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Abstract: Machining with rotating tools appears to be an efficient method that employs a non-
standard kinematic turning scheme. It is used in the machining of materials that we classify in the
category of difficult to machine. The titanium alloy Ti-6Al-4V, which is widely used in industry and
transportation, is an example of such material. Rotary tool machining of titanium alloys has not
been the subject of many studies. Additionally, if researchers were dissatisfied with their findings,
the reason may not be the kinematic machining scheme itself but rather the tool design and the
choice of cutting parameters. When tools are constructed of several components, inaccuracies in
production and assembly can arise, resulting in deviations in the cutting part area. A monolithic
driven rotary tool eliminates these factors. In the machining process, however, it may react differently
from multi-component tools. The presented work focuses on the research of the technology for
machining titanium alloy Ti-6Al-4V using a monolithic driven rotary tool. The primary goal is to
gather data on the impact of cutting parameters on the machining process. The cutting force and
the consequent integrity of the workpiece surface are used to monitor the process. The speed of
workpiece rotation has the greatest impact on the process; as it increases, the cutting force increases,
as do the values of the surface roughness. In the experiment, lower surface roughness values were
attained by increasing the feed parameter and the depth of cut. This may predetermine the inclusion
of a kinematic scheme in highly productive technologies.

Keywords: titanium alloy; rotary tool; turning; actively driven tool

1. Introduction

Conventional methods of machining materials with enhanced mechanical properties
face many disadvantages, including a low cutting speed, short tool life, and time-consuming
production [1–3]. To solve these issues, high-performance computing technology (HPC),
high-speed machining (HSC), cryogenic cooling, and the use of specialized tooling systems
are considered [4–6].

Rotary tool machining is mostly employed for the turning processes of materials
with enhanced mechanical properties [7,8]. However, the cutting edge of conventional
cutting tools wears down considerably in the machining process due to high temperatures,
forces, and stresses [9–11]. It is feasible to prevent this problem by setting lower cutting
parameter values. However, this results in an unwanted reduction in material removal,
and an increase in the machining time and cost. Cutting fluids can reduce heat generation
during machining, but due to the negative impacts on the environment and human health,
attempts are currently being undertaken to include a more ecologically friendly alternative
in the production process [12–14]. The usage of rotary cutting tools is one of these options
(Figure 1). These tools differ in the kinematic machining scheme because they rotate the
tool (vt) and the workpiece (vw) simultaneously [15]. Moreover, these rotary tools can
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be used in the milling process, where the rotary cutting insert is placed on the milling
head [16,17].
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When turning with a conventional tool, a high temperature is generated at the cutting
point due to the fact that only one point of the tool is in constant contact, and wear is
concentrated at this point as well. Rotary tool machining technology leads to increased
material removal, reduced cutting tool wear [18,19], high cooling capacity [8,20], extended
tool life [21], and better integrity of the machined surface. The rotary tool design might
be monolithic or consist of a circular cutting insert clamped in a holder that rotates freely
around its axis and serves as a continuous cutting edge along its entire circumference [22].
Each part of the cutting edge comes into contact with the workpiece for a short time during
rotation and then cools in air due to rotational movement before again coming into contact
with the workpiece. The heating and cooling phases alternate, which has a positive effect
on the temperature and tool life while the wear is evenly distributed over the entire cutting
edge. To prevent vibration during the turning process by the turning tool, the rigidity
condition of the tool workpiece must be met [15].

In contrast to a self-propelled rotation tool, where the insert spins about its axis by chip
formation, the actively driven rotation tool is driven by an external drive via a programmed
spindle. While the self-propelled rotation tool can be used on any lathe, the actively driven
rotation tool can only be used on a universal lathe with a milling spindle or on a multi-axis
turning center. The tool with actively driven rotation can also be used in situations where
a higher cutting speed and a larger removal of the chip cross-sectional area are required.
When compared to a traditional turning tool, this type of tool has a longer tool life and is
characterized by greater dynamic stability and rigidity throughout the cutting operation.
Moreover, the application of a tool with actively driven rotation significantly reduces the
production time; however, at the same time, it increases the wear due to the long continuous
cuts during longitudinal turning. Nevertheless, the benefits of such a tool design exceed
the disadvantages.

When compared to a conventional stationary tool, the use of a rotary tool is more
cost-effective due to its ability to set a higher cutting speed, reduce tool wear, and reduce
the manufacturing time.

