
Article

Uncertainty in the Bayesian meta-
analysis of normally distributed
surrogate endpoints

Sylwia Bujkiewicz,1 John R Thompson,2 Enti Spata1 and
Keith R Abrams1

Abstract

We investigate the effect of the choice of parameterisation of meta-analytic models and related uncertainty on the

validation of surrogate endpoints. Different meta-analytical approaches take into account different levels of uncertainty

which may impact on the accuracy of the predictions of treatment effect on the target outcome from the treatment effect

on a surrogate endpoint obtained from these models. A range of Bayesian as well as frequentist meta-analytical methods are

implemented using illustrative examples in relapsing–remitting multiple sclerosis, where the treatment effect on disability

worsening is the primary outcome of interest in healthcare evaluation, while the effect on relapse rate is considered as a

potential surrogate to the effect on disability progression, and in gastric cancer, where the disease-free survival has been

shown to be a good surrogate endpoint to the overall survival. Sensitivity analysis was carried out to assess the impact of

distributional assumptions on the predictions. Also, sensitivity to modelling assumptions and performance of the models

were investigated by simulation. Although different methods can predict mean true outcome almost equally well, inclusion

of uncertainty around all relevant parameters of the model may lead to less certain and hence more conservative

predictions. When investigating endpoints as candidate surrogate outcomes, a careful choice of the meta-analytical

approach has to be made. Models underestimating the uncertainty of available evidence may lead to overoptimistic

predictions which can then have an effect on decisions made based on such predictions.
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1 Introduction

Biomarkers and surrogate endpoints are increasingly being investigated as candidate endpoints in clinical trials
where measuring a primary outcome of interest may be too costly, too difficult or require a long follow-up time.
Use of surrogate endpoints in clinical trial design has advantages in overcoming these difficulties by choosing more
convenient, cheaper or shorter term endpoints. Such endpoints are also becoming increasingly important in health
technology assessment (HTA) and in particular in the early stages of drug development when conditional licensing
based on a biomarker takes place and evidence on treatment effectiveness on a target outcome may be limited.
Suitable methods need to be identified that would incorporate data on surrogate outcomes most efficiently in
evidence synthesis as part of HTA.

Validating candidate outcomes as surrogate endpoints to target outcomes requires the correlation between the
candidate endpoint and the target outcome on the individual level as well as the correlation between the treatment
effect measured by the surrogate endpoint and the treatment effect measured by the target outcome to be
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established.1 Methods for evaluating surrogacy on the individual level include, for example, Prentice’s criteria,2

proportion of treatment explained3 and adjusted association (between the endpoints adjusted for the treatment).4

For the evaluation to be valid in a general context of a particular disease area, it needs to be performed on a
number of studies rather than based on a single trial. Meta-analysis serves the purpose of combining evidence from
a number of trials and also provides a convenient tool for evaluating the association between treatment effects on
the surrogate and final outcome on the study level. A number of meta-analytical methods have been proposed that
aim to validate such surrogate endpoints.1,5,6 For example, Daniels and Hughes proposed a Bayesian model for a
joint synthesis of correlated outcomes, focused on summary data where partially available patient data can
contribute to determining the within-study correlation.6 Buyse et al., on the other hand, designed a frequentist
meta-analytic model based on patient-level data from a number of studies in the form of a mixed effects model
with two measures of surrogacy derived: on the patient level and the study level.5 Part of the validation process,
beyond establishing the correlations on both levels, involves investigating whether the treatment effect measured
by the target outcome can be predicted from the treatment effect measured by the surrogate endpoint (from a
model built based on treatment effect on both outcomes measured in historical trials) by comparing the predicted
effect with the observed effect on a target endpoint in a validation study. Methods used for prediction include
linear regression (for example proposed by Buyse et al. to predict the log hazard ratio measured by overall
survival from the log hazard ratio measured by progression-free survival in colorectal cancer7), weighted linear
regression (for example by Sormani et al.8 in a study in relapsing–remitting multiple sclerosis (RRMS)), error-in-
variables regression methods1 (for example used by Burzykowski et al. in metastatic breast cancer study9 or Oba
et al. in gastric cancer study10), meta-regression (for example used by Gabler et al. investigating 6min walk
distance as a surrogate endpoint to development of clinical events in pulmonary arterial hypertension11), or
bivariate meta-analysis methods, such as by Daniels and Hughes in a Bayesian framework developed to
evaluate CD4 cell count as a candidate surrogate endpoint for the treatment effect on the development of
AIDS or death.6

Different meta-analytical approaches take into account different levels of uncertainty which may impact on
the accuracy of the validation and predictions. The aim of this study was to investigate the effect of the choice of
parameterisation of meta-analytic models and related uncertainty (that these models allow to incorporate) on the
predictions obtained from those models. Bayesian methods are most suitable for this purpose as they are flexible
in modelling the uncertainty. This study is concerned with predictive models for normally distributed treatment
effects that are based on the summary data only. A range of Bayesian meta-analytical methods (using summary
data) is implemented in order to investigate the impact of the choice of a model and level of uncertainty on the
model predictions. When simple meta-regression is used to validate a candidate surrogate endpoint, the
treatment effect on such an endpoint is included in the model as a covariate and hence is incorporated with
no uncertainty, while the effect of treatment on each endpoint, including the surrogate, is in fact measured with
error. Two approaches to meta-regression (described in Section 3.1) are investigated here: a standard use of
mean trend with fixed coefficients estimated from the fixed effects meta-regression model (FEMR) and a random
effects approach where between-study variability is taken into account when making predictions. In contrast to
the meta-regression, the model proposed by Daniels and Hughes6 (described in Section 3.2) includes the
treatment effect on the surrogate endpoint with uncertainty by modelling it as a response (rather than a
covariate). Alternatively this can be achieved using bivariate meta-analytic methods12–14 (Sections 3.3 and 3.4)
which allow one to simultaneously model the estimates of treatment effects on both the surrogate and the final
endpoint by taking into account the between- and within-study correlations. Models are implemented using
WinBUGS.15 While, as noted above, Bayesian methods are most suited to flexibly model the uncertainty, similar
differences in the way uncertainty is taken into account and the impact of it on predictions can be also
demonstrated using frequentist methods. We illustrate this by the use of meta-regression and bivariate meta-
analysis in Stata.16

In the remainder of this paper, illustrative examples in RRMS and gastric cancer are introduced in Section 2,
followed by the details of each model described in the Bayesian framework in Section 3, with additional details of
the use of frequentist methods in Section 3.7 and methods for surrogate endpoint validation and model
comparison in Section 3.8. Results are then presented and differences between the models discussed in Section
4 which are complemented by a simulation study in Section 5 aiming to test the performance of each method and
its sensitivity to the distributional assumptions. The paper is concluded by a discussion section. WinBUGS coding
for each of the models, R code for the simulation and Stata code for the frequentist approach are included in
Appendix 1.
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2 Illustrative examples

2.1 Multiple sclerosis

Sormani et al.8 showed that in studies investigating treatment effect in patients with multiple sclerosis, the
treatment effect on relapse rate can potentially be used as a surrogate endpoint to the treatment effect on the
disability progression rate. We use data from this study as an illustrative example to investigate the effect of the
choice of modelling technique and corresponding level of uncertainty which is allowed to be included in each of the
models. We refer to these data as the ‘Sormani data’ in the remainder of this paper.

The annualised relapse rate ratio, the ratio between the relapse rate in the experimental and the control arms,
was used as the summary estimate of the treatment effect on relapses (the surrogate endpoint measuring the
treatment effect). The disability progression rate ratio, the ratio between the proportion of patients with a
disability progression in the experimental and the control arms at year 2 (or at year 3 for trials of longer
follow-up time which do not report the outcome at year 2), was used as the summary estimate of the treatment
effect on disability progression, which was the target endpoint. Details of the specific treatment regimens are
included in Table 1. Figure 1 shows data on both outcomes graphically, revealing similar heterogeneity patterns
between the studies for both outcomes, implying a strong correlation between the effects on these outcomes. The
studies are grouped as placebo-controlled and active-treatment-controlled.

2.2 Gastric cancer

Oba et al.10 investigated disease-free survival (DFS) as a surrogate endpoint for the overall survival (OS) in
patients with curative gastric cancer. The study included randomised clinical trials that compared adjuvant

Table 1. Studies in the ‘Sormani data’ reporting the annualised relapse rate ratio and the disability progression rate ratio.

Study Contrast Number Follow-up

Annualised

relapse

Disability

progression

of patients (months) rate ratio rate ratio

Paty (1) 1993 IFNbeta-1b 1.6 MIU vs PBO 248 24 0.92 (0.82, 1.03) 1.00 (0.67, 1.49)

Paty (2) 1993 IFNbeta-1b 8 MIU vs PBO 247 24 0.66 (0.58, 0.75) 0.71 (0.46, 1.12)

Miligan 1994 Methylprednisolone vs PBO 26 24 0.81 (0.50, 1.30) 1.14 (0.26, 5.03)

Johnson 1995 GA vs PBO 251 24 0.71 (0.61, 0.82) 0.88 (0.57, 1.35)

Jacobs 1996 IFNbeta-1a 6 MIU vs PBO 172 24 0.68 (0.57, 0.81) 0.63 (0.38, 1.04)

Fazekas 1997 IVIg vs PBO 150 24 0.41 (0.34, 0.49) 0.70 (0.36, 1.35)

Millefiorini 1997 Mitoxantrone vs PBO 51 24 0.34 (0.24, 0.47) 0.19 (0.05, 0.78)

Achiron 1998 IVIg vs PBO 40 24 0.37 (0.27, 0.52) 0.82 (0.19, 3.50)

Li (1) 1998 IFNbeta1a 22 lg vs PBO 376 24 0.71 (0.64, 0.78) 0.81 (0.61, 1.08)

Li (2) 1998 IFNbeta1a 44 lg vs PBO 371 24 0.68 (0.62, 0.75) 0.73 (0.54, 0.99)

Baumhackl 2005 Hydrolytic enzymes vs PBO 306 24 0.85 (0.74, 0.97) 1.08 (0.74, 1.57)

Polman 2006 NAT vs PBO 942 24 0.32 (0.29, 0.36) 0.59 (0.46, 0.75)

Comi (1) 2009 Cladribine 3.5 mg/kg vs PBO 870 24 0.42 (0.36, 0.49) 0.69 (0.52, 0.93)

Comi (2) 2009 Cladribine 5.25 mg/kg vs PBO 893 24 0.45 (0.39, 0.52) 0.73 (0.55, 0.97)

Sorensen 2009 IFNbeta-1a and oral methylprednisolone 130 24 0.37 (0.27, 0.50) 0.64 (0.32, 1.28)

vs IFNbeta-1a and PBO

Clanet 2002 IFNbeta-1a 60 lg vs 30lg 802 36 1.05 (0.99, 1.12) 1.00 (0.84, 1.20)

Durelli 2002 IFNbeta1b vs IFNbeta1a 188 24 0.71 (0.59, 0.86) 0.43 (0.24, 0.78)

Rudick 2006 NATþ IFNbeta-1a vs IFNbeta-1a 1171 24 0.45 (0.41, 0.49) 0.79 (0.65, 0.96)

Coles (1) 2008 ALE 12 mg vs IFNbeta-1a 223 36 0.31 (0.24, 0.40) 0.35 (0.16, 0.73)

Coles (2) 2008 ALE 24 mg vs IFNbeta-1a 221 36 0.22 (0.16, 0.30) 0.38 (0.19, 0.76)

Mikol 2008 IFNbeta vs GA 764 24 1.03 (0.90, 1.17) 1.34 (0.88, 2.06)

Havrdova (1) 2009 IFNbeta-1a 30 lg plus AZA 50 mg 118 24 0.87 (0.73, 1.04) 1.23 (0.58, 2.62)

vs IFNbeta-1a 30 lg

Havrdova (2) 2009 IFNbeta-1a 30 lg IM plus AZA 50 mg plus 123 24 0.70 (0.58, 0.85) 1.04 (0.48, 2.27)

prednisone 10 mg vs IFNbeta-1a 30 lg

O’Connor (1) 2009 IFNbeta-1b 250 lg vs GA 1345 24 1.06 (0.97, 1.16) 1.05 (0.84, 1.31)

O’Connor (2) 2009 IFNbeta-1b 500 lg vs GA 1347 24 0.97 (0.88, 1.06) 1.10 (0.88, 1.37)

AZA: azathioprine; GA: glatiramer acetate; IFNb: interferon-b; IVIg: IV immunoglobulin; PBO: placebo.
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chemotherapy with surgery alone. DFS was defined as the time to cancer recurrence, second cancer or death from
any cause. DFS and OS hazard ratios were estimated with five years of follow-up.

We use data from Oba et al.10 as a second illustrative example to investigate the effect of the choice of a
modelling technique and corresponding level of uncertainty on predictions. Data are presented in detail in Table 2
and graphically in Figure 2. We refer to these data as the ‘Oba data’ in the remainder of this paper. As in Oba et al,
the studies are grouped as historical and validation studies. They are used in two sets of validation analyses, the
cross-validation by taking out the effect on OS from one study at a time (this effect is predicted from DFS and the
model based on the data on both outcomes from the remaining historical trials) and external validation where
predictions are made for each of the validation trials using a model developed based on data from all the historical
trials. As can be seen in Figure 2, the effects on DFS and OS have similar heterogeneity patterns between the
studies suggesting a strong association between the effects on those outcomes.

3 Methods for evaluating surrogate endpoints

In this section, the technical details of the meta-analytic models are listed with emphasis on the use of such
methods to predict a treatment effect measured by a target outcome of interest from the effect measured by a
surrogate endpoint. The prediction is based on the association between the treatment effects on the two outcomes
evaluated by a model developed based on the data in a ‘training set’, usually data from historical studies available
for both outcomes from which a model ‘learns’ the relationship between them.

