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Paternal care, particularly in cases of uncertain paternity, carries significant
costs. Extensive research, both theoretical and experimental, has explored
the conditions in which paternal care behaviour would be favoured.
Common explanations include an adjustment of care with uncertainty in
paternity and limited accuracy in parentage assessment. Here, we propose
a new explanation that microbes may play a role in the evolution of paternal
care among their hosts. Using computational models, we demonstrate that
microbes associated with increased paternal care could be favoured by natu-
ral selection. We find that microbe-induced paternal care could evolve under
wider conditions than suggested by genetic models. Moreover, we show that
microbe-induced paternal care is more likely to evolve when considering
paternal care interactions that increase microbial transmission, such as feed-
ing and grooming. Our results imply that factors affecting the composition
of host microbiome may also alter paternal behaviour.

This article is part of the theme issue ‘The role of the microbiome in host
evolution’.

1. Introduction

When would a father benefit more from caring for its offspring, rather than
looking for additional mating opportunities? This question has been broadly
addressed both theoretically and experimentally. Paternal care has been fre-
quently observed among avian species [1] (approx. 85%), and also found in
mammalian species [2] (approx. 5%), amphibians [3], and many species of
fish [4]. Paternal care is most commonly observed alongside maternal care,
while exclusive paternal care is rare [4,5]. A male may demonstrate care for
its offspring with several types of interactions [4,5], such as feeding, grooming
or guarding against predators. It can also provide spousal care for the female
while she cares for the young [6,7].

A commonly proposed explanation for the prevalence of paternal care is
borrowed from classical evolutionary theory [8]. This explanation suggests that
paternal care would be favoured whenever the paternal contribution to offspring
survival increases paternal fitness more than pursuing additional mating opportu-
nities [9]. Nevertheless, studies relating paternal effort to the certainty of paternity
have obtained mixed results [10,11]. Interestingly, paternal care is also observed in
species where a sizable proportion (10-90%) of broods contain extra-pair offspring
[12-14]. In some cases, males even knowingly care for unrelated young [15]. When
a simple fitness trade-off falls short of justifying substantial paternal investment,
alternative explanations have been suggested [16-19].

Here, we consider the potential role of microbes in host paternal care. The
microbiome is a significant agent affecting host health and behaviour [20,21],
through pathways such as the ‘gut-brain axis’. Numerous studies have demon-
strated a possible association between microbes and social behaviour (reviewed
in [20-22]), and certain species of the microbiome have been showed to alleviate
symptoms of anxiety and depression [23] and improve social interactions [24].
Microbes are highly heritable, through gestation/incubation [25,26] or parental
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care [27-29]. Microbes can also be transmitted horizontally in a
social setting [30], through interactions such as feeding, groom-
ing and copulation [29]. The effect of microbes on host
behaviour has given rise to the idea that host manipulation
by microorganisms may be driven by natural selection on the
microbes [22]. Selection could drive such an effect when the
induced behaviour increases microbial fitness, for example,
by increasing the rate of microbial transmission or proliferation
[22], including host proliferation. Previous theoretical studies
suggested that by encouraging host sociality [31] or altruistic
behaviour [32], the microbes can help their own propagation.
We integrated the notion of microbe-associated behaviour
into mathematical models for the evolution of paternal care.
A family is a unit with a high probability of microbial trans-
mission [33], since the members of the family partake in
frequent and profound interactions. Caring for the young pre-
sents an excellent opportunity from a microbial perspective,
since providing care both increases the odds of offspring survi-
val [34] and establishes a higher transmission probability.
Therefore, a microbial gene that is associated with host intra-
family caring behaviour could be favoured by natural selection
even when encouraging care towards genetically unrelated
young individuals. The propagation of microbes carrying
these genes may have contributed to the maintenance of
paternal care even when paternity levels were rather low.
Potential candidate microbes, such as Lactobacillus [35] and bi-
fidobacteria [36], have been shown to impact mood or emotional
behaviour and could be associated with paternal care.

