediate, and high-risk groups according to the tumor location,
size, histological subtype, involvement of lymph node, metastatic lesion, and surgical margin [66].
Although patients with low-risk RMS who undergo excision with wide margins do not require RT,
most RMS patients require RT, and the radiation doses are determined according to the risk. Patients
with low-risk RMS with gross tumor excision and positive surgical margins require a radiation dose
36 Gy during RT, whereas those with positive nodes require 41.4 Gy and those with gross residual
tumor require 50.4 Gy. Wolden et al. investigated local control after standard chemotherapy and RT in
patients with RMS [67]. In their study, the clinical outcomes in 423 patients with ARMS (group I-II: n
= 41; group III: n = 102) and group III ERMS (n = 280) were analyzed. The five-year EFS and local
failure rates in patients with group I/II ARMS were 69% and 10%, whereas the five-year EFS and local
failure rates in patients with group III RMS were 70% and 19%, respectively. This study indicated
that excellent local control could be achieved with chemotherapy combined with RT in patients with
intermediate-risk RMS.

RT induces various complications, such as dermatitis and secondary cancer caused by normal
tissue damage; therefore, long-term safety of the treatment is essential in pediatric patients with
malignancies. Recently, intensity modulated radiation therapy (IMRT) and proton RT have been
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commonly performed to concentrate the radiation on the target lesion and to avoid irradiation of the
normal cells. Lin et al. investigated the effect of IMRT and three-dimensional conformal radiotherapy
(3D-CRT) in 375 patients with intermediate-risk RMS [68]. The study showed that IMRT improved
the target coverage compared with 3D-CRT, although no improvement was observed with respect to
local control in the study patients. In contrast, a physical characteristic of the proton beam is that it
emits most of the energy near the end of its reach. This characteristic makes it possible to concentrate
the proton beam on the target lesion. Since proton RT can reduce the toxicity of RT by prevention of
damage to normal tissues [69,70], proton RT can be expected to reduce the incidence of the RT-related
complications. A phase 2 study comparing proton RT and IMRT in pediatric RMS showed that the
integral dose in IMRT was 1.8 times higher than in proton RT, and significant normal tissue sparing
was noted with proton RT, such that 87% of essential structures were spared [71]. The results suggest
that proton RT can reduce the incidence of RT-related AEs. In a phase 2 study on proton RT in 57
patients with metastatic ERMS treated with chemotherapy, the five-year EFS, OS, and local control
rates were 69%, 78%, and 81%, respectively [72]. In the study, 11 of 57 (13%) patients presented with
acute grade 3 treatment-related toxicities, including odynophagia, dermatitis, dry eye, mucositis, otitis,
and hepatopathy. In contrast, 3 of 43 (7%) patients presented with late treatment-related toxicities,
including cataract, chronic otitis, and retinopathy. Proton RT is considered beneficial for pediatric
patients with malignancies. Additional investigations of the clinical outcomes and long-term safety of
proton RT in patients with RMS are warranted to determine the efficacy of proton RT.

5. Immunotherapy

5.1. Immune Checkpoint Inhibitors

According to several basic and clinical studies, the immune checkpoint axis is considered a strong
therapeutic target in various malignancies. Although the clinical benefits of immune checkpoints
as therapeutic targets in soft tissue sarcomas are unclear [73–77], studies have reported on the
importance of immune checkpoints in sarcomas. Pollack et al. investigated the expression of
programmed death-ligand 1 (PD-L1) and programmed cell death protein (PD-1) in sarcomas, including
undifferentiated pleomorphic sarcoma (UPS), leiomyosarcoma, well-differentiated/dedifferentiated
liposarcoma, myxoid/round cell liposarcoma, and synovial sarcoma [78]. In the study, the expression of
PD-L1 and PD-1 was high in UPS and leiomyosarcoma, while the expression was low in myxoid/round
cell liposarcoma and synovial sarcoma. In contrast, Kim et al. investigated the association of PD-L1
expression with prognosis in patients with soft tissue sarcomas, including 32 RMS, 19 synovial sarcomas,
18 Ewing sarcomas, seven epithelioid sarcomas, and six mesenchymal chondrosarcomas [79]. Among
the study patients, 38% of those with RMS, 53% of those with synovial sarcoma, 33% of those with Ewing
sarcoma, 100% of those with epithelioid sarcoma, and 0% of those with mesenchymal chondrosarcoma
showed positive PD-L1 expressions. In the study, the five-year OS rates in patients with PD-L1(+)
sarcomas and PD-L1(-) sarcomas were 48% and 68%, respectively (p = 0.015). Multivariate analysis
revealed a significant association between PD-L1 expression and poor OS. Therefore, the immune
checkpoints are considered promising therapeutic targets in patients with RMS.