The methods in a Bayesian framework are described in Sections 3.1 to 3.4. To investigate the impact of the
choice of parameterisation on the uncertainty around the predicted effects, we start with the simplest model

Figure 1. Summary of the ‘Sormani data’.
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allowing for a minimum variability, the FEMR. We then increase the allowed variability in the model by the use of
random effects meta-regression (REMR) and further by introducing bivariate meta-analytic models which allow
for the measurement error of the treatment effect on the surrogate endpoint. Sensitivity analyses to prior
distributions and the distributional assumptions are discussed in Sections 3.5 and 3.6, respectively. Some
frequentist approaches are then discussed in Section 3.7. Strategies for the validation of surrogate endpoints
and model comparison are described in Section 3.8.

3.1 Meta-regression

3.1.1 Fixed-effects meta-regression

Linear or weighted regression models have been used to evaluate surrogate endpoints with regard to predictions,7,8

by including the treatment effect on a surrogate endpoint in the meta-analysis as a covariate. In the meta-analytic
context, this approach can be described by the FEMR which in the Bayesian framework for normally distributed
outcomes has the form

Y2i � Nð�2i, �
2
2iÞ

�2i ¼ �0 þ �1Y1i
ð1Þ

with prior distributions �0, �1 � Nð0:0, 1000000Þ. Y1i and Y2i are the estimates of the treatment effects on the
surrogate and the final outcomes, respectively, with standard deviation �2i corresponding to the effect on the final
outcome in each study i. The normally distributed effects Y2i estimate underlying true effects l2i. The intercept k0
and slope k1 define the relationship between the effects on the two outcomes.

Having estimated the parameters k0 and k1, this model can be used to predict the treatment effect on the target
outcome based on the observed treatment effect on the surrogate endpoint. If for a new study j, the observed
treatment effect on the surrogate outcome is Y1j then, based on model (1), prediction is made using the regression
equation

�̂2j ¼ �0 þ �1Y1j: ð2Þ

Table 2. Studies in the ‘Oba data’ reporting the hazard ratio measured by the disease-free survival (DFS) and overall survival (OS).

Study
Number of patients

Follow-up DFS OS

Chemotherapy Surgery (years) HR (95% CI) HR (95% CI)

Historical trials

FFCD-8801 133 136 8.1 0.83 (0.61, 1.12) 0.84 (0.62, 1.14)

NSAS-GC 95 95 6.0 0.49 (0.29, 0.83) 0.51 (0.29, 0.90)

JCOG-9206-1 128 124 5.9 0.62 (0.33, 1.17) 0.60 (0.31, 1.17)

JCOG-8801 272 264 6.7 0.79 (0.52, 1.20) 0.82 (0.53, 1.26)

SWOG-7804 107 112 16.6 0.88 (0.66, 1.17) 0.93 (0.70, 1.24)

EORCT-40813 152 154 6.5 0.76 (0.57, 1.01) 0.85 (0.64, 1.13)

Tsavaris 44 44 4.9 0.55 (0.34, 0.89) 0.55 (0.33, 0.90)

ICCG-1/81 133 148 13 0.87 (0.65, 1.16) 0.85 (0.64, 1.13)

ITMO 135 136 6.2 0.90 (0.65, 1.24) 0.98 (0.70, 1.37)

GITSG-8174 90 88 12.1 0.73 (0.52, 1.02) 0.74 (0.53, 1.04)

NCTTG-794151 62 64 15.6 0.95 (0.64, 1.41) 1.02 (0.69, 1.51)

ECCOG-EST3275 91 89 16.5 0.89 (0.64, 1.23) 0.94 (0.68, 1.30)

EORTC-40905 103 103 7.0 0.88 (0.60, 1.29) 0.93 (0.64, 1.36)

ICCG 89 97 6.9 1.05 (0.74, 1.48) 1.05 (0.74, 1.49)

Validation trials

A-Cirera 520 515 2.8 0.55 (0.36, 0.84) 0.60 (0.39, 0.93)

B-CLASSIC 76 72 3.1 0.56 (0.44, 0.72) 0.72 (0.52, 1.00)

E-GOIM-9602 112 113 5.0 0.88 (0.66, 1.17) 0.91 (0.69, 1.21)

F-GOIRC 130 128 6.1 0.92 (0.65, 1.30) 0.90 (0.64, 1.26)

Details of chemotherapy regimens can be found in the supplementary material of Oba et al.10
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In this model, uncertainty around the predicted effect on the target outcome is related to the uncertainty around
the intercept k0, whereas the treatment effect on the surrogate endpoint is treated as a fixed covariate.

3.1.2 Random effects meta-regression

A REMR model can be used to evaluate surrogate endpoints.17 The model allows for between-study variability by
assuming that the treatment effects Y2i estimate different underlying true effects l2i (regardless of the value of the
covariate) in each study i. In a Bayesian framework, meta-regression can be formulated as in Sutton and Abrams18 in
the following way using the random effects approach

Y2i � Nð�2i, �
2
2iÞ

�2i ¼ �0i þ �1Y1i

�0i � Nð�, 2Þ ð3Þ

where Y1i are the summary measures of the treatment effect on the candidate surrogate outcome and Y2i represent
the summary measures of the treatment effect on the target outcome with corresponding standard deviations �2i
from each study i. The normally distributed Y2i are estimates of the underlying true effects l2i. The k0i are the true
effects at value zero of the treatment effect on the surrogate endpoint and they follow a common Normal distribution
with mean b and standard deviation  , representing the between-study heterogeneity. The regression coefficient k1
represents the relationship between the treatment effects on the target and the surrogate outcomes. In this Bayesian
framework, all parameters are given prior distributions: � � Nð0:0, 1000Þ, �1 � Nð0:0, 1000000Þ and
 � Nð0, 100ÞIð0, Þ (a half-normal distribution truncated at zero).

Figure 2. Summary of the ‘Oba data’.
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The prediction can be made by

�̂2j ¼ �0j þ �1Y1j, ð4Þ

where k0j is obtained from the model, by the use of the Markov chain Monte Carlo (MCMC) simulation, with data
that include the new study, but the target outcome is coded as missing (NA in WinBUGS).

An alternative approach is also possible by centring the values of the effect on the surrogate, Y1i. In this case,
the interpretation would change and the intercept would represent the true treatment effect on the final outcome at
the average value of the effect on the surrogate endpoint. This approach could have an advantage when external
information is available to construct an informative prior distribution to be placed on the intercept. Also, the
centring of the effect on the surrogate may help to reduce the autocorrelation when conducting the MCMC
simulation. However, for the purpose of predicting the effect for a new study, which is central to the
evaluation of surrogate endpoints, the effect would have to be ‘un-centred’.

WinBUGS code corresponding to this model is included in Appendix 1.1.

3.2 Meta-analysis by Daniels and Hughes

In a model proposed by Daniels and Hughes,6 the estimates of the treatment effects measured by the surrogate
endpoint Y1i and the target outcome Y2i are assumed to come from a bivariate normal distribution and they
estimate the underlying true effects on the surrogate and target outcomes l1i and l2i, respectively, from each study
i with corresponding within-study standard deviations �1i and �2i and within-study correlation �wi

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,

�21i �1i�2i�wi

�1i�2i�wi �22i

 ! !

�2ij�1i � Nð�0 þ �1�1i, 
2Þ, ð5Þ

where the underlying true effects l1i measured by the surrogate endpoint are assumed to be fixed effects and to
have a linear relationship with the true effect on the target outcome l2i. Prior distributions are given to all
parameters: �1i � Nð0, 1000Þ, �0 � Nð0:0, 1000Þ, �1 � Nð0:0, 1000Þ,  � Nð0, 100ÞIð0, Þ.

In this model, estimates of the treatment effects on both the target as well as the surrogate endpoints are treated
as response variables and therefore the uncertainty around the treatment effect on the surrogate outcome is taken
into account in this model. If for a study j the observed treatment effect on the surrogate outcome is Y1j, then the
treatment effect on the target outcome Y2j can be predicted from the model by assuming that this outcome is
missing at random. By assuming that the two effects are correlated and follow a common bivariate distribution,
the missing effect (on the target outcome in this case) is estimated automatically by the MCMC simulation, from
the model which takes into account the correlation between the effects on the two outcomes. WinBUGS code for
this model is listed in Appendix 1.2.

3.3 Bivariate random effects meta-analysis (BRMA)

Bivariate meta-analytic methods have been proposed for joint modelling of correlated outcomes12,19 and included
approaches in a Bayesian framework.20,21 BRMA is discussed here in the form described by van Houwelingen
et al.12 and Riley et al.,13 where estimates of treatment effect on both outcomes Y1i and Y2i are assumed to be
normally distributed

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,�i

� �
, �i ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð6Þ

�1i

�2i

� �
�MVN

�1
�2

� �
,T

� �
, T ¼

�21 �1�2�b
�1�2�b �22

� �
: ð7Þ

In this model, the treatment effect on the surrogate endpoint Y1i and the treatment effect on the target outcome

Y2i are assumed to estimate the correlated true effects l1i and l2i with corresponding within-study variances �21i and

�22i of the estimates and the within-study correlation �wi between them. These true study-level effects follow a

bivariate normal distribution with means �1,�2ð Þ, between-study variances �21 and �22 and a between-study
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correlation �b in this hierarchical framework. Equation (6) represents the within-study model and equation (7) is
the between-study model. To implement the model in the Bayesian framework, prior distributions are placed

on the between-study covariance matrix using the inverse Wishart distribution T�1 �Wishart
��

1 0
0 1

�
, 3
�
where

the degrees of freedom parameter was set to 3 (the dimension of the matrix plus 1) to induce a uniform prior
distribution for the between-study correlation �b.

22 Non-informative prior distributions are placed on the within-
study correlations using uniform distributions �wi � Uð�1, 1Þ and on the mean effects �1,2 � Nð0, 10000Þ.

As in the model (5) by Daniels and Hughes, the treatment effect on the target outcome in a study j can be
predicted from the treatment effect on the surrogate endpoint observed by this study, by assuming that the effect
on the target outcome is missing at random and assuming exchangeability of the treatment effects. In contrast to
model (5), the BRMA model allows an estimation of the pooled effects measured by both outcomes (rather than
only the pooled effect of the target endpoint in equation (5) which is only possible when centring the effect on the
surrogate outcome on the mean). Although the ability to estimate the pooled effect does not impact on the
validation process, it can be advantageous when modelling treatment effects on surrogate and target outcomes
jointly to combine all available evidence in the assessment of the effectiveness. However, to make it possible,
stronger distributional assumptions about the true effects are made in this model in comparison with model (5).
WinBUGS code for this model is listed in Appendix 1.3.

3.4 BRMA in product normal formulation (BRMA PNF)

The BRMA models (6) and (7) can be parameterised in an alternative form where instead of placing a prior
distribution on the between-study covariance matrix as a whole, the between-study model (7) is represented in the
PNF14,23 (a product of univariate conditional normal distributions), whereas the within-study model remains the
same

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,�i

� �
, �i ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð8Þ

�1i � Nð�1, 
2
1Þ

�2ij�1i � Nð�2i, 
2
2Þ

�2i ¼ �0 þ �1�1i:

8<
: ð9Þ

As for the BRMA model, Y1i and Y2i are the estimates of the treatment effects measured by the surrogate and target
endpoints, respectively, and the l1i and l2i are the true effects in the population which are correlated and modelled here
through a linear relationship. Prior distributions are placed on the following parameters:
�wi � Uð�1, 1Þ, �0 � Nð0:0, 1000Þ, �1 � Nð0:0, 1000Þ,  1 � Nð0, 100ÞIð0, Þ,  2 � Nð0, 100ÞIð0, Þ, �b � Uð�1, 1Þ.

The between-study variances are �21 ¼  
2
1 and �22 ¼  

2
2 þ �

2
21 

2
1 and hence the implied prior distribution is placed

on �1 ¼
 2

 1

�bffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�bÞ

2
p .14

The PNF provides better control over the prior distributions placed on specific parameters of the model
(compared to BRMA with Wishart prior distribution), helping to ensure that they are non-informative when
this is required or allowing for informative prior distributions, based on external evidence, to be placed directly on
the desirable parameters of the model.14 WinBUGS code corresponding to this model is included in Appendix 1.4.

3.5 Sensitivity analysis: Prior distributions

When investigating the impact of parameterisation and the related uncertainty on the precision of the predicted
estimates, we carried out sensitivity analysis using a range of prior distributions for the heterogeneity parameters
( in meta-regression and model by Daniels and Hughes and  1,2 in BRMA (PNF)). The following distributions
were included:

. Prior I:  � Nð0, 100ÞIð0, Þ

. Prior II:  � Nð0, 10ÞIð0, Þ

. Prior III: 1
 2 � Gammað0:001, 0:001Þ

. Prior IV:  � Uniformð0, 2Þ.
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Other examples of non-informative prior distributions can be found in the simulation study by Lambert et al.24

Sensitivity analysis was also carried out to investigate the impact of the choice of the parameters of the inverse
Wishart prior distribution on the implied prior distributions for the heterogeneity parameters (while maintaining
the implied uniform prior distribution on the between-study correlation). Wishart prior distributions with the
following parameters were tested:

. Wishart A: T�1 �Wishart
��

1 0
0 1

�
, 3
�

. Wishart B: T�1 �Wishart
��

0:1 0
0 0:1

�
, 3
�
.

Figure 3 shows the prior distributions for the standard deviations overlayed (distributions I, II and IV used
directly and distributions obtained from priors III, Wishart A and B by transformation on the standard deviation
scale). Prior distributions I–III have large variances and hence are non-informative. The uniform prior distribution
IV is locally non-informative on the scale of the modelled data. The implied prior distributions on the standard
deviations obtained from the Wishart distributions placed on the between-study precision matrix are both quite
informative (as mentioned above, the corresponding implied distribution on the between-study correlation is
uniform on the range of values between –1 and 1).