We examine two possible family structures. In every family,
there is one female, who is mother to all offspring in the
family. In the first family structure, all offspring are fathered
by a single male, making them full siblings. In the second
family type, we allow mixed paternity within the brood,
while still maintaining a social pair structure.

In this model, males adopt one of two pure strategies, either
paternal care or lack thereof. Offspring fitness is increased by
paternal care [34], due to provision and protection from preda-
tion, by a factor of s > 0. The fitness of an offspring whose father
does not provide paternal care is wg = 1, while an offspring that
receives paternal care has increased fitness w, =1 +s. Females
mate with only one male. A male who provides paternal care
can mate with one female and form a social pair. A male
who does not provide paternal care can mate with more than
one female and is limited only by female availability and recep-
tivity [9]. The two types of males are subject to competition and
sexual selection, wherein the caring males suffer a competitive
disadvantage relative to the non-caring males (see [37] for dis-
cussion). The expected number of matings for both types of
males is frequency-dependent [38], governed by the initial
male composition in the mating pool. Only a fraction of the
males of each type reach mating at all [39], thus the expected
number of matings for a young male of the caring type is
usually less than 1. Total male mating opportunities are
bound by the Fisher condition [40], with a mean of 1. We
assume that there is a cost to paternal care [8] and that the
expected number of matings for a caring male decreases with
paternal care [9].

First, we examine a population of non-caring males where
the paternal behaviour is genetically driven. A rare mutant
providing paternal care will have a higher fitness than a
non-caring male when (at p =0)

1+s>"8, (2.1)
Ny

where 1, is the expected number of matings for a non-caring

male, 7, the expected number of matings for a caring male

and s the increase in offspring fitness due to paternal care.

Now, we extend the model to include microbes as a repro-
ductive unit that can affect paternal care behaviour. For
simplicity, we neglect the effect of host genetic background in
the microbe model and assume that host paternal behaviour
is determined by its microbes. Let us consider microbes of
type a, which are associated with paternal care behaviour,
and microbes of type 8, which have no effect on paternal care
behaviour. Microbes can be transmitted to the offspring from
the mother, with probability T, or from the father, with prob-
ability T, when the father cares for the offspring. If parental
microbes fail to establish in the offspring, it can adopt microbes
horizontally by interacting with the general population [41],
with probability determined by the population frequencies.
In many species, allofeeding behaviour is more common
from male to female than vice versa [42,43]. In our model,
microbes can also be transmitted from the father to the
mother during mating with probability T,, and possibly
through allofeeding of the mother, with probability T,,. For sim-
plicity, we assume that females carry the microbe, but it
does not affect their behaviour. We assume that each host is
inhabited by a single type of microbe at a given time. A trans-
mission probability thus includes the probabilities that a
microbe transmits to a new individual, establishes and replaces
the resident microbe, encompassing the competition dynamics
between different microbial strains. The transmission path-
ways and transmission probabilities of the two microbes are
illustrated in figure 1. We consider a model where the mother
cares for the offspring [44,45] and additionally can transmit
microbes during gestation [26] and natally [25], so overall
maternal transmission is higher than paternal transmission
(T, >T.). We also assume that paternal care involves more
interaction—and potential for microbe transmission—than a
singular mating encounter (T, > T,,). Since the probability of
transmitting microbes during mating is asymmetric between
the sexes, with a higher probability for male-to-female trans-
mission [46], we neglect the probability of female-to-male
transmission. We assume a delay in the effect of the microbes
on behaviour and neglect the possibility of a male altering its
paternal behaviour due to contracting different microbes at
the mating stage. We initially assume that males have full
paternity in their brood and relax that assumption later
(figure 2).

We assume the following order of events within the
reproductive process: transmission via mating occurs first,
second is maternal transmission and finally transmission
via paternal care, if it exists.