Only a few clinical studies have investigated the efficacy of immune checkpoint inhibitors
for patients with RMS. Davis et al. investigated the efficacy and safety of nivolumab in a phase
1/2 trial in patients with solid tumors and lymphoma (NCT02304458) [80]. In the study, 85 patients
(22 neuroblastomas, 22 lymphomas, 12 RMSs, 11 Ewing sarcomas, 13 osteosarcomas, and one melanoma,
two epithelioid sarcomas, two other sarcomas) were enrolled. Four of 20 (20%) patients with lymphoma
showed an objective response, while none of the 74 patients with solid tumors showed an objective
response. Among the patients with solid tumors, 33% (11 of 33 patients) of those with sarcomas
and 50% (5 of 10 patients) of those with neuroblastomas showed SD. In another phase 1 study of
ipilimumab in pediatric patients with solid tumors, the safety and efficacy of ipilimumab were assessed
in patients with solid tumors, solid tumors, including 12 patients with melanoma, eight patients with
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osteosarcoma, three patients with clear cell sarcoma, three patients with carcinoma, two patients with
synovial sarcoma, two patients with RMS, one patient with pleomorphic sarcoma, one patient with
neuroblastoma, and one patient with undifferentiated sarcoma [81]. In the study, immune-related AEs,
including pneumonitis, pancreatitis, endocrinopathies, colitis, and transaminitis were observed at
5 mg/kg and 10 mg/kg dose levels. Among these patients, six patients had SD (melanoma, osteosarcoma,
clear cell sarcoma, and synovial sarcoma), and none of the patients presented with PR or complete
response (CR). Because these clinical trials enrolled only a small number of RMS patients, it is difficult
to assess efficacies of the treatments for RMS.

Currently, only a few clinical studies have reported the efficacy of immune checkpoint inhibitors
in patients with RMS. According to the limited number of clinical studies, immune checkpoint
inhibitors seem to have little clinical benefit in RMS patients. As the sample population was small,
additional studies with a large number of study patients are needed to evaluate the efficacy of immune
checkpoint inhibitors.

