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Abstract: Introduction: This study aims to develop a machine learning-based model integrating
clinical and ophthalmic features to predict visual outcomes after transsphenoidal resection of sellar
region tumors. Methods: Adult patients with optic chiasm compression by a sellar region tumor were
examined to develop a model, and an independent retrospective cohort and a prospective cohort
were used to validate our model. Predictors included demographic information, and ophthalmic
and laboratory test results. We defined “recovery” as more than 5% for a p-value in mean deviation
compared with the general population in the follow-up. Seven machine learning classifiers were
employed, and the best-performing algorithm was selected. A decision curve analysis was used to
assess the clinical usefulness of our model by estimating net benefit. We developed a nomogram
based on essential features ranked by the SHAP score. Results: We included 159 patients (57.2%
male), and the mean age was 42.3 years old. Among them, 96 patients were craniopharyngiomas
and 63 patients were pituitary adenomas. Larger tumors (3.3 cm vs. 2.8 cm in tumor height) and
craniopharyngiomas (73.6%) were associated with a worse prognosis (p < 0.001). Eyes with better
outcomes were those with better visual field and thicker ganglion cell layer before operation. The
ensemble model yielded the highest AUC of 0.911 [95% CI, 0.885–0.938], and the corresponding
accuracy was 84.3%, with 0.863 in sensitivity and 0.820 in specificity. The model yielded AUCs
of 0.861 and 0.843 in the two validation cohorts. Our model provided greater net benefit than the
competing extremes of intervening in all or no patients in the decision curve analysis. A model
explanation using SHAP score demonstrated that visual field, ganglion cell layer, tumor height, total
thyroxine, and diagnosis were the most important features in predicting visual outcome. Conclusion:
SHAP score can be a valuable resource for healthcare professionals in identifying patients with a
higher risk of persistent visual deficit. The large-scale and prospective application of the proposed
model would strengthen its clinical utility and universal applicability in practice.
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1. Introduction

Pituitary adenomas (PAs) and craniopharyngiomas (CPs) are the most common brain
tumors in the sellar region [1,2]. Patients complain of blurred vision when the tumor grows
beyond the sella and compresses the optic chiasm. Optic nerve decompression by surgical
removal of the lesion may result in visual function normalization in some patients but not
in others [3–6].

The risks associated with persistent visual dysfunction include severe visual field
defects, thin retinal nerve fiber layers, and pituitary macroadenomas. Careful evaluation
of these risks plays a fundamental role in the clinical management of these patients. The
identification of patients at high risk for persistent visual loss may be helpful as patients
could be referred to further visual rehabilitation [7,8] as soon as possible after surgery.
Moreover, it might serve as a cost-effective and straightforward means for preoperative
patient–doctor communication.

Small sample sizes, unquantified outcomes, and partial predictors constitute the
limitations of previous attempts to search for risk factors that predict for visual recovery
after surgery [9–19]. However, the overall accuracy of these scores, along with their
generalizability to external cohorts, remains modest, representing an unmet need for
individualized patient management strategies.

From a clinical standpoint, the poor performance of existing risk scores might be
related to insufficient predictive factors. Machine learning methods might overcome some
of the limitations of current analytical approaches to risk prediction by applying computer
algorithms to large datasets with numerous, multidimensional variables, capturing high-
dimensional, non-linear relationships among clinical features to make data-driven outcome
predictions. The effectiveness of this approach has been shown in several applications of
sellar region tumors, where machine learning was superior in validating traditional risk
stratification tools, including prediction endocrine remission after surgical or radio surgical
treatment of acromegaly [20,21]. Thus, we sought to develop a machine learning-based
model (Prediction of Visual Outcome in Sellar Tumors, PREVOST) integrating clinical and
ophthalmic features to predict visual outcomes after transsphenoidal resection of sellar
region tumors.