The condition for the evolution of microbe type o (see elec-
tronic supplementary material for full derivation) is given by

1’1/3 Tm . Tv
1 > = 22
LS (TC ST, T, a - Tc>>’ 22)

where 1, is the expected number of matings for a non-caring
male (at p=0), n, the expected number of matings for a
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Figure 1. Model 1 (full siblings): illustration of microbe transmission pathways within the family: (a) where the father carries microbes of type ¢, inducing paternal
care and (b) where the father carries microbes of type /3, that have no effect on behaviour. Males carrying 3 do not care for the offspring and can be involved in n
additional matings (illustrated is the case n=1). T,, vertical transmission probability through maternal influence (prenatal and postnatal); T,, probability of trans-
mission through paternal care; T,, probability of male-to-female microbe transmission during mating; T,, probability of transmission through male-to-female

allofeeding.

P e e S

L U —

Figure 2. Model Il (mixed brood): illustration of microbe transmission pathways within families with extra-pair mating. Males carrying microbes of type 5 do not
care for the offspring, while males carrying microbes of type o care for the offspring in their social nest. All males and females engage in extra-pair mating. T,
vertical transmission probability through maternal influence (prenatal and postnatal); T,, probability of transmission through paternal care; T, probability of male-
to-female transmission during mating; T, probability of transmission through male-to-female allofeeding. Offspring sired by an extra-pair mate are 1+ b times
more fit than offspring sired by the social mate. Offspring that receive paternal care are 1+ s times more fit than offspring that do not receive it.

caring male (at p = 0), s the increase in offspring fitness due to
paternal care, T, the vertical transmission probability through
maternal care, T, the probability of transmission through
paternal care, T, the probability of male-to-female microbe
transmission during mating and T, the probability of
transmission through male-to-female allofeeding.

Figure 3 presents the range of fitness costs of caring
imposed on the male that allows for the evolution of paternal
care in the model. When p =0, then the number of matings
for a mutant of type « is nh=0 = exp(—, -s), while the
number of matings for type g is ng:o =1. We define the
cost of caring, C = ng:o e exp(—7, - 5), as the loss
of mating success for a rare caring mutant of type a, where y.
is a factor governing the cost of caring. In the genetic case,
the cost-benefit isocline is given by equation (2.1). The range
of conditions where a gene for paternal care evolves is shown
by the grey area (figure 3). The conditions where a microbe
inducing paternal care evolves can be much wider, shown by
the areas below the green lines. The range widens with T,

the probability of microbe transmission through paternal
care, and narrows with T,, the transmission probability
during mating (figure 3). Even when transmission through
mating is larger than transmission through care, microbe-
induced paternal care fares better than paternal care driven
by a host gene (see electronic supplementary material, figure
S1). This is in large part due to the maternal transmission of
microbes to the offspring, the probability of which is assumed
to be stronger than that of maternal genes (T = 0.5). However,
reduced maternal transmission also allows microbe-induced
paternal care to evolve quite easily (see electronic supplemen-
tary material, figure S2). Counterintuitively, the results also
demonstrate that microbial genes inducing paternal care
behaviour can evolve even in the paradoxical case where
paternal ‘care’ decreases offspring fitness (see electronic
supplementary material, figure S3).

Overall, if the ratio of transmission probability through
paternal care to the probability through mating is sufficiently
large, microbe-induced paternal care widens the range of
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Figure 3. Model | (full siblings): microbes can expand the conditions for the evolution of paternal care. T, probability of microbe transmission from father to
offspring through paternal care; T,,, probability of transmission from male to female during mating. The area below each graph represents the conditions allowing
paternal care to evolve in the population. A microbe associated with paternal care behaviour can widen the range of conditions where paternal care prevails, and the
effect increases with the transmission probability of the paternal microbes to the offspring during care. Other parameters: T, =0, T, = 0.8. (a) T,, = 0.01, (b) T, =

0.1and () T,,=0.2.

conditions that allows for the evolution of paternal care be-
haviour. This is more significant when paternal care carries
a substantial cost to the benefactor in terms of mating success
or does not provide enough benefit to the beneficiary.