Tools with self-propelled rotation are suitable for finishing operations, where the
setting of a lower cutting speed and the removal of material with a small cross-sectional
area are required [23]. Tools with self-propelled rotation become unstable and vibrate
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at higher cutting speeds and when removing material with a large cross-sectional area.
Therefore, it is vital to adjust the cutting settings appropriately during the cutting process
to ensure a longer tool life than a stationary turning tool would have.

Compared to a self-propelled rotation tool, an actively driven rotary tool provides
significantly higher stability and rigidity in the cutting process. Increasing the penetration
angles of the tool into the workpiece leads to an increase in the cross-sectional area of the
chip to be removed [4].

Machining of Titanium Alloys with Rotary Tool

Lei and Liu conducted an experiment to compare the high-speed machining of
Ti-6Al-4V titanium alloy using a self-propelled rotation tool and a stationary turning
tool [11]. Specifically, the tool life and the impact of the cutting insert rotation speed on the
cutting force components and tool wear were investigated. For comparison, high-speed
turning was performed with both tool types under the same cutting conditions and using
the same cutting insert. The experiment proved that a tool with self-propelled rotation
with sufficient rigidity and with a compact construction is suitable for machining titanium
alloy at high cutting speeds. Compared to a stationary tool, the nominal tool life with a
self-propelled rotation was approximately 37 times longer, and in the case of absolute tool
life, it was more than 1.7 times longer. Olgun and Budak also conducted an experiment
comparing stationary and rotary turning tools with respect to their durability, surface
quality, and cutting force [24]. They found that better roughness in the feed direction was
achieved with the rotating tool. Kossakowska and Jemielniak evaluated the machining
of titanium alloy as unsatisfactory in their experiments. The use of a sufficient amount of
coolant enhanced the machining results of Ti-6Al-4V to some extent. The best results were
obtained for medium and high feeds, average cut depths, and high cutting speeds [25].
Based on this information, it is not possible to accurately determine suitable cutting pa-
rameters for the stability of the machining process. Another shortcoming in the previous
works is the complexity of the construction of the tools. The task of the presented paper is
to determine the influence of the cutting factors on the titanium alloy machining process
and their importance.

2. Materials and Methods

In the current study, cutting tests were conducted to investigate the effect of the cutting
parameters on the machining process with a driven monolithic rotary tool. The material of
the workpiece was titanium alloy Ti6-Al4-4V.

2.1. Machined Material

Titanium is an important construction metal developed in the 1950s. Titanium alloys
are widely used in a variety of fields due to their high strength, corrosion resistance, and
heat resistance [26,27]. Although titanium is heavier than aluminum, it is also stronger in
terms of specific weight. This predestines it for use mainly in aviation and other transport
technology [28]. In numerous engineering applications, Ti-6Al-4V is one of the most
extensively utilized titanium alloys with a guaranteed chemical composition (Table 1). It is
a significant material for modern mechanical components and equipment, particularly in
biomedical and aerospace systems, due to its outstanding corrosion resistance and high
strength-to-weight ratio. However, machining of Ti-6Al-4V workpieces is complex and
it is very difficult to produce components with the required shape and quality surface
finish [29].

Table 1. Chemical composition Ti-6Al-4V based on attestation certificate (wt%).

Ti Al V Fe O C

balance 5.50–6.75 3.5–4.5 0.40 0.20 max 0.08
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2.2. Monolithic Driven Rotary Tool

The monolithic driven rotary tool (Figure 2) was designed by the Department of
Machining and Production Technology of the University of Žilina in Žilina. The geometry
of the cutting part was modified in comparison with the proposed tool of the first gener-
ation [22]. The construction of the tool is monolithic and made of the material, sintered
carbide. It consists of a cutting and clamping part. The cutting part of the tool is coated
with TiN and consists of a circular cutting face and a conical back surface.
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Figure 2. Model and basic dimensions (mm) of a monolithic rotary tool.