2. Methods
2.1. Data Sources

To develop our machine learning models, we used a derivation cohort of 159 adult
patients (≥18 years) with optic chiasm compression by a sellar region tumor with at least
one year of follow-up. All of the patients suffered a visual field defect before surgery
and were treated by transsphenoidal tumor resection and optic decompression in the
Gold Pituitary Joint Unit (GPJU) between January 2019 to January 2021. The GPJU is a
newly established unit that started in 2019 where patients with sellar region tumors are
co-managed by a multidisciplinary team, including neurosurgeons, endocrinologists, and
ophthalmologists. We excluded patients who were subtotally resected or patients who
suffered a post-operation hemorrhage and needed an early emergent surgery. To test the
generatability of our model, we used another retrospective cohort from Neurosurgical
Institute of Fudan University (FNI), where surgeries and ophthalmic assessments were
performed by different groups, to independently validate our model. We further validated
our model in a prospective cohort admitted to GPJU from January 2021 to June 2021.
Informed consent was obtained from patients at the time the data were collected. Predictors
were assessed before surgery, and the outcome was assessed at follow-up. Institutional
Review Board from both centers provided ethical approval. The overall study design is
depicted in Figure 1.
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Figure 1. Overall study design.

2.2. Ophthalmic Examinations

Patients underwent a thorough ophthalmic examination by experienced ophthal-
mologists, including pupil, anterior, and posterior segment examination. Patients with
other ocular diseases were excluded. Static automated perimetry was performed using
the Humphrey 750 Visual Field Analyzer (Zeiss-Humphrey Systems, Dublin, CA, USA)
and a central 30-2 threshold protocol. Fixation loss less than 20%, false-positive error less
than 20%, and false-negative error less than 20% were ensured for a validated visual field.
We documented the mean deviation (MD), pattern standard deviation (PSD), visual field
index (VFI) on the report. The retinal nerve fiber layer (RNFL) thickness and ganglion
cell layer (GCL) thickness were assessed by RTVue (Optovue, Fremont, CA, USA) using
three-dimensional disc and optic nerve head (ONH) protocols.

2.3. Predictor Variables

Predictors were included based on a balance of clinical knowledge, past research, and
likely clinical usefulness. The baseline model comprised visual acuity, MD (decibel, db),
PSD (db), VFI (%), RNFL (µm), and GCL (µm). The full model comprised age (years),
gender (female or male), BMI (kg/ m2), hypertension (yes or no), diabetes mellitus (yes
or no), tumor height on MRI (cm), diagnosis (pituitary adenoma or craniopharyngioma),
hemoglobin (g/L), red blood cell (1012/L), white blood cell (109/L), sodium (mmol/L),
albumin (g/L), creatinine (µmol/L), ACTH (pg/mL), cortisol (µg/dL), prolactin (ng/mL),
free thyroxine (pmol/L), and total thyroxine (nmol/L).

2.4. Outcome

Ophthalmic recovery after surgical decompression was categorized as a binary out-
come according to the 3 to 6 month follow-up (static automated perimetry). Mean deviation
in the follow-up visual field was compared with data from the general population (built-in
data in the Humphrey 750 Visual Field Analyzer), and a p-value was calculated automati-
cally. If the p-value was more than 0.05, we defined the outcome as “recovery”; otherwise,
we defined the outcome as “not recovery”.

2.5. Model Training

We used multiple imputations using chained equations for missing data. Seven
machine learning classifiers—linear absolute shrinkage and selection operator, support
vector machine, linear discriminant analysis, random forest, gradient boosting, neural
network, and ensemble model—were employed to generate seven models for the prediction.
The internal performance was assessed by fivefold cross-validation, by which the dataset
was randomly divided into five even groups and evaluation was performed on one group
at a time using the model built on the remaining 80% of the data. Model performance was
assessed by the mean area under the receiver operating characteristic curve (AUC), and
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the best-performing algorithm was selected. The final algorithm was validated on the two
validation cohorts.