5.2. Cellular Immunotherapy

Although anti-cancer immunity and cancer immunotherapy have recently attracted attention [82],
cancer immunotherapy has been administered for a long time. Coley’s toxin, including live
or inactivated bacteria, including Serratia marcescens and Streptococcus pyogenes, was the first
immunotherapy reported in 1891 [83]. In that study, 10% of the patients with inoperable sarcoma showed
tumor regression after the injection of Coley’s toxin. However, several studies have investigated various
immune stimulators, including muramyl tripeptide, Bacillus Calmette-Guerin (BCG), and allogenic tumor
cells, and have reported no significant improvement in patients with sarcomas [84–87]. In contrast,
recent studies on the tumor microenvironment and antitumor immune system have contributed to the
development of immunotherapy [88]. Dendritic cells (DCs), a type of antigen presenting cells (APCs),
phagocytize apoptotic cancer cells, process them, and present tumor-associated antigens (TAAs) via
major histocompatibility complexes (MHCs). T lymphocytes recognize the TAAs presented on the
surface of the DCs. Cytotoxic T lymphocytes detect cancer cells by identifying TAAs and eliminate
cancer cells. The antitumor immune responses are induced by delivering co-stimulatory signals
among the APCs and effector cells. In normal immune condition, tumor cells with TAA are eliminated
by the antitumor immune system. In contrast, early stage of cancer is associated with insufficient
functioning of the immune system because of the suppression of immune checkpoints and recruitment
of immune-suppressive cells, such as myeloid-derived suppressor cells and regulatory T cells. Based
on the immune response and the escape system, these systems are considered promising therapeutic
targets for various type of cancers. As DCs play a central role in the antitumor immune system, clinical
studies on DC-based immunotherapy for various malignancies have been conducted. In a clinical
study on immunotherapy using DCs in combination with standard chemotherapy in 43 patients with
metastatic and/or recurrent pediatric sarcomas, 29 patients underwent immunotherapy (Table 3) [89].
In the study, T-cell responses to tumor lysates were observed in 62% (16 of 26 patients) of the patients
treated with immunotherapy, and significantly higher survival rates were observed for patients with
an immune response than in those without an immune response (73% vs. 37%, p = 0.017) [89]. In
contrast, Krishnadas et al. conducted a phase 1/2 study on decitabine and DC vaccine targeting the
melanoma-associated gene (MAGE) and New York esophageal squamous cell carcinoma-1 (NY-ESO-1)
in children with advanced solid tumors (NCT01241162). In the study, patients with relapsed/refractory
solid tumors (neuroblastoma, Ewing’s sarcoma, osteosarcoma, and RMS) underwent decitabine
treatment with autologous DCs pulsed with NY-ESO-1, MAGE-A1, and MAGE-A3 (Table 3) [90].
The study reported that one of the eight evaluable patients presented with CR, one patient presented
with PR, and six presented with PD; the patient with CR presented with complete remission 3.5 years
after the treatment. These studies suggest that a proportion of the patients showed a response to
DC-based immunotherapy and that T-cell response seems to be important for the clinical outcomes.
Adjuvant treatment activating T-cell response may enhance the effect of DC-based immunotherapy.
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These studies included only a small population of RMS patients, and further studies are demanded to
assess the immunotherapies for RMS.

Recently, adoptive T-cell therapy (ACT) has been considered a promising treatment for cancer [88,
91–94]. In a basic research study, T cells were engineered to express chimeric receptors composed of the
antigen-binding domain of a human anti-fetal acetylcholine receptor (fAChR) antibody. In the study,
the interaction between fAchR-transduced T cells and fAchR-positive RMS cell lines induced T-cell
activation by IFN-γ secretion, and delayed lysis of tumor cells was observed [95]. Huang et al. reported
that IGF-1R and tyrosine kinase-like orphan receptor 1 (ROR1) were strongly expressed in Ewing
sarcoma, osteosarcoma, ARMS, ERMS, and fibrosarcoma cell lines [92]. Furthermore, the adoptive
transfer of chimeric antigen receptor (CAR) T cells targeting the IGF-1R and ROR1 significantly reduced
tumor growth in xenograft models [92]. In a clinical trial of ACT using T-cells engineered with T-cell
receptor (TCR) directed against NY-ESO-1 in patients with melanoma or synovial sarcoma, objective
responses were observed in four of six patients with synovial sarcoma and 5 of 11 patients with
melanoma [96]. In another phase 1/2 clinical study on T cells expressing human epidermal growth
factor receptor 2 (HER2)-specific chimeric antigen receptor in patients with HER2-positive sarcomas, 4
of 17 showed SD (Table 3) [91]. Three of four patients with SD underwent tumor resection, and one
of the resected specimens showed ≥90% necrosis. Although only a few clinical studies on ACT have
included RMS patients, ACT is considered a promising treatment due to the specificity for TAAs.

Table 3. Recent clinical studies on immunotherapy.

Year Phase Treatment N Patients Clinical Significance Ref.