The tool is clamped to the additional milling spindle and its speed and direction of
rotation can be set via the NC program. The monolithic rotary tool is designed for CNC
machines and turning of external cylindrical surfaces. Compared to the previous version of
the tool, the cutting angles of the tool were adjusted in order to increase the rigidity of the
cutting wedge. To verify the dimension precision of the tool production, the cutting part of
the monolithic tool was measured using an Alicona Infinite Focus (Alicona Imaging GmbH
Dr. Auner Straße 19 8074, Raaba, Graz, Austria), which is shown in Figure 3. Based on the
performed measurement, the cutting angles of the tool were set at the angle of the rake
surface γ = 3◦, the angle of the flank surface α = 4.5◦, and the angle of the cutting wedge
β = 82.5◦. The cutting edge radius was r = 13 µm.
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2.3. Experiment Design

For turning with an active rotary tool, the same cutting parameters are required as
for standard turning. The workpiece rotation speed (vw), feed (f ), and cut depth (ap) are
all included. Since this is turning with a rotary tool, the rotation speed of the tool must be
defined (vt) and the tool rotation direction. The direction of rotation was used as shown in
Figure 1. In this work, screening of the cutting parameters of machining was performed
in order to determine the impact of their effect on the machining process. Therefore, the
experiments were carried out only with a tool with a defined geometry (Figure 3) and
no cutting fluid coolant. This eliminated the impact of tool geometry differences and the
impact of cooling on the machining process itself. The levels of process parameters (vw, vt, f,
and ap) were determined on the basis of the tool material, the characteristics of the kinematic
scheme, the machinery used, and previous research work. The design of the experiment
approach [30] was used to simplify the experiment, resulting in the 12 conditions shown
in Table 2.

Table 2. Process parameters and their values in the experiment.

StdOrder vw [m·min−1] vt [m·min−1] f [mm] ap [mm]

1 500 50 0.50 0.1
2 500 200 0.05 0.2
3 100 200 0.50 0.1
4 500 200 0.50 0.2
5 500 200 0.05 0.1
6 500 200 0.50 0.1
7 100 200 0.50 0.2
8 100 50 0.50 0.2
9 100 50 0.05 0.2
10 500 50 0.05 0.1
11 100 200 0.05 0.1
12 100 50 0.05 0.1

3. Experimental Part

In this study, circular cross-section samples of Ti-6Al-4V material with a diameter
of 150 mm and a thickness of 20 mm were used, which are shown in Figure 4 under the
position No. (4). This material was chosen since it is one of the most extensively used
titanium alloys in the industry and has a wide range of applications. The sample had five
holes, through which it was fixed to the clamping taper (5) by means of strength screws
DIN 912 M8x40 (3). The clamping taper was placed by means of screw (6) in a horizontal
machine spindle (7), which was mounted on a Kistler 9255A dynamometer (Kistler Eastern
Europe Ltd., Prague, Czech Republic) (8). Dynamometer was on the workbench of the CNC
machine (9). A tool holder (2) with a monolithic rotary tool (1) was placed in the vertical
spindle of the machine. The cutting parameter levels and feed direction were controlled by
the HURCO VMX30T CNC machine program (Hurco Company, Indianapolis, IN, USA).

The measurement of the individual components of the cutting forces was performed
using a KISTLER 9255A piezoelectric dynamometer. With respect to individual experiments,
the resulting cutting force was defined by computation and its maximum value was
calculated from the measured components of the cutting force (Fx, Fy, Fz). Before starting
the turning process, the piezoelectric dynamometer had to be calibrated according to the
manufacturer’s specifications. It was also necessary to determine the direction of action of
the individual components of the cutting forces. The dynamometer continuously measured
the components of the cutting forces even during the phase when the tool was not engaged.
As a result, only those values were set aside for future processing when the tool was
operating, and values were eliminated during the start-up and run-down phases. The
design of the process parameters was used to set the parameters of individual experiments
(Table 2). After performing 12 operations, the Alicona InfiniteFocus microscope was used
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to measure the machined surface. Figure 5 depicts the actual machining process using an
actively driven rotation tool.
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4. Results

The data from 12 experimental measurements of the machining process Ti-6Al-4V
using a monolithic rotary tool was analyzed to obtain the reported results.