3.6 Sensitivity analysis: Relaxing the normality assumption

The methods considered here are models with random effects to reflect the assumption that the modelled treatment
effects are different between the studies. The differences in the effects may be due to the varying populations,
different treatments under investigation in those studies or perhaps heterogeneity in the definitions of the
outcomes.25 Typically, the normal distribution of the between-study random effects is assumed to reflect the
similarity of the effects. The assumption that the true treatment effects on both outcomes (such as log relative
risk and log rate ratio for the example in RRMS or log hazard ratio on OS and DFS in gastric cancer) are

Figure 3. Prior distributions for the standard deviations used in the sensitivity analysis.
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normally distributed may, however, not always be reasonable. When dealing with departures from normality of
the modelled data, this assumption can lead to limitations of modelling and restricted inferences.26 For example, as
discussed by Marshall and Spiegelhalter, inadequate use of normality assumption about the random effects may
lead to ‘overshrinkage’ of the true effects and hence to misleading inferences.27

One way of relaxing this assumption is to use a t-distribution as recommended, for example, by Lee and
Thompson26 or Smith et al.28 In contrast to the normal distribution, the t-distribution gives more weight in the
tails which is more likely to be better at modelling extreme effects such as outlying observations.27 We apply the t-
distribution to the random effect in the BRMA model by adapting its PNF form. In the product of t-distributions
formulation (PTDF), the between-study model can be formulated as

�1i � tð�1, 	1, df Þ

�2ij�1i � tð�2i, 	2, df Þ

�2i ¼ �0 þ �1�1i:

8>><
>>: ð10Þ

with prior distributions placed on the parameters, �0, �1 � Nð0:0, 1000Þ and �1 � Nð0:0, 1000Þ. Placing non-
informative prior distributions on the between-study standard deviations corresponding to the true effects l1i

and l2i, �1 � Nð0, 100ÞIð0, Þ and �2 � Nð0, 100ÞIð0, Þ gives implied prior distributions on the corresponding
parameters, 	1 ¼ ð�

2�
1 ðdf� 2ÞÞ=df and 	2 ¼ ð�

2�
2 ðdf� 2ÞÞ=df. WinBUGS code corresponding to this model is

included in Appendix 1.5.

3.7 Frequentist approaches

The above models for evaluation of surrogate endpoints differ in the way they take into account the uncertainty
around the model parameters. The Bayesian framework gives a flexible environment for modelling of uncertainty.
Some of the models, however, can be also implemented in a frequentist approach using software such as, for
example, Stata. To compare the different degrees of uncertainty allowed by different frequentist models, two
models are compared here: the meta-regression and the bivariate meta-analysis.

3.7.1 Meta-regression

Suppose Y1i is the estimate of the treatment effect on the candidate surrogate outcome and Y2i represents the
estimate of the treatment effect on the target outcome with corresponding within-study variance v2i in study i
(i ¼ 1, . . . , n). In the frequentist framework, meta-regression for the association between the effects on
the surrogate and the target endpoints can be written following the formulation by Sharp29 in the
following form

Y2 � NðY1j,VÞ ð11Þ

where Y2 ¼ ðY21, . . . ,Y2nÞ
T is the n� 1 vector of the treatment effect on the final outcome and Y1 is the n� 2

design matrix with ith row ð1,Y1iÞ, j ¼ ð�0, �1Þ
T is the vector of parameters and V is a diagonal n� n variance

matrix with ith diagonal element v2i þ �
2, where the s2 represents the between-study variability for the random

effects model. Maximum likelihood methods are used to estimate the parameters j and s2 and in Stata this can be
achieved by using the command metareg. The predictions are made using the linear predictor, and in Stata using
the post-estimation command predict.

3.7.2 Bivariate meta-analysis

As in the Bayesian framework, the random effects bivariate meta-analysis can be described in the hierarchical
framework

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,Ri

� �
, Ri ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð12Þ

�1i

�2i

� �
�MVN

�1
�2

� �
,T

� �
, T ¼

�21 �1�2�b
�1�2�b �22

� �
: ð13Þ
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with the treatment effect on the surrogate endpoint Y1i and the treatment effect on the target outcome Y2i in each
study i and corresponding within-study variances of the estimates �21i and �

2
2i and the within-study correlation �wi

between them. The correlated true effects l1i and l2i follow bivariate normal distribution with means �1,�2ð Þ,
between-study variances �21 and �22 and a between-study correlation �b. In Stata, the model can be implemented
using the command mvmeta.30 In the Bayesian framework, the predicted estimates for the final endpoint assumed
missing at random are obtained from a MCMC simulation. Here, we obtain the estimate of the true effect on the
final outcome for study j as follows

EðljjYj,b,TÞ ¼ bþ Rj þ T
� ��1

T Yj � b
� �

ð14Þ

varðljjYj, b,TÞ ¼ Rj þ T
� ��1

T Rj, ð15Þ

where Yj, lj and b are two-dimensional vectors and Rj and T are 2� 2 matrices.
Stata code for the model predictions using the meta-regression and the BRMA is included in Appendix 1.6.

3.8 Cross-validation procedure and model comparison

Evaluation of surrogate endpoints on the study level, assessing whether the treatment effect on the final outcome
can be predicted from the treatment effect on the surrogate endpoint, can be carried out by the take-one-out
approach in the cross-validation procedure, as described by Daniels and Hughes.6 This procedure aims to establish
goodness of fit of the meta-analytic prediction model. In each study the effect on the final outcome is assumed
unknown (in one study at a time) and it is then predicted from the effect on the surrogate endpoint, conditional on
the data on the treatment effects on both outcomes from the remaining studies and the parameters of the model.

Ultimately we want to draw inferences about predicting the true effect on the final outcome l2j in a future study
j. However, in a real data scenario (as opposed to simulated data) we do not know what the true effect is. Hence for
the purpose of the cross-validation, we predict the ‘observed estimate’ Ŷ2j. For this purpose, we assume �2j known
and hence effectively only the true effect l2j is predicted. We then check if the observed value of Y2j falls within the
predicted interval of Ŷ2j with the standard deviation equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22j þ varð�̂2jjY1j, �1j,Y1ð�j Þ,Y2ð�j ÞÞ

q
, where Y1ð�j Þ

and Y2ð�j Þ denote the data from the remaining studies without the validation study j.
To investigate the impact of the uncertainty on predictions, we compare the models with respect to the predicted

intervals. To compare how the choice of parameterisation affects the uncertainty of predictions, we compare the

widths of the intervals of the predicted Ŷ2j and predicted true effects �̂2j across the models. To do so, we summarise

the ratios wŶ2j
=wY2j

of the widths of the intervals for Ŷ2j to the widths of the intervals for Y2j to investigate how this

varies across the models and the ratios w�̂CM
2j
=w�̂FEMR

2j
of the widths of the predicted true effects �̂2j from each current

model (CM) to the width of the predicted interval for �̂2j obtained from the FEMR.

4 Results

4.1 Results from Bayesian models: multiple sclerosis

To compare the models, in the first instance the estimates of the pooled effects on both outcomes, the relapse rate
ratio and the disability progression rate ratio, were obtained from all the models. Due to the large heterogeneity of
the control arm between the studies (and the fact that an intervention which is a control arm in one study may be
an experimental arm in the other) only placebo-controlled studies were included in this particular estimation. The
inclusion of all studies would not give clinically interpretable results and in order to combine evidence from all the
trials in a sensible way, a network meta-analysis would need to be conducted which is beyond the scope of this
paper. Note that the whole data set (including both placebo- and active-controlled trials) is used for the remaining
analyses that focus on the predictions for the purpose of evaluation of surrogate endpoints. The results shown in
Table 3 are for the comparison of models only. Both forms of BRMA allowed for the estimation of the pooled
effect of both outcomes, in contrast to meta-regression and model by Daniels and Hughes which allowed
estimation of the pooled effect on the disability progression only. The pooled effect measured by the surrogate
endpoint, relapse rate ratio, was the same using both forms of BRMA. The point estimate of the pooled effect
measured by the target endpoint, the disability progression rate ratio, was the same for all models but obtained
with different precisions from different models. The largest uncertainty around the estimate was obtained from the
BRMA model with the Wishart A prior distribution placed on the between-study precision matrix. Effectiveness
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estimates of the highest precision were obtained from the meta-regression and the model by Daniels and Hughes.
Relatively high precision of the pooled effect was also obtained from BRMA PNF.

All four models were then applied to make predictions in a cross-validation procedure. The treatment effect on
the final outcome (disease progression rate ratio) in the 25 studies was assumed unknown (in one study at a time
which in that case became a validation study) and then predicted from the surrogate endpoint (relapse rate ratio)
by each model.

Table 4 lists all the predictions made by all of the models for all of the studies (using prior distribution I for the
heterogeneity parameter and Wishart A for the between-study precision matrix). For most studies, all models gave
predicted Ŷ2j with intervals containing the corresponding observed estimates, except for one study by Durelli for
which only the interval obtained from BRMA with Wishart prior B contained the observed estimate of the
treatment effect. Most intervals obtained from BRMA with Wishart prior A were largely inflated apart from
the interval in study by Miligan which was the smallest study with largest intervals for the treatment effects on
both outcomes.

The discrepancies between the observed and predicted values were obtained for all studies (by taking the
absolute difference between the observed estimate of the treatment effect and the predicted effect) and
summarised in Table 5, which also summarises the degree of uncertainty around the predicted estimate
compared to the uncertainty around the observed value (by calculating the ratio wŶ2j

=wY2j
of the length of the

95% predicted interval to the length of the 95% confidence interval of the observed estimate, shown in the second
to last column of the table). Note that the intervals of the predicted Ŷ2j were inflated compared to those
corresponding to the observed effects Y2j due to the additional between-study variability. To compare
uncertainty of predicted true effects across models, ratio w�̂CM

2j
=w�̂FEMR

2j
of the length of the 95% credible interval

around �̂2j obtained from the CM to the length of that interval from the FEMR was calculated and presented in
the last column of Table 5.

The accuracy of predictions for the point estimate was similar across models, but the uncertainty around the
predicted effects varied depending on the parameterisation. Using the meta-regression equation (2) the effect on
the target outcome was predicted with much increased precision compared to other models. For example, when
using prior distribution I the interval for the predicted true effect �̂2j from the REMR was almost twice as wide (on
log relative risk scale) compared to the interval obtained from the FEMR. The results obtained from the models by
Daniels and Hughes and BRMA PNF were much more conservative with moderately reduced precision (with
intervals, respectively, 2.44 and 2.95 times wider than those obtained from the FEMR). When applying the BRMA
model with a Wishart prior distribution, the results were sensitive to the parameters of the prior distribution. In
the case of Wishart A distribution with identity matrix, the predicted intervals were largely inflated (most likely
due to implied prior distributions on the between-study variances not being suitably non-informative). Using the
Wishart B prior distribution led to predictions comparable to those obtained from BRMA PNF with slightly more
inflated intervals. The use of the REMR approach, as in equation (4), resulted in increased uncertainty around the
predicted effect on the disability progression (compared to predictions obtained when using the FEMR approach)
of similar magnitude to the results obtained from models by Daniels and Hughes and BRMA PNF. This
uncertainty in the predictions obtained from REMR can be related to the number of studies in the set or the
level of the between-study heterogeneity and hence precision can be gained when using a larger set of studies. The
same scenario applies to some extent to other models as well. This is mostly the case for the model by Daniels and

Table 3. Summary results for placebo-controlled studies for the treatment effects on the risk of disability progression and relapse

rate ratio.

Relapse incidence rate ratio Disability relative risk

Model Mean 95% CrI �1
a (sd) Mean 95% CrI  2 (sd) s2 (sd)

REMR 0.75b [0.67; 0.84] 0.07 (0.06)

D&Hc 0.75b [0.66; 0.84] 0.07 (0.06)

BRMA 0.57 [0.44; 0.72] 0.44 (0.09) 0.75 [0.58; 0.95] 0.38 (0.09)

BRMA PNF 0.57 [0.46; 0.70] 0.36 (0.09) 0.75 [0.65; 0.87] 0.10 (0.06) 0.15 (0.08)

a 1 ¼ �1 in BRMA PNF.
bObtained by centring the effects on surrogate endpoint on the mean.
cD&H refers to the model by Daniels & Hughes.
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Hughes which has a form similar to the REMR, but in addition the uncertainty in this model is related to the
uncertainty around the effect on the surrogate endpoint, while this is not the case when using meta-regression
which includes the effect on surrogate endpoint as a fixed covariate. Similarly, BRMA PNF gives predictions with
uncertainty related to both the size and heterogeneity of the data set (as well as the uncertainty around the effect on
the surrogate outcome); however, perhaps less so because of strong distributional assumptions about the between-
study heterogeneity which leads to a greater effect of ‘borrowing of strength’ across the studies and the outcomes.
Sensitivity analysis in relation to the choice of the prior distribution placed on the standard deviations ( in the
meta-regression and model by Daniels and Huhges, and  1 and  2 in the BRMA PNF) was carried out as
described in Section 3.5. The sensitivity analyses using prior distributions I–IV gave very similar results as can
be seen in Table 5. As mentioned above, predictions were sensitive to the parameters of the Wishart prior
distribution.

Table 4. Predictions obtained from all models for all studies in the ‘Sormani data’.