Now we consider a different social structure, where both
males and females can engage in extra-pair mating, but off-
spring are brought up by social pairs [47-50]. Males of both
types are guaranteed to form a social pair. Females mate
with one extra-pair male besides their social mate, and a frac-
tion P, of their brood are sired by the extra-pair mate. This
factor is affected by mate guarding, sperm competition and
cryptic female choice [51]. We assume that male mating
success as an extra-pair sire reduces with paternal care of
that male [9]. The more the father invests in its offspring,
the fitter they will be, but the father may have fewer extra-
pair progeny. The fitness of an offspring cared for by its
social father is increased by a factor of 1+s. The fitness of
an extra-pair offspring is increased by a factor of 1+b, due
to direct or indirect benefits gained from extra-pair mating
[52,53]. Note that this extra-pair offspring can still benefit
from the care of its social father.

Let o, be the fitness of an offspring with a social father
of type x, a mother of type y and a biological father of type z
(denoted by w,, if the social father x is also the biological
father). From our assumptions, ®egy=®ups=Ouaa=Ocas=
1 +b) % (1 +5), Opon=0pop=0ppa = 0gap= (1 +b), while 0y, =w,5=
(1+5) and wg, =wg=1.

We denote the expected number of extra-pair matings for
a caring and non-caring male as n,, ng respectively. We
define n, = exp (=7, *s* (1 — p)), where ¥, is a factor govern-
ing the cost of caring, s is the increase in offspring fitness from
paternal care, and p is the population frequency of a, the
microbe associated with paternal care. Thus, when a rare
mutant microbe inducing paternal care emerges in a popu-
lation of males carrying microbes of type S, it will obtain
exp (-7, *s) matings. On the other hand, if the population
comprises only caring males, they will obtain, on average,
one extra-pair mating opportunity.

We find the conditions for the evolution of an « host gene,
coding for paternal care and similarly for the evolution of

microbes of type o, inducing host paternal care (see electronic
supplementary material, for mathematical derivations).

Figure 4 shows the maximal fraction of extra-pair off-
spring in brood, P,, that allows for a gene or a microbe of
type o (paternal care) to evolve. A high degree of extra-pair
paternity in the population has a dual effect in the same
direction. First, it allows for more opportunities to breed as
an extra-pair sire. Males of type § have greater mating success
as extra-pair sires than males of type ¢, thus could potentially
gain more from the benefits to offspring stemming from
extra-pair mating. We examine the effect of extra-pair
mating benefits (b) in electronic supplementary material,
figure S4. Second, it reduces the genetic relatedness of the
social father to the offspring in its nest, and thus, the fitness
benefits it receives from paternal care. This effect is stronger
in the genetic case, since from a microbial perspective, paternal
care for a genetically unrelated young individual contributes
the same fitness benefits as for a genetically related one.

The increase in offspring fitness due to paternal care (s)
affects the evolution of paternal care in an intricate manner,
as both the benefits and the costs are increased with paternal
investment. When the paternal contribution is sufficiently
high, microbe-induced paternal care can evolve even when
paternal care is subject to substantial costs (see electronic sup-
plementary material, figure S5 for an example of diminished
costs, where the evolution of microbe-induced paternal care is
unlimited by paternity or paternal contribution).