4.1. Cutting Force in the Machining Process

The measurement of the cutting force components and the subsequent determination
of the total cutting force in the process allows monitoring of the force load. Based on this
data, it is possible to monitor the impact of cutting parameters on the turning process with
a rotary tool. It can be determined from the graph (Figure 6) that the largest range of total
cutting force occurred during experiment No. 6. On the contrary, the smallest value of the
total cutting force was measured during experiment No. 12 and its increase while turning
was minimal. The maximum value in experiment No. 12 was 56.4 N. Setting of the cutting
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parameters to the lower limit resulted in a low cutting force value. The highest cutting
force was measured during experiment No. 4, when the tool wear threshold was surpassed
due to the high values of the cutting parameters and the low power of the externally
driven spindle. The same situation occurred during experiment No. 7. During experiment
No. 1, the value of the cutting force increased to 695.4 N and during experiment No. 4, to
852 N. The reason for the high cutting force was the setting of the cutting parameters at the
upper limit.
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The main effects graphs (Figure 7) indicate the relative relevance of the parameters to
the system response. If the line for a particular parameter is horizontal in the main impact
graphs, the parameter had no significant influence. On the other hand, the parameter with
the greatest inclination to the x-axis is the most pronounced. With a statistical accuracy of
85.90%, the graph of the main impacts provides interesting information on the impact of the
cutting parameters on the final value of the cutting force in the machining process. It can be
said that such accuracy is sufficient for screening the process parameters. We may conclude
from the data that all the monitored parameters had an impact on the total value of the
cutting force. The difference arises in the range of their impacts. The increase in the cutting
force was least affected by the depth of cut (ap). This could also be due to the device’s low
setting range. The workpiece rotation speed (vw) had the most significant impact on the
strength of the cutting force. This phenomenon can also be assumed based on a theoretical
point of view. In general, the workpiece’s rotational speed is a process parameter that has a
significant impact on the cutting speed during machining. A significant difference in the
cutting force values is also caused by the feed parameter (f ). Based on the main impact
data, we can state that an increase in the values of the process parameters resulted in an
increase in the cutting force when turning with the rotary tool.

The contour plots (Figure 8) show the relationship between the two independent
variables and the dependent variable, showing the values of the maximum cutting force
Fmax for the combinations of the variables X and Y. The X and Y values are displayed
along the X and Y axes while the contour lines and bands represent the Fmax value. The
interaction of the parameters ap and f shows the smallest changes in Fmax values. This
shows the Fmax bands with the widest gap. Thus, the change in the cutting force is
attributable to ap and f in the range of 200 N at constant process parameters vw and vt.
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The most significant relationship is the combination of the workpiece rotation speed (vw)
and feed (f ) parameters. It is possible to determine these cutting parameters and achieve
a reduction in the cutting force in the range of 500 N using the contour (surface) plot.
The contour plot display shown here helps to determine the cutting parameters and their
eventual optimization.
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4.2. Quality of the Machined Surface

Each experiment was followed by measurement of the sample’s machined surface.
The measurement was carried out using Alicona Infinite Focus equipment. This measuring
device allows microscopic measurement of the surface roughness of the scanned surfaces.
The measured sample was placed on the workbench of the device, aligned, and well lit.
The measured section was located in the center of the sample. This eliminated the run-in
and run-out surfaces after machining with a cutting tool. The device enabled us to create
a surface scan, which was subsequently aligned, and the roughness parameter Rz was
evaluated. Sampling took place on a defined area of 4 mm × 4 mm. The evaluation of the
roughness parameters was based on five basic lengths with a size of 0.8 mm.
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Figure 9 shows the comparison of the filtered surfaces of the samples from experiments
7 and 10, whose settings of the cutting parameters are given in Table 2. These are the samples
for which the lowest and highest values of the roughness parameter Rz were achieved.
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Figure 9. The final state of the machined surface of the Ti-6Al-4V material.

Experiment No. 7’s process parameters, when combined with the rotary monolithic
cutting tool, resulted in a stable machining process. There were no critical points on the
machined surface and the machined surface was characterized by a regular texture. The
chips were bonded to the machined surface in experiment No. 10. This results in the
creation of protrusions on the surface and increases the values of the roughness parameter
Rz. This phenomenon occurred mainly at the workpiece rotation speed (vw) set at the upper
limit of the range and, at the same time, the low tool rotation speed (vt). The measured
values of the roughness parameter Rz are graphically shown in Figure 10.
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Figure 10. Values of the roughness parameter of the machined surface Rz.