2.6. Calibration

The calibration of the model was assessed graphically with calibration plots. We also
recorded the Brier score, an overall measure of algorithm calibration (scores > 0.25 generally
indicating a poor model).

2.7. Decision Curve Analysis

A decision curve analysis was used to assess the clinical usefulness of our model
by estimating net benefit [22]. The net benefit is a metric of true positives minus false
positives at a given risk threshold. The risk threshold is the amount of tolerable risk before
an intervention is deemed necessary (0.5 in our case). In clinical practice, patients at high
risk of not recovering were likely refered to visual rehabilitation as soon as possible after
surgery. We drew a decision curve plot to visualize the net benefit of our model over
varying risk thresholds compared with intervening in all patients or intervening in no
patients. Classical decision theory proposes that the choice with the greatest net benefit at a
chosen risk threshold should be preferred.

2.8. Feature Importance

To determine the major predictors of outcome, the importance of each feature was
measured from the final model. We used the SHAP (Shapley additive explanations) score,
a game-theoretic approach to explain the output of any machine learning model [23]. It
measures features contributing to pushing the model output from the base value (the
average model output over the training dataset we passed) to the model output.

2.9. Visual Representation

We developed a nomogram, which allows for an interactive exploration of the effect
of risk factors and their combinations on the visual outcome according to their PREVOST
score. The choice of variables for nomograms was based on essential features ranked by
the SHAP score.

2.10. Statistical Analysis

Continuous variables with normal distribution were described as mean and standard
deviation. Continuous variables with non-normal distribution were described as a median
and a range. Categorical variables were described as counts and proportions. We used
the linear mixed-effect models for the comparison with the control to account for intra-
eye correlation. All statistical analyses were completed with R software version 3.4.2 (R
Foundation for Statistical Computing, Vienna, Austria).

3. Results

The training cohort included 159 patients (91 male, 57.2%, Table 1). The mean age was
42.3 years old, and tumor volume was 9.4 (5.0–15.3) cm3. We included 96 patients with
craniopharyngioma and 63 patients with pituitary adenoma in the analysis. Among the
patients with pituitary adenoma, their pathologies [24] consisted of 33 gonadotroph adeno-
mas, 13 corticotroph adenomas, 8 somatotroph adenomas, 6 lactotroph adenomas, 2 null
cell adenomas, and 1 plurihormonal PIT-1 positive adenoma. High-risk adenomas included
13 silent corticotroph adenomas, 4 lactotroph adenomas in men, 3 sparsely granulated
somatotroph adenomas, and 1 plurihormonal PIT-1-positive adenoma. In total, 318 eyes
were included, 172 (54.1%) eyes out of 318 eyes recovered during early follow-up. The
median change in mean deviation after surgery was 40.6% compared with pre-operation.
Larger tumors (3.3 cm vs. 2.8 cm in tumor height, p < 0.001) were associated with worse
prognosis than smaller tumors, and 73.6% of the eyes unrecovered were from patients
with craniopharyngiomas compared with only 26.4% of the eyes unrecovered being from
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patients with PAs (p < 0.001). The laboratory test results were similar between recovered
and unrecovered eyes. Eyes with better outcomes were those with shorter disease duration
(6.0 months vs. 12.0 months, p = 0.002), better MD (−5.0 db vs. −14.6 db, p < 0.001), better
PSD (4.3 db vs. 11.2 db, p < 0.001), and thicker GCL (60.5 µm vs. 56.6 µm, p < 0.001) before
operation. Figure 2 shows the correlation between visual severity, duration of symptoms,
and size of the tumor.

Table 1. Overall characteristics of the cohort.