Disability progression rate ratio, mean (95% CrI)

Paty (1) Paty (2) Miligan Johnson Jacobs/Simon

Observed 1.00 (0.67, 1.49) 0.71 (0.45, 1.12) 1.14 (0.26, 5.03) 0.88 (0.57, 1.35) 0.63 (0.38, 1.05)

Meta-regression (FE) 0.99 (0.66, 1.48) 0.84 (0.53, 1.33) 0.93 (0.21, 4.11) 0.87 (0.56, 1.35) 0.85 (0.51, 1.42)

Meta-regression (RE) 0.99 (0.64, 1.53) 0.84 (0.52, 1.35) 0.92 (0.21, 4.13) 0.87 (0.54, 1.38) 0.85 (0.50, 1.45)

Daniels & Hughes 0.99 (0.63, 1.54) 0.84 (0.51, 1.37) 0.93 (0.20, 4.31) 0.87 (0.54, 1.41) 0.85 (0.50, 1.46)

BRMA (Wishart) 1.00 (0.47, 2.13) 0.81 (0.39, 1.68) 0.83 (0.16, 4.29) 0.81 (0.36, 1.82) 0.82 (0.36, 1.87)

BRMA (PNF) 0.97 (0.60, 1.57) 0.83 (0.49, 1.40) 0.86 (0.19, 3.95) 0.86 (0.52, 1.42) 0.83 (0.47, 1.48)

Fazekas Millefiorini Achiron Li (1) Li (2)

Observed 0.70 (0.36, 1.35) 0.19 (0.05, 0.79) 0.82 (0.19, 3.50) 0.81 (0.61, 1.08) 0.73 (0.54, 0.99)

Meta-regression (FE) 0.66 (0.34, 1.29) 0.61 (0.14, 2.55) 0.63 (0.15, 2.69) 0.87 (0.65, 1.17) 0.86 (0.63, 1.17)

Meta-regression (RE) 0.65 (0.33, 1.30) 0.60 (0.14, 2.53) 0.62 (0.14, 2.67) 0.87 (0.62, 1.21) 0.85 (0.60, 1.20)

Daniels & Hughes 0.65 (0.32, 1.32) 0.60 (0.14, 2.60) 0.62 (0.14, 2.73) 0.87 (0.62, 1.22) 0.86 (0.60, 1.23)

BRMA (Wishart) 0.70 (0.28, 1.76) 0.65 (0.14, 3.16) 0.64 (0.13, 3.16) 0.85 (0.43, 1.68) 0.84 (0.39, 1.79)

BRMA (PNF) 0.67 (0.33, 1.38) 0.65 (0.15, 2.81) 0.67 (0.15, 2.97) 0.86 (0.58, 1.25) 0.84 (0.57, 1.24)

Clanet Durelli Baumhackl Polman Rudick

Observed 1.00 (0.83, 1.20) 0.43 (0.24, 0.78) 1.08 (0.74, 1.57) 0.59 (0.46, 0.75) 0.79 (0.65, 0.96)

Meta-regression (FE) 1.08 (0.87, 1.34) 0.88 (0.48, 1.59)* 0.94 (0.64, 1.39) 0.58 (0.43, 0.78) 0.66 (0.53, 0.83)

Meta-regression (RE) 1.08 (0.82, 1.43) 0.87 (0.48, 1.61)* 0.94 (0.62, 1.43) 0.57 (0.40, 0.80) 0.66 (0.51, 0.86)

Daniels & Hughes 1.10 (0.84, 1.44) 0.88 (0.47, 1.64)* 0.94 (0.60, 1.46) 0.57 (0.39, 0.82) 0.66 (0.51, 0.87)

BRMA (Wishart) 1.04 (0.60, 1.79) 0.84 (0.35, 2.01) 0.91 (0.42, 1.95) 0.56 (0.27, 1.15) 0.69 (0.30, 1.59)

BRMA (PNF) 1.07 (0.77, 1.48) 0.85 (0.45, 1.61)* 0.91 (0.58, 1.44) 0.57 (0.37, 0.88) 0.67 (0.48, 0.94)

Coles (1) Coles (2) Mikol Comi (1) Comi (2)

Observed 0.35 (0.16, 0.74) 0.38 (0.19, 0.77) 1.34 (0.88, 2.06) 0.69 (0.52, 0.93) 0.73 (0.55, 0.97)

Meta-regression (FE) 0.58 (0.27, 1.26) 0.49 (0.24, 1.01) 1.03 (0.66, 1.60) 0.66 (0.48, 0.91) 0.69 (0.51, 0.93)

Meta-regression (RE) 0.58 (0.26, 1.26) 0.48 (0.23, 1.01) 1.03 (0.65, 1.63) 0.65 (0.46, 0.93) 0.68 (0.48, 0.95)

Daniels & Hughes 0.58 (0.26, 1.30) 0.49 (0.23, 1.05) 1.04 (0.64, 1.69) 0.64(0.42, 0.99) 0.67 (0.45, 1.00)

BRMA (Wishart) 0.64 (0.23, 1.75) 0.60 (0.22, 1.58) 0.92 (0.43, 1.97) 0.59 (0.28, 1.22) 0.71 (0.30, 1.67)

BRMA (PNF) 0.63 (0.28, 1.41) 0.55 (0.25, 1.21) 0.97 (0.59, 1.59) 0.68 (0.45, 1.04) 0.69 (0.46, 1.05)

Havrdova (1) Havrdova (2) Sorensen O’Connor (1) O’Connor (2)

Observed 1.23 (0.58, 2.62) 1.04 (0.48, 2.27) 0.64 (0.32, 1.28) 1.05 (0.84, 1.31) 1.10 (0.88, 1.37)

Meta-regression (FE) 0.96 (0.45, 2.05) 0.86 (0.39, 1.88) 0.63 (0.31, 1.27) 1.06 (0.83, 1.37) 1.00 (0.78, 1.27)

Meta-regression (RE) 0.96 (0.44, 2.07) 0.86 (0.39, 1.89) 0.62 (0.30, 1.27) 1.07 (0.78, 1.45) 1.00 (0.75, 1.34)

Daniels & Hughes 0.96 (0.43, 2.10) 0.86 (0.38, 1.92) 0.62 (0.29, 1.31) 1.06 (0.79, 1.42) 0.99 (0.75, 1.32)

BRMA (Wishart) 0.93 (0.34, 2.51) 0.81 (0.30, 2.19) 0.63 (0.24, 1.65) 0.84 (0.43, 1.65) 0.95 (0.48, 1.87)

BRMA (PNF) 0.93 (0.42, 2.07) 0.84 (0.37, 1.92) 0.66 (0.31, 1.42) 1.01 (0.70, 1.47) 0.98 (0.68, 1.39)
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The results suggest that prediction of true effects obtained from the FEMR (and potentially also REMR) can be
overly optimistic and artificially precise, likely with intervals not containing the true value, due to underestimated
between-study variability and the measurement error corresponding to the treatment effect on the surrogate
endpoint (relapse rate ratio in this case). However, the success of the prediction may also be affected by the
strong assumptions about the distribution of the data made in the models, such as for example exchangeability
assumption in BRMA PNF. To investigate this further, a simulation study was conducted which is presented in
Section 5.

4.1.1 Discussion of the results for RRMS

Based on our results we cannot conclude that relapse rate is a good surrogate for disability progression as the
prediction did not give good results for all of the studies (it failed for the study by Durelli using all methods apart
from the BRMA with Wishart prior (A) which largely inflated the variance of predictions). The study by Durelli
differs from the rest of the set in that the effect on the disability progression is much larger than the effect on the
relapse rate, with the ratio of the relative effects on those outcomes (the effect on progression to the effect on
relapse) equal to 0.6. In most of the remaining studies, this ratio is usually higher than 1.0 (it ranges between 0.94
and 2.16) owing to the fact that disability progression is a longer term outcome and the effect measured on this
outcome at the same follow-up time as the effect on the relapse rate will be less due to relatively few events
occurring for this outcome on this time scale. The only other study with that ratio below one was the study by
Millefiorini, with the ratio of 0.56. The cross-validation did not fail for this study likely because it is a small study
with estimates of the treatment effects on both outcomes having large variances (included in the predicted intervals
for the cross-validation).

In the Millefiorini study, the patients were relatively young compared to the other studies with a relatively high
baseline disability score which can explain the extreme treatment effect on disability of the mitoxantrone relative to
the effect of the placebo. The baseline relapse rate was more representative of other studies and hence the effect on
this outcome was less extreme (albeit still substantial). There does not seem to be anything, however, in the
population of the study by Durelli that would explain the opposite relationship in the magnitude of the effects
on the two outcomes. The patients were slightly older compared to other studies and the average baseline disability
score was relatively low. This may suggest that the treatment effect on annualised relapse rate may not be a perfect
predictor of the effect on the disability progression rate. However, the predictions overwhelmingly worked for the
remaining studies which would encourage further research. Note that the effect on the final outcome in the data set
investigated here is measured at the same time point as the effect on the surrogate endpoint. Since the disability

Table 5. Results of the comparison of the models for predicting the treatment effect on disability progression from the treatment

effect on relapse rate.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂CM
2j
=w�̂FEMR

2j

Model Prior Median (range) Median (range) Median (range)

FEMR 0.16 (0.01, 1.16) 1.02 (1.00, 1.21)

REMR I 0.15 (0.01, 1.15) 1.07 (1.00, 1.54) 1.96 (1.36, 2.56)

REMR II 0.16 (0.01, 1.15) 1.07 (1.01, 1.52) 1.95 (1.34, 2.53)

REMR III 0.15 (0.01, 1.15) 1.07 (1.01, 1.51) 1.91 (1.36, 2.43)

REMR IV 0.16 (0.01, 1.15) 1.07 (1.01, 1.51) 1.93 (1.37, 2.58)

Daniels & Hughes I 0.16 (0.01, 1.15) 1.11 (1.02, 1.50) 2.44 (1.65, 5.14)

Daniels & Hughes II 0.17 (0.02, 1.16) 1.11 (1.02, 1.56) 2.28 (1.62, 5.78)

Daniels & Hughes III 0.16 (0.01, 1.15) 1.11 (1.02, 1.59) 2.43 (1.61, 5.15)

Daniels & Hughes IV 0.16 (0.01, 1.16) 1.11 (1.02, 1.45) 2.43 (1.51, 5.11)

BRMA PNF I 0.14 (0.02, 1.23) 1.16 (1.02, 1.83) 2.95 (1.95, 4.85)

BRMA PNF II 0.16 (0.01, 1.23) 1.18 (1.02, 1.73) 2.88 (2.02, 4.68)

BRMA PNF III 0.15 (0.00, 1.23) 1.11 (1.02, 1.52) 2.26 (1.45, 4.48)

BRMA PNF IV 0.15 (0.01, 1.24) 1.17 (1.02, 1.86) 2.90 (1.74, 4.92)

BRMA Wishart A 0.16 (0.00, 1.24) 1.78 (1.10, 4.27) 7.00 (3.48, 10.07)

BRMA Wishart B 0.13 (0.00, 1.23) 1.23 (1.03, 1.95) 3.28 (2.09, 5.60)

CM: current model in each row.
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progression is considered a long-term endpoint, when measured early it is measured with a relatively large
uncertainty due to low number of events. Further research is required to establish whether the relapse rate is a
good surrogate endpoint and in particular an early marker of disability progression. Such further research should
include disability progression reported later compared to relapse rate, but potentially also consider both outcomes
on alternative scales such as the hazard ratio for the time to disability progression. Sormani et al. already point
out the limitations of using the summary data alone to evaluate the surrogate outcomes. To properly establish the
surrogacy, outcomes on an individual level need to be investigated ideally based on data from all of the clinical
trials.

4.2 Results from Bayesian models: Gastric cancer

As in the case of RRMS, in the first instance pooled effects were obtained using the historical trials data set to
compare the models. The data were then used to perform the cross-validation of the surrogate endpoints. ‘Oba
data’ also included another group of studies, the validation trials, which were then used for external validation.
Pooled effects obtained from all of the models are shown in Table 6 for comparison. As noted in the previous
section on RRMS, only the two forms of BRMA allowed for the estimation of the pooled treatment effects on
both outcomes. The pooled effect measured by the surrogate endpoint, DFS, had higher uncertainty in BRMA
Wishart (A) model compared to BRMA PNF model. The point estimate of the pooled treatment effect measured
by the target endpoint, OS, was similar for all models. Moreover, all models gave estimates with similar precisions
except for the BRMA model with inverse Wishart (A) prior which resulted in estimates with a remarkably higher
uncertainty.

When applying the four models to cross-validation, the effect on OS in the historical studies was assumed
unknown (in one study at a time which in that case became a validation study) and then predicted from the effect
on DFS by each model. The predicted effects on OS with corresponding intervals obtained for each historical
study from each model are presented in Table 7 along with the predictions obtained for the validation studies. For
one study (B-CLASSIC), the predicted effects on OS obtained from both meta-regression models were statistically
significant while the observed effect was only borderline significant (predictions marked in bold font). This could
be interpreted to be due to the fact that the effect on DFS is likely to be measured with higher precision due to a
larger number of events observed on this outcome compared to OS. Therefore, when predicting the treatment
effect on OS from the effect on DFS, higher precision can be expected. However, it occurred only when using meta-
regression, not when using other methods, and hence was likely due to underestimated uncertainty by not
including measurement error corresponding to the treatment effect on DFS when making the predictions. As in
the RRMS example, most intervals obtained from BRMA with Wishart prior A were largely inflated.

Discrepancies between observed and predicted estimates of the treatment effect on OS, summarised by the
absolute difference and the ratio of the width of the predicted interval wŶ2j

to the width of the interval
corresponding to the observed estimate wY2j

, are presented in Table 8 (column three and second to last,
respectively). The absolute discrepancies were highest when using bivariate meta-analysis (both PNF and
Wishart), which may suggest that the exchangeability assumption about the true treatment effects was too
strong for these data. As expected, the predicted intervals of Ŷ2j are inflated (compared to the intervals of Y2j)
due to the between-study variability in addition to the sampling variance. Intervals from the model by Daniels and

Table 6. Summary results for treatment effect on overall survival and disease-free survival.