2016 II

Standard therapy with or
without immunotherapy
using autologous
lymphocytes, TL-pulsed DCs,
with or without IL-7

43

High-risk pediatric
sarcomas: EWS (24),
RMS (11), and
others (8)

T-cell responses toTL: 62%
Five-year OS:
73% in patients with T
cell response and 37% in
patients without T cell
response

[89]

2015 I/II

Decitabine followed by DC
pulsed with MAGE-A1,
MAGE-A3 and NY-ESO-1
peptides

10 NB (8), EWS (1), and
RMS (1) CR: 10%, SD 20%, PD 70% [90]

2015 I/II HER2-specific CAR T cells 19

HER2-positive
tumors:
Osteosarcoma (16),
PNET (1), EWS (1),
and DSRCT (1)

SD 24% [91]

TL, tumor lysate; DC, dendritic cell, IL, interleukin; MAGE, melanoma-associated gene; NY-ESO-1, New York
esophageal squamous cell carcinoma-1; HER2, human epidermal growth factor receptor 2; CAR, chimeric antigen
receptor; EWS, Ewing’s sarcoma; RMS, rhabdomyosarcoma; NB, neuroblastoma; PNET, primitive neuroectodermal
tumor; DSRCT, desmoplastic small round cell tumor; TL, tumor lysate; OS, overall survival; CR, complete response;
SD, stable disease; PD, progressive disease.

6. Basic Studies of Novel Therapeutic Approaches

Recent basic studies have reported promising therapeutic approaches, including ferroptotic agents,
oncolytic virus, and tumor-targeting bacterial therapy.

Ferroptosis is non-necrotic and non-apoptotic form of programmed cell death which requires
abundant intracellular free iron to promote lipid peroxidation and accumulation of reactive oxygen
species. Chen et al. reported that RMS had vulnerability to oxidative stress [97]. In the study, a
genomic analysis showed that RMS samples had nucleotide mutations associating with oxidative stress,
which indicates high levels of oxidative damage [97]. Furthermore, xenograft models of RMS showed
sensitivity to several compounds which enhanced oxidative stress such as cerivastatin, auranofin,
and carfilzomib. Oxidative damages in RMS suggest that RMS may be sensitive to oxidative stress
inducers [98]. Dachert et al. reported that erastin, a glutathione-depleting agent, induced reactive
oxygen species production, lipid peroxidation, and ferroptosis [99]. Based on these reports, ferroptotic
agents may be promising treatments in RMS, although the further investigations for mechanisms of
cell death by ferroptotic agents are demanded.
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ERMS mainly develops in response to aberrant activation of receptor tyrosine kinase-mediated
RAS signaling cascade. Phelps et al. investigated the function of RAS signaling in regulating the growth
and differentiation of ERMS [100]. In the study, RAS knockout in ERMS xenograft models resulted in
tumor regression and myogenic differentiation, and recombinant oncolytic myxoma virus targeting
RAS significantly reduced tumor growth and improved OS in a xenograft model of ERMS. In another
study, antitumor effects of telomerase-specific oncolytic adenovirus on bone and soft tissue sarcomas
were observed [101]. These viruses are capable of tumor-specific replication due to induction of the
expression of the adenoviral E1A and E1B genes under the control of the human telomerase reverse
transcriptase-encoding gene (hTERT) promoter. Yano et al. reported that oncolytic viruses labelled
by green fluorescent protein (GFP) enabled fluorescence-guided surgery based on the specificity for
tumor cells [102]. In the study, telomerase-dependent, GFP-containing adenovirus was injected in an
orthotopic mouse model of fibrosarcoma. The accumulation of GFP-expressing oncolytic viruses in the
tumor tissues was visualized using fluorescence imaging, and fluorescence-guided surgery could be
performed by visualization of the tumor tissues during surgical resection.