Overall
N = 159

Unrecovered Eyes
N = 146

Recovered Eyes
N = 172 p

Gender (male) 91 (57.2%) 93 (63.7%) 89 (51.7%) 0.103
Age (years old) 42.3 (16.2) 45.2 (16.5) 39.8 (15.4) 0.023
Body mass index (kg/m2) 24.1 (3.6) 24.3 (3.2) 24.2 (4.3) 0.850
Comorbidities

Hypertension 12 (7.5%) 9 (6.2%) 15 (8.7%) 0.518
Diabetes Mellitus 7 (4.4%) 12 (8.2%) 2 (1.2%) 0.020

Disease duration (months) 8.0 [1.0, 100.0] 12.0 [1.0, 100.0] 6.0 [1.0, 72.0] 0.002
Tumor height (cm) 3.0 (1.0) 3.3 (1.0) 2.8 (0.9) <0.001
Diagnosis <0.001

Pituitary adenomas 63 (39.6%) 40 (27.4%) 86 (50.0%)
Craniopharyngiomas 96 (60.4%) 126 (73.6%) 86 (50.0%)

Laboratory test
Hemoglobin (g/L) 129.4 (15.9) 128.2 (17.3) 130.4 (14.5) 0.349
Red Blood Cell (1012/L) 4.3 (0.5) 4.3 (0.5) 4.3 (0.5) 0.185
White Blood Cell (109/L) 6.6 (2.1) 6.9 (2.2) 6.4 (2.1) 0.117
Sodium (mmol/L) 140.5 (4.7) 140.4 (4.7) 140.7 (4.7) 0.670
Albumin (g/L) 43.2 (5.15) 42.8 (5.9) 43.7 (4.4) 0.239
Creatinine (µmol/L) 68.1 (15.3) 68.9 (16.7) 67.4 (14.1) 0.386
ACTH (pg/mL) 25.1 [1.1, 197.8] 23.9 [1.1, 197.8] 28.1 [3.5, 92.5] 0.936
Cortisol (µg/dL) 7.6 [0.05, 21.4] 6.6 [0.05, 48.8] 8.4 [0.1, 104.6] 0.099
Prolactin (ng/mL) 24.7 [0.4, 470.0] 21.7 [0.5, 470.0] 26.6 [0.4, 470.0] 0.052
Free Thyroxine (pmol/L) 13.8 (4.5) 13.4 (4.8) 14.2 (4.2) 0.252
Total Thyroxine (nmol/L) 80.3 (22.1) 78.9 (23.8) 81.5 (20.6) 0.429

Ophthalmology
Visual acuity 0.6 [0.1, 1.0] 0.6 [0.1, 1.0] 0.8 [0.1, 1.0] 0.784
Visual field

Mean deviation (db) −8.0 [−34.2, 1.3] −14.6 [−34.2, −0.1] −5.0 [−32.5, 1.3] <0.001
Pattern standard deviation (db) 7.4 [1.1, 17.7] 11.2 [1.1, 17.7] 4.3 [1.1, 17.3] <0.001
Visual field index 70.8 (28.3) 58.7 (29.6) 81.0 (22.5) <0.001

Retinal Nerve Fiber Layer (µm) 96.2 (33.2) 91.9 (44.5) 99.8 (18.2) 0.163
Ganglion Cell Layer (µm) 58.7 (7.1) 56.6 (7.6) 60.5 (6.1) <0.001

Furthermore, we looked at the difference between craniopharyngiomas and pituitary
adenomas (Table 2). For the ophthalmological tests, the baseline mean deviation was −8.8
[−17.2–−4.0] db in the left eye and −7.8 [−15.9–−3.3] db in the right eye. Overall, though
baseline ophthalmic examinations were similar for patients with CPs and PAs, PAs were
associated with better prognoses.

Among all of the algorithms trained (Table 3), the ensemble model integrating all algo-
rithms yielded the highest AUC: 0.911 [95%CI, 0.885–0.938]. The corresponding accuracy
was 84.3%, with 0.863 in sensitivity and 0.820 in specificity. The random forest model and
gradient boost model ranked second and third best regarding model performance.
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Table 2. Ophthalmic examinations in patients with different diagnoses and different eyes.