Disease-free survival Overall survival

Model Mean 95% CrI �1ðsd Þ
a Mean 95% CrI  2 (sd) s2 (sd)

REMR 0.81b [0.73; 0.90] 0.05 (0.04)

D&Hc 0.82b [0.74; 0.91] 0.05 (0.04)

BRMA 0.84 [0.67; 1.02] 0.35 (0.08) 0.80 [0.64; 0.98] 0.35 (0.07)

BRMA PNF 0.87 [0.79; 0.95] 0.05 (0.04) 0.84 [0.76; 0.91] 0.04 (0.04) 0.05 (0.05)

a 1 ¼ �1 in BRMA PNF.
bObtained by centring the effects on surrogate endpoint on the mean.
cD&H refers to the model by Daniels & Hughes.
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Hughes were wider compared to those obtained from the REMR, likely due to the measurement error around the
treatment effect on the surrogate endpoint (DFS in this case) taken into account in this model. This is also seen in
the ratios of the widths of the predicted intervals of the true effects obtained from each model w�̂CM

2j
to the width of

the predicted interval w�̂FEMR
2j

obtained from the FEMR (last column in Table 8) which suggests that predictive
intervals obtained from the FEMR may be underestimated due to the ignored uncertainty. This is further
investigated by a simulation study in Section 5. The results are in agreement with those obtained for the
RRMS example in Section 4.1. However, unlike in the example in RRMS, the predicted intervals obtained
from BRMA PNF are narrower compared to those obtained from the model by Daniels and Hughes. The
inclusion of measurement error around the treatment effect on the surrogate endpoint is balanced by the
‘borrowing of strength’ across studies by the exchangeability assumption which in this case is likely to cause
‘overshrinkage’, as discussed in Section 3.6. This is consistent with the absolute discrepancies being larger when
using the BRMA models compared to, for example, the model by Daniels and Hughes which does not make the
assumption of the exchangeability. As already noted in Section 4.1, this issue is explored by the simulation in
Section 5. The BRMA with inverse Wishart prior distribution gave much inflated intervals for Wishart A, but not
for Wishart B prior distribution which confirms the sensitivity of the results to the parameters of the Wishart
distribution as already observed in the RRMS example. Sensitivity analyses in relation to the choice of the prior

Table 7. Predictions obtained from all models for all studies in the ‘Oba data’.

Overall survival, mean (95% CrI)

Historical trials

FFCD-8801 NSAS-GC JCOG-9206-1 JCOG-8801 SWOG-7804

Observed 0.84 (0.62, 1.14) 0.51 (0.29, 0.90) 0.60 (0.31, 1.18) 0.82 (0.54, 1.27) 0.93 (0.70, 1.24)

Meta-regression 0.87 (0.63, 1.19) 0.50 (0.25, 1.01) 0.65 (0.32, 1.30) 0.82 (0.53, 1.27) 0.91 (0.67, 1.24)

Meta-regression 2 0.86 (0.61, 1.23) 0.50 (0.24, 1.03) 0.64 (0.31, 1.31) 0.82 (0.52, 1.30) 0.91 (0.65, 1.28)

Daniels & Hughes 0.86 (0.55, 1.33) 0.62 (0.30, 1.31) 0.73 (0.32, 1.67) 0.85 (0.48, 1.51) 0.90 (0.60, 1.33)

BRMA (Wishart) 0.90 (0.45, 1.80) 0.84 (0.32, 2.17) 0.82 (0.31, 2.16) 0.72 (0.30, 1.74) 0.84 (0.39, 1.82)

BRMA (PNF) 0.87 (0.61, 1.25) 0.87 (0.48, 1.57) 0.87 (0.43, 1.72) 0.88 (0.56, 1.38) 0.86 (0.60, 1.21)

EORTC-40813 Tsavaris ICCG-1/81 ITMO GITSG-8174

Observed 0.85 (0.64, 1.14) 0.55 (0.33, 0.89) 0.85 (0.64, 1.13) 0.98 (0.70, 1.37) 0.74 (0.53, 1.04)

Meta-regression 0.78 (0.57, 1.06) 0.58 (0.32, 1.03) 0.91 (0.67, 1.24) 0.93 (0.65, 1.33) 0.76 (0.53, 1.09)

Meta-regression 2 0.78 (0.56, 1.10) 0.57 (0.31, 1.05) 0.91 (0.65, 1.28) 0.93 (0.64, 1.36) 0.76 (0.52, 1.12)

Daniels & Hughes 0.79 (0.52, 1.19) 0.67 (0.35, 1.32) 0.91 (0.59, 1.40) 0.92 (0.59, 1.44) 0.78 (0.49, 1.25)

BRMA (Wishart) 0.81 (0.41, 1.63) 0.81 (0.33, 1.97) 0.88 (0.39, 1.97) 0.87 (0.35, 2.16) 0.83 (0.38, 1.80)

BRMA (PNF) 0.86 (0.62, 1.21) 0.87 (0.51, 1.46) 0.87 (0.62, 1.22) 0.87 (0.61, 1.24) 0.87 (0.60, 1.27)

NCTTG-794151 ECCOG-EST3275 EORTC-40905 ICCG

Observed 1.02 (0.69, 1.51) 0.94 (0.68, 1.30) 0.93 (0.64, 1.37) 1.05 (0.74, 1.49)

Meta-regression 0.99 (0.65, 1.49) 0.92 (0.66, 1.30) 0.91 (0.62, 1.36) 1.11 (0.74, 1.66)

Meta-regression 2 0.99 (0.64, 1.53) 0.93 (0.64, 1.34) 0.91 (0.60, 1.39) 1.11 (0.72, 1.71)

Daniels & Hughes 0.95 (0.55, 1.64) 0.91 (0.57, 1.44) 0.89 (0.53, 1.50) 0.99 (0.62, 1.59)

BRMA (Wishart) 0.87 (0.38, 2.02) 0.80 (0.38, 1.70) 0.92 (0.42, 2.01) 0.89 (0.42, 1.92)

BRMA (PNF) 0.86 (0.56, 1.32) 0.86 (0.59, 1.24) 0.87 (0.56, 1.33) 0.86 (0.59, 1.25)

Validation trials

A-cirera B-CLASSIC E-GOIM-9602 F-GOIRC

Observed 0.60 (0.39, 0.93) 0.72 (0.52, 1.00) 0.91 (0.69, 1.21) 0.90 (0.64, 1.26)

Meta-regression 0.57 (0.34, 0.94) 0.58 (0.38, 0.88) 0.92 (0.68, 1.23) 0.96 (0.67, 1.37)

Meta-regression 2 0.57 (0.34, 0.96) 0.58 (0.37, 0.89) 0.92 (0.66, 1.27) 0.96 (0.65, 1.40)

Daniels & Hughes 0.62 (0.33, 1.16) 0.62 (0.38, 1.02) 0.90 (0.61, 1.32) 0.93 (0.59, 1.48)

BRMA (Wishart) 0.79 (0.32, 1.94) 0.70 (0.32, 1.55) 0.84 (0.41 1.73) 0.80 (0.34, 1.84)

BRMA (PNF) 0.86 (0.54, 1.36) 0.80 (0.53, 1.20) 0.87 (0.63, 1.20) 0.87 (0.60, 1.26)
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distribution placed on the standard deviations ( in the meta-regression and model by Daniels and Huhges, and  1

and  2 in the BRMA PNF) were carried out as described in Section 3.5. The sensitivity analyses using prior
distributions I–IV gave very similar results as can be seen in Table 8.

4.2.1 Discussion of the results for gastric cancer

The cross-validation of the predictions of the treatment effect on the OS from the effect on the DFS confirmed the
results of Oba et al. recommending that DFS is a good surrogate endpoint for OS in patients with curable gastric
cancer. One of the limitations of this case study was the absence of any delay between the measurement of the
effect on the surrogate endpoint and the final outcome. Ideally, one would be interested in establishing whether
DFS measured early could be used to predict long-term OS in the new trials. Sensitivity analysis conducted by Oba
et al. was inconclusive whether or not the treatment effect on DFS measured as early as at two years of follow-up
can be a good predictor of the treatment effect on OS estimated with five years of follow-up.10

4.3 Results of sensitivity analysis with t-distribution

As discussed in Section 3.6, sensitivity analysis was carried out to investigate the effect of the distributional
assumptions by using the t-distribution on the random effect. Tables 9 and 10 show results of applying the
PTDF model to the ‘Sormani data’ for the example in RRMS. Sensitivity analyses were carried out by varying
the degrees of freedom parameter using values 4, 15 and 30. The results are presented alongside those obtained
from BRMA PNF with comparable prior distributions (the same prior distributions as for PTDF in Section 3.6).
The models with the t-distribution gave very similar results across all values for the degrees of freedom parameter
and also when compared to the results obtained from BRMA PNF. The only noticeable, but still very small,
difference was for the model with df¼ 4 where the uncertainty around the pooled effect on relapse rate was slightly
higher and the estimate of the heterogeneity parameter for the effect on this endpoint was also higher and with
higher uncertainty (results in Table 9). All models gave very similar discrepancies in terms of the absolute
difference and the ratios of the widths of the intervals comparing predicted and observed effects, wŶ2j

=wY2j
, and

the widths of the intervals of the predicted true effects from PTDF models compared to the predicted intervals
from BRMA PNF, w�̂PTDF

2j
=w�̂PNF

2j
as shown in Table 10. Consistently with the results in Table 9, the intervals

obtained from PTDF model with df¼ 4 were slightly wider compared to those obtained from BRMA PNF and
PTDF with df¼ 15 or 30.

As it can be seen in Tables 11 and 12, the results from the models applied to the ‘Oba data’ for the example in
gastric cancer were also very similar across the range of values of the degrees of freedom. Median interval ratio

Table 8. Results of the comparison of the models for predicting the treatment effect on OS from the treatment effect on DFS.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂CM
2j
=w�̂FEMR

2j

Model Prior Median (range) Median (range) Median (range)

FEMR 0.03 (0.00, 0.09) 1.06 (1.03, 1.23)

REMR I 0.03 (0.00, 0.08) 1.15 (1.07, 1.27) 1.59 (1.11, 1.76)

REMR II 0.03 (0.00, 0.09) 1.15 (1.07, 1.27) 1.60 (1.10, 1.78)

REMR III 0.03 (0.00, 0.09) 1.15 (1.07, 1.27) 1.61 (1.15, 1.77)

REMR IV 0.03 (0.00, 0.09) 1.15 (1.07, 1.26) 1.59 (1.08, 1.73)

Daniels & Hughes I 0.06 (0.02, 0.20) 1.38 (1.23, 1.52) 2.70 (1.15, 3.89)

Daniels & Hughes II 0.05 (0.03, 0.18) 1.39 (1.24, 1.48) 2.58 (1.38, 3.79)

Daniels & Hughes III 0.05 (0.01, 0.17) 1.36 (1.28, 1.43) 2.68 (1.15, 3.96)

Daniels & Hughes IV 0.06 (0.01, 0.21) 1.37 (1.19, 1.46) 2.64 (1.25, 3.13)

BRMA PNF I 0.11 (0.01, 0.53) 1.10 (1.03, 1.22) 1.46 (0.47, 1.95)

BRMA PNF II 0.11 (0.01, 0.53) 1.11 (1.03, 1.18) 1.57 (0.43, 1.83)

BRMA PNF III 0.11 (0.01, 0.52) 1.14 (1.05, 1.24) 1.75 (0.51, 2.07)

BRMA PNF IV 0.10 (0.01, 0.53) 1.10 (1.03, 1.18) 1.48 (0.47, 1.81)

BRMA Wishart A 0.12 (0.01, 0.49) 2.24 (1.44, 2.83) 5.97 (2.17, 8.44)

BRMA Wishart B 0.11 (0.01, 0.49) 1.37 (1.11, 1.55) 2.85 (0.89, 3.60)
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comparing the predicted to the observed effects was highest for df¼ 4, but still comparable with the results
corresponding to other parameters and those from BRMA PNF. Predicted intervals of the true effects from
PTDF model with df¼ 4 were wider than those obtained from BRMA PNF, with the median ratio of the
widths w�̂PTDF

2j
=w�̂PNF

2j
¼ 1:06, but less so when df¼ 15 or 30 as expected. All predictions for both data sets are

included in Tables A 2.1 and A 2.2 in Appendix 2. The results were similar to those obtained from the BRMA
PNF model leading to the same conclusions.

4.4 Results from the frequentist models

Table 13 shows the discrepancies between the predicted and observed values of the effect on the final outcome (in
terms of the median absolute difference between the estimates and the median ratio of the width of the 95%
predicted interval to the width of the 95% confidence interval corresponding to the observed effect) for the
‘Sormani data’ and the ‘Oba data’. The absolute discrepancies are comparable with those obtained from the
Bayesian models. The effect of the model choice on the uncertainty of predictions is represented by the ratios
w�̂BRMA

2j
=w�̂FEMR

2j
of the width of the predicted intervals for the true effects obtained from the BRMA model to the

interval obtained from the FEMR. The differences in the width of the predicted intervals between the models are
consistent with the conclusions from the Bayesian analysis; the predictive interval is inflated when using BRMA
(with the median ratio w�̂BRMA

2j
=w�̂FEMR

2j
¼ 1:69 in the RRMS example and w�̂BRMA

2j
=w�̂FEMR

2j
¼ 1:41 for gastric cancer

data) which allows the inclusion of the uncertainty on the effects on both outcomes alongside all other parameters.

Table 11. Summary results for treatment effects on overall survival and disease-free survival RRMS, using models with t-distributions

and BRMA PNF for comparison.