The dynamics between the two microbe types (o and f)
are strongly affected by the ratio between transmission
probability through paternal care (T,) and transmission prob-
ability through mating (T,,). Generally, a higher T, allows
for a wider range of conditions in which microbe-induced
paternal care can evolve (see electronic supplementary
material, figure S6 for extreme values of T,,). Figure 5 demon-
strates the asymmetric contagiousness case, when microbes of
type o have a lower transmission probability than microbes of
type B in mating interactions (T¢ < T#) and through maternal
transmission (T¢ < TE). In this case, when considering the
extra-pair behaviour, microbes of type o have diminished suc-
cess both due to the males’ reduced mating opportunities and
due to the lower transmission probability through mating.
Hence, when the fraction of extra-pair offspring in the brood
(P,) is high, the disparity in fitness increases in favour of
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Figure 4. Model Il (mixed brood): the evolution of paternal care in the face of extra-pair offspring in the brood. The figure represents the maximal fraction of extra-pair
offspring in brood, P,, that allows for the evolution of paternal care induced by either genes or microbes. The solid lines represent the genetic case and the dashed and
dotted lines represent the microbial cases. Generally, in the microbial case, paternal care evolves under wider conditions. The range narrows with an increase in extra-pair
paternity in both the genetic and microbial cases. However, the effect is reduced when the transmission probability through paternal care (T,) is high. The different plots
(), (b) and (c) represent different values of transmission through mating (T;,)). In both the microbial and the genetic cases, as s increases, this allows for paternal care
under higher degrees of extra-pair paternity. Other parameters: b=0.5, 7,=0, T,= 0.8, (=0.9; (a) T,,=0.01, (b) T,,=0.1and ()) T,,=0.2.
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Figure 5. Model 2 (mixed brood): the evolution of paternal care in the face of extra-pair offspring in the brood, asymmetric transmission. Here, microbes of type &
have a lower transmission probability than microbes of type 3 in mating interactions and through maternal transmission. When the fitness benefit of paternal care
(s) or transmission probability through care (7,) are sufficiently high, microbe-induced paternal care allows for a wider range of costs than when driven by host
genes. Otherwise, the substantially diminished success of microbes of type o via extra-pair behaviour hinders their evolution. The different plots represent different
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microbes of type B. To counteract these costs and allow the
care-inducing microbe to evolve, paternal care must provide
a significant benefit. When the fitness benefit of paternal
care (s) or transmission probability through care (T.) are
sufficiently high, microbe-induced paternal care allows for a
wider range of costs than when driven by host genes. We
examined microbe-induced paternal care with transmis-
sion disadvantage for Model 1 as well (see electronic
supplementary material, figure S7).

In conclusion, microbe-induced paternal care allows for the
evolution of paternal care behaviour even in the face of the loss
of paternity due to extra-pair mating, and when paternal
investment results in significantly reduced mating success.

In this work, we present a novel perspective into the benefits of
paternal care under low levels of paternity and when paternal
investment is costly. Our findings suggest that paternal care
evolves more easily when induced by the microbes” genes than
by the host’s genes. Our model predicts that microbe-induced

paternal care would more easily evolve when parent-offspring
interactions lead to a significant increase in offspring fitness,
and when the probability of microbial transmission is high
[41,54-57] (high T, probability of paternal transmission of
microbes via care, resulting from interactions corresponding to
feeding, grooming). We demonstrate that microbe-induced
paternal care can explain the maintenance of paternal care
even under high levels of extra-pair mating, when the cost of
caring is high, and even in some cases when the microbe
inducing paternal care has a transmission disadvantage.
Previous work has discussed possible adaptive explana-
tions for male care behaviour when paternity is uncertain,
and care is costly [16]. Suggested benefits include acquisition
of skills that produce future direct fitness benefits [58];
increased opportunities for successful parenthood in the fol-
lowing year [17]; and increased chances of mating [19] or
territory acquisition [58]. Additionally, since female choice
is a key factor in determining male reproductive success,
sexual selection may act directly to favour paternal care
[8,59,60]. It has also been suggested that males overestimate
the likelihood of paternity [61,62], which helps preserve a
stable level of paternal care [16,63,64]. However, when the



cost of caring is high, and the expected level of paternity is
low, selection is expected to favour more suspicious males
that reduce their paternal investment with increased risk of
extra-pair mating [16,64-68]. Nevertheless, in some organ-
isms, paternal care has been observed even in these cases
[13,14,69]. We propose that microbial evolutionary benefits
could contribute to the maintenance of paternal care. We
expect that microbe-induced paternal care could play a
more significant role in circumstances where the classic fit-
ness trade-off may fall short of explaining the observed
degree of paternal investment, such as in adoption [15], as
well as in species where extra-pair paternity is common [48].