Overall
N = 159

Craniopharyngioma
N = 96

Pituitary Adenoma
N = 63 p

Visual acuity
Left 0.6 [0.1, 1.0] 0.7 [0.1, 1.0] 0.2 [0.1, 1.0] 0.017
Right 0.6 [0.1, 1.0] 0.8 [0.1, 1.0] 0.5 [0.1, 1.0] 0.189

Visual field
Left

Mean Deviation (db) −8.8 [−34.2, 1.1] −9.1 [−32.5, 0.1] −7.8 [−34.2, 1.1] 0.503
Pattern Standard Deviation (db) 7.4 [1.1, 17.3] 6.0 [1.2, 16.9] 9.1 [1.1, 17.3] 0.477
Visual Field Index 69.5 (29.0) 67.5 (31.2) 72.5 (25.3) 0.288

Right
Mean Deviation (db) −7.8 [−32.0, 1.3] −8.6 [−32.0, 0.0] −6.7 [−29.7, 1.3] 0.129
Pattern Standard Deviation (db) 7.5 [1.1, 17.7] 7.6 [1.1, 16.8] 6.5 [1.1, 17.7] 0.586
Visual Field Index 72.1 (27.6) 69.9 (28.8) 75.4 (25.6) 0.222

Ganglion cell layer (µm)
Left 58.5 (7.0) 58.9 (7.5) 57.7 (6.3) 0.290
Right 58.9 (7.1) 58.9 (7.5) 59.1 (6.4) 0.874

Retinal nerve fiber layer (µm)
Left 99.4 (33.2) 98.3 (40.9) 101.1 (15.6) 0.609
Right 93.0 (33.0) 96.1 (38.1) 88.2 (22.5) 0.139

Recovered eyes
Left 84 (52.8%) 42 (43.8%) 42 (66.7%) 0.008
Right 88 (55.3%) 44 (45.8%) 44 (69.8%) 0.005

We tested the model performance in two independent cohorts (Table 4). The cohorts
include retrospectively collected data from FNI and prospectively collected data from GPJU.
Patients in the FNI cohort had larger tumor and worse visual function than those in our
training cohort. However, patients in the prospective GPJU cohort had smaller tumors and
better visual function than those in our training cohort. The trained ensemble model yielded
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AUCs of 0.861 and 0.843 in the retrospective FNI and prospective GPJU validation cohorts,
respectively. The corresponding accuracies, sensitivities, and specificities were 86.4%,
0.842, and 0.880 and 85.0%, 0.875, and 0.833 for the two validation cohorts, respectively
(Table 3). The true-positive, true-negative, false-positive, and false-negative predictions in
the training and independent validation cohorts are listed in Figure 3. Most cases can be
correctly classified.

Table 3. Model performance using different algorithms.

AUC Accuracy Sensitivity Specificity

Training cohort (fivefold cross validation)
GPJU retrospective cohort

LASSO 0.854
[95% CI, 0.807–0.901] 0.777 0.759 0.792

Support Vector Machine 0.875
[95% CI, 0.824–0.927] 0.786 0.764 0.806

Linear Discriminant Analysis 0.846
[95% CI, 0.794–0.897] 0.774 0.761 0.784

Random Forest 0.901
[95% CI, 0.880–0.921] 0.837 0.809 0.861

Gradient Boosting 0.889
[95% CI, 0.862–0.901] 0.799 0.789 0.807

Neural Network 0.858
[95% CI, 0.816–0.900] 0.780 0.757 0.800

Ensemble Model 0.911
[95% CI, 0.885–0.938] 0.843 0.863 0.820

Independent cohort
FNI retrospective cohort 0.861 0.864 0.842 0.880
GPJU prospective cohort 0.843 0.850 0.875 0.833

FNI: Fudan Neurosurgical Institute. GPJU: Gold Pituitary Joint Unit.

Table 4. Comparison among three cohorts.