Disease-free survival Overall survival

Model Mean (SD) 95% CrI  1 Mean (SD) 95% CrI  2

BRMA PNF 0.83 (0.04) [0.76; 0.92] 0.03 (0.04) 0.87 (0.04) [0.79; 0.95] 0.05 (0.04)

BRMA PTDF (4 df) 0.83 (0.04) [0.76; 0.91] 0.03 (0.05) 0.87 (0.04) [0.79; 0.94] 0.05 (0.05)

BRMA PTDF (15 df) 0.83 (0.04) [0.76; 0.90] 0.03 (0.05) 0.86 (0.04) [0.79; 0.94] 0.05 (0.04)

BRMA PTDF (30 df) 0.83 (0.04) [0.76; 0.90] 0.03 (0.04) 0.86 (0.04) [0.79; 0.94] 0.05 (0.04)

Table 9. Summary results for placebo-controlled studies for the treatment effects on the risk of disability progression and the

relapse rate ratio in RRMS, using models with t-distributions and BRMA PNF for comparison.

Relapse incidence rate ratio Disability relative risk

Model Mean (SD) 95% CrI  1 Mean (SD) 95% CrI  2

BRMA PNF 0.57 (0.06) [0.46; 0.70] 0.37 (0.09) 0.75 (0.05) [0.67; 0.86] 0.07 (0.06)

BRMA PTDF (4 df) 0.58 (0.07) [0.46; 0.72] 0.47 (0.14) 0.75 (0.05) [0.66; 0.85] 0.08 (0.07)

BRMA PTDF (15 df) 0.57 (0.06) [0.45; 0.71] 0.39 (0.10) 0.75 (0.05) [0.66; 0.85] 0.08 (0.06)

BRMA PTDF (30 df) 0.57 (0.06) [0.45; 0.71] 0.38 (0.10) 0.75 (0.05) [0.67; 0.85] 0.07 (0.06)

Table 10. Results of the comparison of the models for predicting the treatment effect on the risk of disability progression from the

treatment effect on relapse rate in RRMS, using models with t-distributions and BRMA PNF for comparison.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂PTDF
2j
=w�̂PNF

2j

Model Median (range) Median (range) Median (range)

BRMA PNF 0.16 (0.01, 1.22) 1.10 (1.02, 1.58)

BRMA PTDF (4 df) 0.16 (0.01, 1.22) 1.12 (1.02, 1.64) 1.04 (0.97, 1.15)

BRMA PTDF (15 df) 0.16 (0.01, 1.21) 1.10 (1.02, 1.57) 1.01 (0.96, 1.06)

BRMA PTDF (30 df) 0.16 (0.00, 1.22) 1.11 (1.02, 1.55) 1.01 (0.97, 1.08)
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Tables A 3.1 and A 3.2 in Appendix 3 list predicted estimates on the final outcome (disability progression in
RRMS and OS in gastric cancer). When using meta-regression, the predictions were obtained with reduced
intervals (compared to the intervals corresponding to those obtained from BRMA). As in the Bayesian
analysis, predicted interval for one study (B-CLASSIC) in the example in gastric cancer indicated significant
effect (numbers in bold) when using FEMR (but not BRMA) while the observed effect was only borderline
significant. Note that in the frequentist analysis, the within-study correlation is fixed (instead of the prior
distributions in the Bayesian analysis). The results in Tables 13, A 3.1 and A 3.2 were obtained from models
with �wi¼ 0.5. Sensitivity analysis using correlations �wi ¼ 0, 0:25, 0:75 gave very similar results.

5 Simulation

The models considered in this paper allow for different level of uncertainty on the parameters and use different
degree of distributional assumptions, both of which can impact on the accuracy of predictions. The models by
Daniels and Hughes and the BRMA PNF seemed to predict the treatment effect on the target outcome equally
well, giving conservative predictions (in comparison with meta-regression) because uncertainty around all the
model parameters is taken into account, but not with overly inflated intervals. The two models, however, use a
different degree of distributional assumptions. Considering, for example, a scenario where a new study may
measure a treatment effect much larger compared to the effect observed in the historical studies (training set),
the assumption in the BRMA PNF (about the true effects measured by both outcomes coming from a common
distribution) may be too strong. Sensitivity to this assumption along with the performance of all the models is
tested here by a simulation.

5.1 Methods

To carry out the simulation, data were simulated for both the validation studies as well as the ‘training set’ to
ensure the control over the distributional assumptions of the data (the ‘Sormani data’ did not satisfy the
assumption of normality well). Simulation of the validation data and the training set data was conducted using
the BRMA PNF model (8) and (9) in a number of scenarios where the mean of the effect in the validation set is
shifted by d relative to the mean of the training set

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,�i

� �
, �i ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð16Þ

Table 13. Results of the comparison of the frequentist models for predicting the treatment effect on disability progression from

treatment effect on relapse in RRMS and the treatment effect on OS from the treatment effect on DFS in gastric cancer.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂BRMA
2j
=w�̂FEMR

2j

Model Median (range) Median (range) Median (range)

RRMS

FEMR 0.16 (0.01, 1.16) 1.02 (1.00, 1.21)

BRMA 0.16 (0.00, 1.24) 1.06 (1.06, 1.12) 1.69 (0.52, 4.90)

Gastric cancer

FEMR 0.04 (0.00, 0.09) 1.08 (1.03, 1.25)

BRMA 0.10 (0.02, 0.52) 1.10 (1.01, 1.15) 1.41 (0.20, 1.71)

Table 12. Results of the comparison of the models for predicting treatment effect on OS from treatment effect on DFS, using

models with t-distributions and BRMA PNF for comparison.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂PTDF
2j
=w�̂PNF

2j

Model Median (range) Median (range) Median (range)

BRMA PNF 0.11 (0.02, 0.52) 1.18 (1.05, 1.27)

BRMA PTDF (4 df) 0.11 (0.02, 0.52) 1.21 (1.06, 1.34) 1.06 (0.98, 1.19)

BRMA PTDF (15 df) 0.11 (0.01, 0.52) 1.17 (1.04, 1.27) 1.00 (0.93, 1.10)

BRMA PTDF (30 df) 0.11 (0.01, 0.52) 1.17 (1.05, 1.29) 1.01 (0.92, 1.08)
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�1i � Nð�1 þ 
, 
2
1Þ

�2ij�1i � Nð�2i, 
2
2Þ

�2i ¼ �0 þ �1�1i:

8<
: ð17Þ

using a range of values of ds: 0,  1, 2 1, 3 1 and 5 1. The higher the d the more different the ‘new study’ is with
respect to the training set. Parameters for the simulation were obtained by fitting the model to the ‘Sormani data’
which gave  1 ¼ 0:36,  2 ¼ 0:15, �1 ¼ �0:5253, �0 ¼ 0:01 and k1¼ 0.4793. The within-study correlations �wi
were sampled from a uniform distribution with limits obtained from the confidence interval of the mean of
estimated within-study correlations, �wi � U ð�0:11, 0:186Þ. The within-study variances were generated by
sampling the corresponding precisions (inverse variances) from the gamma distribution; �1i ¼ 1=P1i and
�2i ¼ 1=P2i, P1i � �ð�1, �1Þ, P2i � �ð�2, �2Þ, where a1 and a2 are the shape parameters and �1 and �2 the scale
parameters, which were obtained using the method of moments: EðP1,2Þ ¼ �1,2=
1,2, VðP1,2Þ ¼ �1,2=


2
1,2, where


1,2 ¼ 1=�1,2 is a rate parameter. By summarising the inverse variances from the ‘Sormani data’, the following
parameters were obtained: EðP1Þ ¼ 112:6, EðP2Þ ¼ 32:2, VðP1Þ ¼ 11172:49, VðP2Þ ¼ 1062:76, giving the following
shape and rate parameters: a1¼ 1.13, 
1 ¼ 0:01, �2 ¼ 0:97 and 
2 ¼ 0:03. Because of the structure of the gamma
distribution, some of the simulated precisions were very close to zero, resulting in very large variances. This led to
some problems with the estimation. To overcome this issue, a constraint was placed on the simulated value of the
precision by discarding the precisions resulting in variances larger than 3 (this number was taken as an arbitrary
cut off, large enough to be much larger than the variances in the ‘Sormani data’ and hence including all plausible
variances in the population but small enough not to produce problems with the estimation). The number of
participants in each study was drawn from a uniform distribution with limits 25 and 100 (giving sample sizes
of the studies comparable to those in the ‘Sormani data’).

Each model was fitted by adding a validation study to the training set (one at a time) assuming the effect on the
target outcome (disability progression) unknown (coded as NA), which was then predicted by each model from the
effect on the relapse rate given for this study. The predicted true effect �̂2 was compared with the simulated
‘observed’ true effect l2 by checking if the credible interval of the predicted effect on the target outcome contained
the observed mean effect. The whole process was repeated 1000 times and the percentage of predicted outcomes
whose credible intervals covered the observed value was reported as the average performance of the credible
interval of the model. The R code used to simulate the data is included in Appendix 1.7.

5.2 Results

Table 14 lists the average performances of predicted credible interval for each model and for the range of values of
d. Moving the ‘new study’ (validation study) away from the ‘training set’ (by increasing the d) resulted in reduced
performance of the BRMA PNF, while the model by Daniels and Hughes preformed better (due to the lack of the
strong distributional assumption of exchangeability of the true effects made in the BRMA PNF). Performance of
BRMA PTDF remained unchanged due to the t-distribution being better at modelling extreme effects, as noted in
Section 3.6.

BRMA model with the Wishart prior distribution showed slightly too large performance for d¼ 0 which was
related to the overly inflated predictive intervals. FEMR performed least well due to the artificially reduced
uncertainty by ignoring the estimation error of the treatment effect on the surrogate endpoint. In this case, the
performance seems to increase with the validation set moving away from the training set which is due to the
predicted interval expanding as we move further away from the data, as in linear regression.

6 Discussion

When investigating endpoints as candidate surrogate outcomes, a careful choice of the meta-analytical approach
has to be made. The level of uncertainty taken into account by the model can impact on the precision of the
predictions of the true effect on the final outcome �̂2j from the effect on the surrogate endpoint. Models
underestimating uncertainty, such as FEMR can lead to overly precise predictions of the treatment effect on
the final outcome in a new study. Reduced uncertainty around predicted treatment effect on a target endpoint may
give the illusion that this is a desirable effect of a larger number of events measured on the shorter term surrogate
endpoint, whilst in fact this may be due to ignoring uncertainty and in the case of some models between-study
variability. Models underestimating the uncertainty of available evidence may lead to over-optimistic predictions
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which can then have an effect on decisions made based on such predictions, i.e. underpowered clinical trials or
unrealistic cost-effectiveness outcomes.

In the models by Daniels and Hughes and BRMAs, the treatment effect on the surrogate endpoint is treated as a
response variable and its uncertainty is taken into account in the model in contrast to the meta-regression model
where the effect on the surrogate was a fixed covariate. BRMA with the inverse Wishart prior distribution on the
between-study covariance matrix seems an unreliable approach because it does not allow the analyst to easily
control the prior distributions on the specific elements of the covariance matrix. Results obtained from the model
are sensitive to the parameters of the Wishart distribution. For example, setting parameters of the Wishart
distribution that lead to a desirable non-informative uniform distribution induced on the between-study
correlation can give undesirably informative prior distributions for the between-study standard deviations,
which depending on the parameters can lead to inflated intervals for pooled or predicted estimates. For the
illustrative examples considered here, this led to the inflation of the uncertainty around the predicted target
outcome when using the Wishart distribution with the identity matrix and degrees of freedom equal to three.
The BRMA PNF and Daniels–Hughes models predict the target outcome better, but make different distributional
assumptions that need to be considered when making a choice between these methods. While the Daniels–Hughes
model makes less strong distributional assumptions and may perform better when the new study differs from the
historical data in the meta-analysis data set, the BRMA PNF has an advantage over it by allowing the estimation
of pooled effects for both outcomes when combining data reported on one or both of them, which can be desirable
when the pooled effectiveness estimates are of interest as is often the case in HTA. In circumstances when the
distributional assumptions are plausible in BRMA PNF, this model has an additional advantage of allowing the
analyst to incorporate external information (based on external evidence or expert opinions) in the form of
informative prior distributions with the potential to reduce uncertainty around the estimate of interest.14,31

When using meta-analytic methods to predict the treatment effect on a target outcome of interest from the
treatment effect measured by a surrogate endpoint, modelling assumptions need to be considered alongside the
uncertainty, particularly around the surrogate endpoint. While Bayesian methods allow for a great flexibility in
modelling uncertainty, the frequentist methods have also been used to account for the uncertainty around the
surrogate endpoint by using an error-in-variables linear regression model,9,10 which is an alternative for analysts
with a preference for a frequentist approach. We have illustrated the importance of uncertainty by using
frequentist methods of meta-regression and bivariate meta-analysis.

In this paper, to investigate the impact of uncertainty on predictions, we focused on a number of different
parameterisations of normally distributed effects. The assumption of normality is not always reasonable and when
it is not, alternative approaches need to be investigated. In our further work (to be published elsewhere) we
investigate, for example, modelling of relapse rate using a Poisson distribution and the relative risk of disability
progression by assuming that outcomes come from Binomial distribution. Meta-analytic methods using these type
of outcomes have already been proposed, for example by Stijnen et al. who propose binomial-normal and
Poisson-normal bivariate model (with binomial or Poisson distributions for the within-study variability).32 We
have investigated the normality assumption on the random effect by sensitivity analysis where we replaced the
normal distribution with the t-distribution. This approach has the limitation of only improving the modelling
when there are more data in the tails (such as outlying observations) that a normal distribution would not capture
properly. If the distribution of the data is, for example, bimodal or skewed, other approaches can be investigated
such as a convolution of normal distributions33 or skewed t-distribution as proposed by Lee and Thompson.26 The
issue of non-normality of the random effect has been discussed by Higgins et al.,25 who also review non-
parametric alternatives of the meta-analytic methods that can be applied to the non-normally distributed effects

Table 14. Comparison of the performance of the models in terms of the coverage of the predictive interval.