Thus, microbe-induced paternal care could mediate some of
the costs associated with female extra-pair mating behaviour.
The benefits of extra-pair mating for females [50,52,70,71]
may be in obtaining a higher quality or more compatible sire
[70] and bet-hedging by increasing the genetic diversity of off-
spring [72]. Extra-pair mating can also result in significant costs
to the female. The possible costs include loss of care by social
mate [73], male sexual aggression [74], increased sibling compe-
tition [75,76] and the risk of contracting sexually transmitted
pathogens [77]. As demonstrated by our results, microbe-
induced care by the social mate prevails under a wider range
of paternity levels in comparison to care driven by host genes.
Within-brood aggression between half-siblings [75] could also
be mitigated by microbes, since relatedness among the microbes
of the sibling is expected to be significant even if their genetic
relatedness is not high [78,79].

Our model can be extended in several ways. We examined
two extremes: paternal care governed exclusively by host genes
or exclusively by microbial genes. However, the evolution of
paternal care is likely driven by selection on reproductive
units in both levels, possibly leading to intermediate levels of
paternal care between host and microbial optimum. Addition-
ally, host manipulation is unlikely to have arisen by a single
mutation and more plausibly would evolve gradually through
small cumulative changes. It is possible to consider that when
host genes and microbial genes experience conflicting selective
pressures, selection on the host would drive the evolution of
resistance genes to the microbial influence. In this case, we
expect the host-microbe coevolution to generate oscillatory
rock-paper—scissors evolutionary dynamics, that can allow
the long-term maintenance of paternal care. Similar dynamics
have been suggested by some of us with respect to microbe-
induced cooperation and host resistance [80]. It should also
be noted that host manipulation does not have to require

novel complex behaviour [81] but may more commonly take [ 6 |

place through influencing pre-existing host behaviours
[82,83]. Another extension would be allowing more female
strategies. We assumed a constant level of maternal care.
Yet, studies show that females may reduce their care if the
male provides sufficiently intensive care or increase their care
to compensate for lack of male care [84-86]. This behaviour
lowers the return on paternal investment in terms of benefits
to offspring fitness, effectively increasing the cost/benefit
ratio. We may also consider microbial genes that contribute
to the maintenance of maternal care. We predict that in many
cases, microbial evolutionary interests would be to promote
high levels of maternal investment, as the offspring is very
likely to carry microbes of the same type as his mother,
especially in cases where paternal involvement is meagre
or lacking.

Our model joins the rank of previous models concerning
the role of different non-genetic elements in the evolution of
social traits [32,87-89]. Recent evidence suggests that microbes
hold a significant role in shaping host evolution [21,32,90,91].
However, it is worth noting that the assumptions presented
here are not limited to the microbiome and apply to any class
of non-genetic elements that are capable of both vertical
and horizontal/oblique [92] transfer and of influencing com-
plex behavioural phenotypes. Examples of such elements
may include epigenetic states [93,94] and culture [87,95-98].
Paternal care is a unique case of cooperation. The general
outline of our model can also be applied to cooperation
among genetic relatives with varying degrees of relatedness,
cooperative breeding and eusociality [58,99].

Our theoretical results suggest a new evolutionary expla-
nation, involving microbial regulation, to paternal care in the
face of significant costs. Our results call for empirical testing
of our predictions: that microbes are involved in the regulation
of paternal behaviour and that factors that affect the compo-
sition of the host microbiome dramatically (e.g. antibiotics
[100,101]) may also alter paternal behaviour.

This article has no additional data.
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