Retrospective GPJU
N = 159

Retrospective
FNI

N = 22

Prospective
GPJU
N = 20

Gender (male) 91 (57.2%) 17 (%) 8 (51.7%)
Age (years old) 42.3 (16.2) 41.4 (16.5) 39.0 (14.5)
Tumor height (cm) 3.0 [1.0–6.0] 3.5 [1.0–5.5] 2.4 [1.0–5.8]
Diagnosis

Pituitary adenomas 63 (39.6%) 22 (100.0%) 15 (75.0%)
Craniopharyngiomas 96 (60.4%) 0 (0.0%) 5 (25.0%)

Ophthalmology
Visual acuity 0.6 [0.1, 1.0] 0.4 [0.1, 1.0] 0.6 [0.1, 1.0]
Visual field

Mean deviation (db) −8.0 [−34.2, 1.3] −14.3 [−29.0, 0.0] −5.4 [−30.7, 0.4]
Pattern standard deviation (db) 7.4 [1.1, 17.7] 12.0 [1.0, 18.8] 3.8 [1.4, 16.6]
Visual field index (%) 70.8 (28.3) 56.0 (27.0) 90.0 (27.0)
Retinal Nerve Fiber Layer (µm) 96.2 (33.2) 95.8 (16.3) 103.5 (53.0)

Ganglion Cell Layer (µm) 58.7 (7.1) 87.7 (10.3) 60.2 (8.5)
Outcome: recovered 54.1% 56.8% 60.0%

FNI: Fudan Neurosurgical Institute. GPJU: Gold Pituitary Joint Unit.
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Figure 3. Confusion matrix in the training and validation cohorts.

We investigated the utility of our model by plotting a decision support curve. The
curve presented that the net benefit of our full model was higher than the non-model or
model only using the visual field as the predictor (baseline model). PREVOST provided
greater net benefit than the competing extremes of intervening in all patients or none
(Figure 4A). At most risk thresholds greater than 0.1, the full model provided significant
improvement in net benefit compared with the baseline model. Moreover, the model
showed good calibration with low Brier scores (0.055; Figure 4B).
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mor height, total thyroxine, and diagnosis were the most important features in predicting 
visual outcome. We illustrate two cases in Figure 5, one recovered and the other unrecov-
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Figure 4. Decision support curve and calibration plot. (A) The curve presented that the net benefit of
our full model was higher than the non-model or model only using the visual field as the predictor
(baseline model). Standardized net benefit is a measure of utility that calculates a weighted sum of
true positives and false positives, weighted according to the threshold. (B) The model showed good
calibration with an intercept close to 0 and a slope close to 1. The width of the grey area represents
the number of patients at each level of “predicted probability of recovery”.

A model explanation using the SHAP score demonstrated that visual field, GCL, tumor
height, total thyroxine, and diagnosis were the most important features in predicting visual
outcome. We illustrate two cases in Figure 5, one recovered and the other unrecovered.
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Figure 5. SHAP score-based model explanation. Every dot in the figure represents a patient. The X-
axis represents the contribution to prediction (SHAP score). The variables were ordered by importance
(width). Red (high) and blue (low) represent the values of the variables, e.g., for Ganglion cell layer,
red means high and blue means low. Two representative cases: a severe visual field and pituitary
macroadenoma contribute to the low probability of recovery (negative output) in Case 1, while a mild
visual field defect, normal ganglion cell layer, and small tumor contribute to the high probability of
recovery (positive output) in Case 2.

We simplified the model using these important features to construct a simple version
during clinical usage. The AUC of the simple model was 0.874 [95%CI, 0.838–0.910], which
was not significantly inferior to that of the original model. We constructed a nomogram
based on the simple model (Figure 6). Physicians can add up corresponding scores using
the graph and can obtain the recovery probability.
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4. Discussion

We developed and independently validated PREVOST, which is, to our knowledge, the
first risk-prediction algorithm specifically for visual outcomes in patients with sellar tumors.
PREVOST can predict the risk of persistent visual deterioration from commonly recorded
clinical information and available ophthalmic testing. The internal and external validations
of PREVOST were good, with C statistics greater than 0.80. PREVOST displayed greater
net benefit than alternative strategies across a range of feasible risk thresholds, although
our results show that the full model should be used preferentially at most risk thresholds.