Average performance of credible interval

Model d¼ 0 
 ¼ 1 1 
 ¼ 2 1 
 ¼ 3 1 
 ¼ 5 1

FEMR 39% 41% 49% 56% 60%

REMR 95% 93% 93% 92% 90%

Daniels & Hughes 95% 94% 95% 94% 93%

BRMA (Wishart) 97% 96% 96% 94% 90%

BRMA (PNF) 96% 95% 93% 91% 85%

BRMA PTDF (4 df) 96% 95% 96% 95% 95%
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(such as non-parametric maximum likelihood procedures34–37 and Bayesian semiparametric random-effects
distributions based on Dirichlet process priors38–40). However, as Higgins et al. discuss, although the methods
have the ability to incorporate outliers, they are not suitable for making predictions due to the unusual shape of
the discrete distributions. As such, they are unlikely to be suitable for the purpose of evaluating surrogate
endpoints where predictions are of crucial importance.

The methods discussed in this paper do not fully cover all aspects of the surrogate evaluation process. As
already mentioned in Section 1, the individual level association between outcomes needs to be explored and to do
so, individual patient data is required on a number (preferably all) of the studies included in the meta-analysis.
Although this was beyond the scope of this paper, the availability of individual level data could help to model
uncertainty. For example, individual data can be used to obtain the within-study correlation between the
treatment effects. Daniels and Hughes have used individual level data from a subset of studies in their meta-
analysis to obtain the correlation between the treatment effects by bootstrapping6 while Bujkiewicz et al.
performed a double bootstrap analysis on individual level data from a single study to obtain the correlation
between the treatment effects in the form of an empirical distribution.14 A range of methods for obtaining the
within-study correlation from individual level data was explored by Riley et al. who used a joint linear regression
for multiple continuous outcomes and bootstrapping methods for a range of other outcomes.41 The availability of
individual level data can also be desirable when taking into account the information on covariates which in the
aggregate form is subject to ecological bias. When investigating surrogacy, the inclusion of covariates could help
explain some heterogeneity or explore the effect of baseline risk. Further research is required to explore the
advantages of individual level data in modelling uncertainty and exploring the impact of covariates.
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Appendix 1

Appendix 1.1. WinBUGS code: Random effects meta-regression

model{

for (i in 1:num) {

prec2[i]<-1/pow(se[i],2)
Y2[i] � dnorm(mu2[i], prec2[i])

mu2[i]<-lambda0[i]þlambda1*(Y1[i]-mean(Y1[]))
lambda0[i] �dnorm(beta,prec1)

}

beta �dnorm(0.0, 0.001)

lambda1 � dnorm(0.0,1.0E-6)

psi �dnorm(0,0.01)I(0,)

psi.sq<-psi*psi
prec1<-1/psi.sq
y2.uncent<-beta-lambda1*mean(X[])
mean2<-exp(beta)
new.y2<-y2.uncentþlambda1*new.log.y1
new.exp.y2<-exp(new.y2)
}

Appendix 1.2. WinBUGS code: Daniels and Hughes model

model{

# within study precision matrices

for (i in 1:num) {

rho_w[i] � dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

mu[i,1] �dnorm(0,1.0E-3)

mu[i,2] �dnorm(edss[i],prec_dis)

edss[i]<-lambda0þlambda1*(mu[i,1] - mean(mu[,1]))
}

psi �dnorm(0,0.01)I(0,)

psi.sq<-psi*psi
prec_dis<-1/psi.sq
lambda0 �dnorm(0.0, 1.0E-3)

lambda1 �dnorm(0.0, 1.0E-3)

# estimates:

mean.log.dis<-lambda0
sd.log.dis<-sqrt(psi.sq)
mean.dis<-exp(mean.log.dis)
}
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Appendix 1.3. WinBUGS code: BRMA model with Wishart prior distribution

model{

#within study precision matrices

for (i in 1:num) {

rho_w[i] �dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

mu[i,1:2] �dmnorm(beta[1:2],prec_b[1:2,1:2])

}

for (j in 1:2) {

beta[j] �dnorm(0.0,1.0E-4)

}

prec_b[1:2,1:2] �dwish(Q[,],3)

cov_b[1:2,1:2]<-inverse(prec_b[,])
# estimates:

mean.log.rel<-beta[1]
mean.log.dis<-beta[2]
sd.log.dis<-sqrt(cov_b[2,2])
sd.log.rel<-sqrt(cov_b[1,1])
corr.dis.rel<-cov_b[1,2]/(sd.log.dis*sd.log.rel)
psi.sq<-cov_b[2,2]*(1-corr.dis.rel*corr.dis.rel)
}

Appendix 1.4. WinBUGS code: BRMA model in the product normal formulation

model{

# within study precision matrices

for (i in 1:num) {

rho_w[i] �dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

# product normal formulation for the between study part:
mu[i,1] �dnorm(rel,prec_rel)

mu[i,2] �dnorm(edss[i],prec_dis)

edss[i]<-lambda0þlambda1*mu[i,1] }

rel �dnorm(0.0, 0.001)
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gam_rel �dnorm(0,0.01)I(0,)

gam_dis �dnorm(0,0.01)I(0,)

gam_rel.sq<-gam_rel*gam_rel
gam_dis.sq<-gam_dis*gam_dis
prec_rel<-1/gam_rel.sq
prec_dis<-1/gam_dis.sq
lambda0 �dnorm(0.0, 1.0E-3)

# prior between study correlations:

corr.dis.rel �dunif(-1,1)

# implied prior for lambda
lambda1<-(gam_dis/gam_rel)*(corr.dis.rel/sqrt(1-corr.dis.rel*corr.dis.rel))
# estimates:

mean.log.rel<-rel
mean.log.dis<-lambda0þ lambda1 * mean.log.rel

sd.log.rel<-gam_rel
sd.log.dis<-sqrt(gam_dis.sqþgam_rel.sq*pow(lambda1,2))
mean.rel<-exp(mean.log.rel)
mean.dis<-exp(mean.log.dis)
}

Appendix 1.5. WinBUGS code: BRMA model in the product of t-distributions
formulation

model{

# within study precision matrices

for (i in 1:num) {

rho_w[i] �dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

# product of t-distributions formulation for the between study part:
mu[i,1] �dt(rel,prec_rel,d)

mu[i,2] �dt(edss[i],prec_dis,d)

# edss[i]<-lambda0þlambda1*mu[i,1]
edss[i]<-lambda0þlambda1*(mu[i,1]- mean(mu[,1])) #when centered

}

rel �dnorm(0.0, 0.001)

gam_rel �dnorm(0,0.01)I(0,)

gam_dis �dnorm(0,0.01)I(0,)

gam_rel.sq<-gam_rel*gam_rel
gam_dis.sq<-gam_dis*gam_dis
prec_rel<-d / (gam_rel.sq * (d - 2))

prec_dis<-d / (gam_dis.sq * (d - 2))

lambda0 �dnorm(0.0, 1.0E-3)

lambda1 �dnorm(0.0, 1.0E-3)

# prior between study correlations:

corr.dis.rel �dunif(-1,1)

# estimates:
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mean.log.rel<-rel
# mean.log.dis<-lambda0þ lambda1 * mean.log.rel

mean.log.dis<-lambda0 #when centered

mean.rel<-exp(mean.log.rel)
mean.dis<-exp(mean.log.dis)
}

Appendix 1.6. Stata code for meta-regression and BRMA

Columns in the data contain treatment effects y1 and y2 (here on log scale) with corresponding

standard errors se1 and se2.

forvalues k¼1/25 {

use MSdata.dta, clear

gen b1¼y1

gen b2¼y2

gen se2n¼se2

egen id¼seq()

replace b2¼. if id¼¼‘k’

replace se2¼. if id¼¼‘k’

gen S11¼se1^2

gen S22¼se2^2

gen S12¼se1*se2*0.5

replace b2¼ 0 if b2¼¼.

replace S22¼ 10000 if S22¼¼.

replace S12¼ 0 if S12¼¼.

*** mvmeta ***

mvmeta b S, mm keepmat(y S)

*** prediction ***

* set up

mat mu¼ e(b)

mat Sigma¼ e(Sigma)

* do calculations as matrices

forvalues i¼1/25 {

mat eb‘i’¼ muþ (y‘i’-mu) * syminv(S‘i’þ Sigma) * Sigma

mat vb‘i’¼ Sigma * syminv(S‘i’þ Sigma) * S‘i’

}

* store as variables

forvalues r¼1/2 {

qui gen eb‘r’¼.

qui gen vb‘r’¼.

forvalues i¼1/25 {

qui replace eb‘r’¼ eb‘i’[1,‘¼‘r’’] in ‘i’

qui replace vb‘r’¼ vb‘i’[1,‘¼‘r’’] in ‘i’

}

}

gen lci2¼eb2-1.96*sqrt(se2n*se2nþvb2)

gen uci2¼eb2þ 1.96*sqrt(se2n*se2nþvb2)

gen pb2¼exp(eb2)

gen plci2¼exp(lci2)

gen puci2¼exp(uci2)

*** meta-regression ***

metareg b2 b1, wsse(se2)

predict pb2r, xb

predict pse2r, stdp

gen epb2r¼exp(pb2r)
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gen plci2r¼exp(pb2r-1.96*sqrt(pse2r*pse2rþse2n*se2n))

gen puci2r¼exp(pb2rþ1.96*sqrt(pse2r*pse2rþse2n*se2n))

}

Appendix 1.7. R code for the simulation

sd1<-0.36
sd2<-0.15
eta1<- -0.5253

lambda0<- 0.0101

lambda1<- 0.4793

shift<-0
delta<-sd1*shift
sh2<-0.97
rt2<-0.03
sc2<-1/rt2
sh1<-1.13
rt1<-0.01
sc1<-1/rt1
rho.min<- -0.11

rho.max<- 0.186

var.pop.rel<-2.2
var.pop.dis<-17.2
m1<-m2<-rho<-n1<-n2<-s1<-s2<-var1<-var2<-prec1<-prec2<-matrix(,10)
sigma< - array(matrix(0,2,2),10)

y.val<-matrix(,10,2)
for (i in 1:10){

ll<-5
while (ll>0) {

m1[i]<-rnorm(1,eta1þdelta,sd1)
m2[i]<-rnorm(1,lambda0þlambda1*m1[i],sd2)
rho[i]<-runif(1,rho.min,rho.max)
prec1[i]<-rgamma(1,shape¼sh1,scale¼ sc1)

prec2[i]<-rgamma(1,shape¼sh2,scale¼ sc2)

var1[i]<-1/prec1[i]
var2[i]<-1/prec2[i]
s1[i]<-sqrt(var1[i])
s2[i]<-sqrt(var2[i])
n1[i]<-round(runif(1,25,1000))
n2[i]<-n1[i]
sigma<- matrix(c(var1[i],s1[i]*s2[i]*rho[i],s1[i]*s2[i]*rho[i],var2[i]),2,2)

y.val[i,]<-mvrnorm(n¼1, c(m1[i],m2[i]), sigma)

l1<-(s1[i]>3.0)
l2<-(s2[i]>3.0)
ll<-l1þl2
}

}
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Appendix 2 Predictions from sensitivity analysis using t-distribution

Table A 2.1. Predictions obtained from BRMA PTDF models (and BRMA PNF for comparison) for all studies in the ‘Sormani data’.

Disability progression rate ratio, mean (95% CrI)

Paty (1) Paty (2) Miligan Johnson Jacobs/Simon

Observed 1.00 (0.67, 1.49) 0.71 (0.45, 1.12) 1.14 (0.26, 5.03) 0.88 (0.57, 1.35) 0.63 (0.38, 1.05)

BRMA PNF 0.98 (0.63, 1.53) 0.83 (0.51, 1.36) 0.86 (0.19, 3.96) 0.86 (0.54, 1.39) 0.85 (0.49, 1.47)

BRMA PTDF (4 df) 0.98 (0.62, 1.55) 0.83 (0.51, 1.37) 0.86 (0.19, 3.97) 0.86 (0.53, 1.39) 0.85 (0.49, 1.47)

BRMA PTDF (15 df) 0.98 (0.63, 1.53) 0.84 (0.51, 1.36) 0.88 (0.19, 4.05) 0.86 (0.53, 1.39) 0.85 (0.49, 1.46)

BRMA PTDF (30 df) 0.98 (0.63, 1.53) 0.84 (0.51, 1.36) 0.87 (0.19, 4.01) 0.86 (0.53, 1.39) 0.84 (0.49, 1.46)

Fazekas Millefiorini Achiron Li (1) Li (2)

Observed 0.70 (0.36, 1.35) 0.19 (0.05, 0.79) 0.82 (0.19, 3.50) 0.81 (0.61, 1.08) 0.73 (0.54, 0.99)

BRMA PNF 0.66 (0.33, 1.33) 0.64 (0.15, 2.75) 0.65 (0.15, 2.86) 0.87 (0.62, 1.23) 0.85 (0.60, 1.21)

BRMA PTDF (4 df) 0.66 (0.32, 1.35) 0.64 (0.15, 2.77) 0.66 (0.15, 2.94) 0.87 (0.61, 1.23) 0.86 (0.60, 1.23)

BRMA PTDF (15 df) 0.66 (0.33, 1.33) 0.64 (0.15, 2.74) 0.66 (0.16, 2.89) 0.87 (0.62, 1.23) 0.85 (0.60, 1.21)

BRMA PTDF (30 df) 0.66 (0.33, 1.34) 0.64 (0.15, 2.75) 0.66 (0.15, 2.88) 0.87 (0.61, 1.22) 0.85 (0.60, 1.21)

Clanet Durelli Baumhackl Polman Rudick

Observed 1.00 (0.83, 1.20) 0.43 (0.24, 0.78) 1.07 (0.74, 1.57) 0.59 (0.46, 0.75) 0.79 (0.65, 0.96)