Zhao et al. developed tumor-targeting Salmonella typhimurium (S. typhimurium) A1-R [103–106].
Auxotrophy for Leu-Arg in S. typhimusrium A1-R prevents infection in normal tissues; however, S.
typhimusrium A1-R specifically accumulate in the tumor tissue and virulence. S. typhimurium A1-R
concentrated and eradicated the primary and metastatic tumors in an in vivo study [105,106]. Igarashi
et al. reported that S. typhimurium A1-R inhibited significantly regressed tumor growth compared with
that in the untreated control in a mouse model of RMS [107]. To the best of our knowledge, although
clinical studies have not reported the efficacy of bacterial therapy for RMS, bacterial therapy may
potentially be used for the treatment of RMS in the clinical setting.

To minimize the incidence of treatment-related complications due to damage to normal cells, high
specificity of tumor-targeting treatment is warranted. The tumor-specific viral or bacterial therapy may
possibly reduce the incidence of complications associated with antitumor treatment. Additional studies
investigating these treatments are required to evaluate the efficacy and safety of these treatments for
patients with RMS.

7. Precision Medicine

Expression of some molecules may be associated with the therapeutic responses to the molecular
targeted drugs. Therefore, studies addressing the correlation between expression of the target molecules
and therapeutic responses to the molecular target drugs are warranted to predict the clinical responses
in patients with soft tissue sarcoma.

It is difficult to conduct clinical trials of anticancer drugs for the treatment of RMS owing to the
rarity of RMS, its various subtypes, and differences in gene mutations. Recently, genomic profiling has
been used in various malignancies, and genomic profiling data have contributed to the determination
of the optimal clinical treatment strategies in patients with malignancies [108]. Although genomic
profiling is not commonly performed during the treatment of RMS, several studies have reported on
the prediction of therapeutic response in patients with RMS.

Casey et al. reported that RMS patients with the PAX-FOXO1 fusion protein had a lower tumor
mutational burden (TMB) than those without the fusion protein, and that high TMB was significantly
associated with worse local control, DFS, and OS [109]. TMB is identified as a biomarker predicting
response to immune checkpoint inhibitors [108]. However, assessment of TMB does not seem to be
beneficial for predicting the response to immune checkpoint inhibitors in patients with STS since a
low TMB has been reported in soft tissue sarcoma [110]. In contrast, microsatellite instability (MSI)
can be also used as a biomarker to predict the response to pembrolizumab, an immune checkpoint
inhibitor [111,112]. However, only 0.2% of the patients with soft tissue sarcomas reportedly showed
high-MSI [113]. Further investigations of biomarkers predicting the response to molecular targeted
drugs and immune checkpoint inhibitors are needed.
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Several studies have reported on the prediction of the response to anticancer agents in patients
using animal models of cancer. Although the mouse model of human malignant tumors has been
used to investigate the mechanism of tumor progression and to evaluate response to anticancer
agents, the mouse model created by subcutaneous injection of cancer cells cannot reflect on tumor
progression and response to anticancer agents in the human body. In contrast, it was reported that a
patient-derived orthotopic xenograft (PDOX) model created by orthotopic implantation of tumor tissues
in immunocompromised mice can mimic the characteristics of cancer in patients [114]. In preclinical
studies, PDOX models demonstrated characteristics similar to those of sarcoma in patients, including
recurrence, metastasis, invasion, and response to anticancer agents [107]. Due to the similarity to cancer
in patients, the PDOX model is considered useful in precision medicine for various malignancies,
including RMS [107,114,115]. Further information and clinical studies regarding the correlation of
response to anticancer agents between the PDOX models and human patients are needed to utilize the
prediction of therapeutic response by PDOX model in patients with RMS.

8. Conclusions

Because there are only a small number of clinical trials dedicated to RMS, it is often difficult to
discuss the efficacy and safety of new treatments for RMS. However, several clinical trials of molecular
targeted drugs and immunotherapy showed efficacies in patients with soft tissue sarcomas, including
RMS. On the other hand, the usefulness of modified chemotherapy regimens has been demonstrated
in recent clinical trials on RMS. Furthermore, basic research including studies on RMS-specific tumor
antigen, oncolytic virus and tumor-targeting bacterial therapy have shown the potential to contribute
to the development of therapeutic strategies for patients with RMS. These promising treatments should
be assessed in clinical studies in the future.
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