Previous studies have discussed various prognostic factors [9–19] about visual defects
caused by compressive sellar region tumors. Age [5,14,25], duration of visual symptoms
prior to surgery [9,12], whether the adenoma is secreting or non-secreting [25,26], tumor
volume [10,27–29], pre-operative visual field deficit [9,15,19,25,27], retinal nerve fiber layer
thickness [11,17–19,30], optic disc pallor [31–33], and functional MRI [13,16] were possible
predictors discussed in one or several studies. However, these studies used small sample
sizes, unquantified outcomes, or only a few possible predictors. In this study, however, the
predictive model was developed by analyzing risk factors based on multiple factors.

Visual fields are among the most commonly included predictors in existing algorithms
and are well-known contributors to visual risk, so we included them in PREVOST. Gnanal-
ingham et al. [9] studied 41 patients with visual disturbance caused by pituitary adenomas
and found that the extent of the visual recovery was mainly dependent on the preoperative
visual field deficit. Yu et al. concluded that low preoperative mean deviation was one of
the independent influencing factors for improving the visual field after pituitary adenomas
resection [25]. Tuomas et al. also concluded that severe preoperative visual impairment
resulted in poorer postoperative visual outcomes [27]. In accordance with past results, our
study also established the prognostic value of preoperative visual fields. The duration of
visual symptoms was another risk factor in previous studies [9,12], but it was not correlated
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with pre-operative visual function and was also excluded in the simplified model due to
possible recall bias.

The prognostic value of GCL has been previously assessed by several researchers [11,17–19,30].
Maud Jacob et al. [11] evaluated 37 eyes of 19 patients suffering from pituitary adenomas
and found that a lower RNFL thickness was a potent prognostic factor. The findings on
RNFL thickness in our study were similar to the recently published research by Danesh-
Meyer et al. [18], who studied 205 eyes from 107 patients and found that patients with
normal preoperative RNFL thickness showed an increased propensity for visual recovery.

Tumor height was associated with visual recovery in several studies [10,27–29], and
we included it in PREVOST. Blood-based predictors, such as cortisol and ACTH, were
relatively infrequently included in visual risk-prediction algorithms. We found that the
inclusion of blood-based predictors improved all predictive performance metrics. However,
blood-based monitoring might not always be possible, and we found that the simple model
still provided reliable performance estimates.

Patients and clinicians might prefer to tolerate a slightly higher risk threshold when
the proposed intervention could be deemed more burdensome or might increase the risk
of other adverse effects. The risk threshold for our PREVOST model was set to be 0.5.
However, trials of treatments such as visual rehabilitation are scarce in these patients, but
evidence suggests that such treatments might benefit visual outcomes [7,8].

The limitations of the study include non-universal representation and a lack of external
prospective validation. We only included patients with craniopharyngiomas and pituitary
adenomas in our study because these were the two major lesions that produce visual
disturbance. Other cases, such as meningioma, could potentially be added to update the
algorithm in future studies. Though the model was validated in an external cohort, with
the two centers being similar in surgical volume and experience, the generalization of our
model in other institutions is unknown. An external validation of PREVOST on prospective
samples is required since simulation studies have suggested a minimum of 100 outcome
events for an accurate validation analysis.

5. Conclusions

A new prognostic model for visual recovery after trans-sphenoidal sellar region tumor
resection was developed based on an ensemble machine learning analytical approach. The
score can become a valuable resource for healthcare professionals by identifying patients
with a higher risk of persistent visual deficit. The large-scale and prospective application
of the proposed model would strengthen its clinical utility and universal applicability
in practice.
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