BRMA PNF 1.09 (0.82, 1.45) 0.87 (0.47, 1.63)* 0.94 (0.61, 1.43) 0.57 (0.40, 0.82) 0.66 (0.50, 0.87)

BRMA PTDF (4 df) 1.08 (0.81, 1.45) 0.87 (0.46, 1.62)* 0.93 (0.60, 1.45) 0.57 (0.39, 0.83) 0.66 (0.50, 0.88)

BRMA PTDF (15 df) 1.08 (0.81, 1.44) 0.87 (0.46, 1.62)* 0.93 (0.61, 1.43) 0.57 (0.39, 0.82) 0.66 (0.50, 0.87)

BRMA PTDF (30 df) 1.08 (0.82, 1.43) 0.87 (0.46, 1.62)* 0.94 (0.61, 1.44) 0.57 (0.39, 0.82) 0.66 (0.50, 0.87)

Coles (1) Coles (2) Mikol Comi (1) Comi (2)

Observed 0.35 (0.16, 0.74) 0.38 (0.19, 0.77) 1.34 (0.88, 2.06) 0.69 (0.52, 0.93) 0.73 (0.55, 0.97)

BRMA PNF 0.61 (0.27, 1.35) 0.53 (0.25, 1.12) 1.01 (0.62, 1.64) 0.66 (0.45, 0.96) 0.68 (0.47, 0.98)

BRMA PTDF (4 df) 0.60 (0.27, 1.36) 0.52 (0.24, 1.14) 1.01 (0.61, 1.64) 0.66 (0.45, 0.97) 0.68 (0.47, 0.99)

BRMA PTDF (15 df) 0.61 (0.27, 1.35) 0.53 (0.25, 1.14) 1.00 (0.62, 1.62) 0.66 (0.45, 0.96) 0.68 (0.47, 0.98)

BRMA PTDF (30 df) 0.60 (0.27, 1.35) 0.53 (0.25, 1.13) 1.01 (0.62, 1.63) 0.66 (0.45, 0.96) 0.68 (0.48, 0.98)

Havrdova (1) Havrdova (2) Sorensen O’Connor (1) O’Connor (2)

Observed 1.23 (0.58, 2.62) 1.04 (0.48, 2.67) 0.64 (0.32, 1.28) 1.05 (0.84, 1.31) 1.10 (0.88, 1.37)

BRMA PNF 0.95 (0.43, 2.08) 0.85 (0.38, 1.90) 0.65 (0.31, 1.37) 1.06 (0.77, 1.45) 1.00 (0.74, 1.35)

BRMA PTDF (4 df) 0.94 (0.43, 2.06) 0.85 (0.38, 1.90) 0.66 (0.31, 1.40) 1.06 (0.76, 1.49) 0.99 (0.73, 1.35)

BRMA PTDF (15 df) 0.95 (0.43, 2.08) 0.85 (0.38, 1.90) 0.65 (0.31, 1.43) 1.06 (0.77, 1.46) 1.00 (0.73, 1.35)

BRMA PTDF (30 df) 0.94 (0.43, 2.06) 0.85 (0.38, 1.90) 0.65 (0.31, 1.44) 1.06 (0.77, 1.45) 0.99 (0.74, 1.34)

Bujkiewicz et al. 2315



Table A 2.2. Predictions obtained from BRMA PTDF models (and BRMA PNF for comparison) for all studies in the ‘Oba data’.

Overall survival, mean (95% CrI)

Historical trials

FFCD-8801 NSAS-GC JCOG-9206-1 JCOG-8801 SWOG-7804

Observed 0.84 (0.62, 1.14) 0.51 (0.29, 0.90) 0.60 (0.31, 1.18) 0.82 (0.54, 1.27) 0.93 (0.70, 1.24)

BRMA PNF 0.87 (0.60, 1.26) 0.86 (0.47, 1.57) 0.87 (0.43, 1.75) 0.87 (0.54, 1.39) 0.86 (0.60, 1.24)

BRMA PTDF (4 df) 0.87 (0.59, 1.27) 0.86 (0.46, 1.60) 0.87 (0.43, 1.77) 0.87 (0.53, 1.43) 0.86 (0.60, 1.25)

BRMA PTDF (15 df) 0.87 (0.60, 1.27) 0.86 (0.47, 1.58) 0.87 (0.43, 1.75) 0.86 (0.54, 1.40) 0.86 (0.60, 1.23)

BRMA PTDF (30 df) 0.87 (0.60, 1.27) 0.86 (0.46, 1.58) 0.87 (0.43, 1.76) 0.87 (0.54, 1.40) 0.86 (0.60, 1.23)

EORTC-40813 Tsavaris ICCG-1/81 ITMO GITSG-8174

Observed 0.85 (0.64, 1.14) 0.55 (0.33, 0.89) 0.85 (0.64, 1.13) 0.98 (0.70, 1.37) 0.74 (0.53, 1.04)

BRMA PNF 0.87 (0.61, 1.25) 0.86 (0.50, 1.48) 0.87 (0.61, 1.24) 0.86 (0.58, 1.28) 0.87 (0.58, 1.29)

BRMA PTDF (4 df) 0.86 (0.50, 1.25) 0.87 (0.50, 1.50) 0.87 (0.60, 1.28) 0.86 (0.57, 1.29) 0.86 (0.58, 1.29)

BRMA PTDF (15 df) 0.86 (0.60, 1.24) 0.86 (0.50, 1.48) 0.87 (0.61, 1.24) 0.86 (0.58, 1.28) 0.87 (0.58, 1.29)

BRMA PTDF (30 df) 0.86 (0.59, 1.24) 0.86 (0.50, 1.47) 0.87 (0.61, 1.24) 0.86 (0.58, 1.28) 0.86 (0.58, 1.29)

NCTTG-794151 ECCOG-EST3275 EORTC-40905 ICCG

Observed 1.02 (0.69, 1.51) 0.94 (0.68, 1.30) 0.93 (0.64, 1.37) 1.05 (0.74, 1.49)

BRMA PNF 0.86 (0.55, 1.34) 0.86 (0.58, 1.27) 0.86 (0.56, 1.33) 0.87 (0.58, 1.32)

BRMA PTDF (4 df) 0.86 (0.55, 1.37) 0.86 (0.58, 1.29) 0.87 (0.55, 1.37) 0.87 (0.57, 1.33)

BRMA PTDF (15 df) 0.86 (0.55, 1.35) 0.86 (0.58, 1.27) 0.86 (0.55, 1.34) 0.87 (0.58, 1.31)

BRMA PTDF (30 df) 0.86 (0.55, 1.35) 0.86 (0.58, 1.27) 0.86 (0.56, 1.34) 0.87 (0.58, 1.31)

Validation trials

A-cirera B-CLASSIC E-GOIM-9602 F-GOIRC

Observed 0.60 (0.39, 0.93) 0.72 (0.52, 1.00) 0.91 (0.69, 1.21) 0.90 (0.64, 1.26)

BRMA PNF 0.85 (0.52, 1.39) 0.77 (0.50, 1.19) 0.88 (0.62, 1.24) 0.87 (0.59, 1.29)

BRMA PTDF (4 df) 0.84 (0.51, 1.38) 0.74 (0.45, 1.21) 0.87 (0.61, 1.24) 0.87 (0.58, 1.30)

BRMA PTDF (15 df) 0.84 (0.51, 1.37) 0.76 (0.49, 1.15) 0.87 (0.62, 1.22) 0.87 (0.58, 1.30)

BRMA PTDF (30 df) 0.84 (0.52, 1.37) 0.76 (0.48, 1.20) 0.87 (0.63, 1.22) 0.87 (0.58, 1.29)
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Appendix 3 Predictions from the frequentist models

Table A 3.1. Predictions obtained from the two frequentist models for all studies in the ‘Sormani data’.

Disability progression rate ratio, mean (95% CrI)

Paty (1) Paty (2) Miligan Johnson Jacobs/Simon

Observed 1.00 (0.67, 1.49) 0.71 (0.45, 1.12) 1.14 (0.26, 5.03) 0.88 (0.57, 1.35) 0.63 (0.38, 1.05)

Meta-regression 0.99 (0.66, 1.48) 0.84 (0.53, 1.33) 0.93 (0.21, 4.11) 0.87 (0.56, 1.35) 0.85 (0.51, 1.42)

BRMA 0.99 (0.65, 1.50) 0.84 (0.52, 1.35) 0.87 (0.19, 4.05) 0.87 (0.55, 1.37) 0.85 (0.50, 1.45)

Fazekas Millefiorini Achiron Li (1) Li (2)

Observed 0.70 (0.36, 1.35) 0.19 (0.05, 0.79) 0.82 (0.19, 3.50) 0.81 (0.61, 1.08) 0.73 (0.54, 0.99)

Meta-regression 0.66 (0.34, 1.29) 0.61 (0.14, 2.55) 0.63 (0.15, 2.69) 0.87 (0.65, 1.17) 0.86 (0.63, 1.17)

BRMA 0.67 (0.34, 1.33) 0.65 (0.15, 2.80) 0.66 (0.15, 2.91) 0.87 (0.64, 1.18) 0.86 (0.62, 1.18)

Clanet Durelli Baumhackl Polman Rudick

Observed 1.00 (0.83, 1.20) 0.43 (0.24, 0.78) 1.07 (0.74, 1.57) 0.59 (0.46, 0.75) 0.79 (0.65, 0.96)

Meta-regression 1.08 (0.87, 1.34) 0.88 (0.48, 1.59)* 0.94 (0.64, 1.39) 0.58 (0.43, 0.78) 0.66 (0.55, 0.83)

BRMA 1.07 (0.88, 1.29) 0.87 (0.47, 1.62)* 0.94 (0.63, 1.41) 0.62 (0.48, 0.81) 0.66 (0.54, 0.82)

Coles (1) Coles (2) Mikol Comi (1) Comi (2)

Observed 0.35 (0.16, 0.74) 0.38 (0.19, 0.77) 1.34 (0.88, 2.06) 0.69 (0.52, 0.93) 0.73 (0.55, 0.97)

Meta-regression 0.58 (0.27, 1.26) 0.49 (0.24, 1.01) 1.03 (0.66, 1.60) 0.66 (0.48, 0.91) 0.69 (0.51, 0.93)

BRMA 0.62 (0.28, 1.37) 0.55 (0.27, 1.15) 1.01 (0.63, 1.60) 0.77 (0.48, 0.93) 0.69 (0.50, 0.95)

Havrdova (1) Havrdova (2) Sorensen O’Connor (1) O’Connor (2)

Observed 1.23 (0.58, 2.62) 1.04 (0.48, 2.67) 0.64 (0.32, 1.28) 1.05 (0.84, 1.31) 1.10 (0.88, 1.37)

Meta-regression 0.96 (0.45, 2.05) 0.86 (0.39, 1.88) 0.63 (0.31, 1.27) 1.06 (0.83, 1.37) 1.00 (0.78, 1.27)

BRMA 0.95 (0.44, 2.06) 0.86 (0.38, 1.90) 0.66 (0.31, 1.39) 1.06 (0.83, 1.35) 1.00 (0.78, 1.27)
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Table A 3.2. Predictions obtained from the two frequentist models for all studies in the ‘Oba data’.

Overall survival, mean (95% CrI)

Historical trials

FFCD-8801 NSAS-GC JCOG-9206-1 JCOG-8801 SWOG-7804

Observed 0.84 (0.62, 1.14) 0.51 (0.29, 0.90) 0.60 (0.31, 1.18) 0.82 (0.54, 1.27) 0.93 (0.70, 1.24)

Meta-regression 0.87 (0.63, 1.19) 0.50 (0.26, 0.97) 0.65 (0.33, 1.25) 0.82 (0.53, 1.26) 0.91 (0.67, 1.24)

BRMA 0.86 (0.62, 1.19) 0.86 (0.50, 1.47) 0.85 (0.45, 1.62) 0.85 (0.55, 1.32) 0.86 (0.63, 1.17)

EORTC-40813 Tsavaris ICCG-1/81 ITMO GITSG-8174

Observed 0.85 (0.64, 1.14) 0.55 (0.33, 0.89) 0.85 (0.64, 1.13) 0.98 (0.70, 1.37) 0.74 (0.53, 1.04)

Meta-regression 0.78 (0.57, 1.06) 0.58 (0.33, 1.02) 0.91 (0.67, 1.24) 0.93 (0.66, 1.31) 0.76 (0.53, 1.09)

BRMA 0.84 (0.61, 1.14) 0.85 (0.52, 1.40) 0.87 (0.63, 1.19) 0.86 (0.61, 1.20) 0.85 (0.59, 1.21)

NCTTG-794151 ECCOG-EST3275 EORTC-40905 ICCG

Observed 1.02 (0.69, 1.51) 0.94 (0.68, 1.30) 0.93 (0.64, 1.37) 1.05 (0.74, 1.49)

Meta-regression 0.99 (0.65, 1.49) 0.93 (0.66, 1.31) 0.92 (0.62, 1.36) 1.11 (0.75, 1.66)

BRMA 0.86 (0.57, 1.29) 0.86 (0.61, 1.22) 0.86 (0.57, 1.28) 0.86 (0.60, 1.23)

Validation trials

A-cirera B-CLASSIC E-GOIM-9602 F-GOIRC

Observed 0.60 (0.39, 0.93) 0.72 (0.52, 1.00) 0.91 (0.69, 1.21) 0.90 (0.64, 1.26)

Meta-regression 0.57 (0.35, 0.93) 0.58 (0.41, 0.82) 0.92 (0.68, 1.24) 0.96 (0.67, 1.38)

BRMA 0.82 (0.52, 1.27) 0.79 (0.60, 1.05) 0.86 (0.64, 1.17) 0.87 (0.60, 1.25)
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