During the screening, a graph of the main effects was created to better understand the
influence of specific cutting parameters on the final surface roughness (Figure 11). This
model has a statistical significance of 92.66 per cent. The most significant effect is the
workpiece rotation speed (vw). Unevenness formed on the machined surface as this param-
eter was increased, resulting in higher values of the roughness parameter Rz. The almost
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horizontal line of the effect of the tool rotation speed (vt) indicates the insignificance of the
given parameter for the resulting surface roughness. There are situations when increasing
the depth of cut (ap) and feed (f ) cutting parameters resulted in reduced surface roughness
values. This phenomenon can be attributed to the kinematic scheme’s uniqueness, which is
assumed to be a high feed machining technology.
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Figure 11. Main effects plot of the roughness parameter Rz.

A contour plot of the surface roughness parameter Rz can be used to determine
the cutting parameters to achieve the required surface roughness (Figure 12). A slight
interaction occurs between the feed parameters (f ) and the rotational speed of the tool (vt).
The color map fields represent the range of Rz values. These have the highest range when
the depth of cut parameter (ap) and the workpiece rotation speed (vw) are combined, with
the surface roughness Rz changing by up to 10 µm depending on the parameter value.
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The dependence of the selected cutting parameters and their influence on the
roughness of the machined surface were determined by measuring and analyzing the
experimental data. When the workpiece rotation speed was adjusted to the lower limit
(vw = 100 m·min−1), lower Rz values were achieved. The quality of the machined surface
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was significantly influenced by the cutting parameters. As a result, it is necessary to
understand how they interact and how to set them up properly.

5. Discussion

Turning of materials with enhanced mechanical properties, such as titanium alloy
Ti-6Al-4V, remains a challenge that requires new technology to increase production and
lower costs. The low cutting speeds and high wear of standard tools require an opti-
mization process. Machining with an actively driven rotating tool is still not a common
practice. Complex tool design solutions have high demands on production and assembly,
which leads to the high cost of these rotary tools. The monolithic tool eliminates these
shortcomings. Therefore, it is important to identify the technological possibilities of such
a tool and examine its working process. To understand the technological possibilities of
the given tool, it is necessary to set up the machining process itself. The presented work
aimed to screen the cutting parameters in the process of machining titanium alloy, with an
emphasis on the cutting force and the ensuing machined surface integrity.

The experimental studies and analyses showed that all selected cutting parameters
(vw, vt, ap, f ) have an effect on the overall cutting force during machining. The magnitudes
of their effects, however, differ. The most significant effect occurred when the workpiece
rotation speed parameter (vw) was modified. When this parameter was set at the upper
limit, the highest cutting forces were also recorded. In experiment No. 4, these reached
up to 851 N. The lowest cutting force was obtained when the process parameters were
adjusted to the lower limit of the defined range, which varied from 25 to 51 N. The cutting
parameters utilized in this experiment were several times higher than those employed in
the work of Olgun and Budak [24], who specified a cutting speed of 45 m·min−1, a feed
value of 0.1 mm, and a depth of cut of 0.2 mm, which was identical to the depth of cut used
in our experiment. The machining of a titanium alloy with a rotary tool was determined to
be inadequate by Kossakowska and Jemielniak [25]. The reason for this could be the design
of the tool, the choice of an inappropriate geometry, or the process parameters.

Monitoring the machined surface revealed certain shortcomings in the experimental
setup, as the chip adhered to the workpiece surface when the workpiece rotation speed (vw)
was set. Of course, this phenomenon is an undesirable phenomenon that must be elimi-
nated. Adjustment of the values of the cutting parameters or the application of process
fluid can solve it. This phenomenon did not occur when the workpiece rotation speed was
set to the lower limit, resulting in reduced surface roughness values Rz. The effect of the
feed parameters (f ) and depth of cut (ap) on the machined surface is a significant finding. In
contrast to standard turning, where higher feed rates result in a degraded surface quality,
lower Rz values have been achieved when machining with a new monolithic driven rotary
tool. The depth of cut (ap) parameter reflected this effect as well. From this perspective,
there was no significant effect of the tool rotation speed on the machined surface.

The non-standard kinematic machining scheme in combination with the new mono-
lithic tool presents possibilities for advancing and increasing the productivity of machining
titanium alloys. Based on the presented solution, it is possible to identify significant cutting
parameters and their impact on the machining process by actively driven rotation.

6. Conclusions

The presented work focused on screening the influence of the change in the cutting
parameters on the turning process of titanium alloy Ti-6Al-4V with an actively driven
rotation tool. The kinematic scheme of turning with an actively driven rotation tool is
different from the kinematic scheme of a conventional turning method. In addition to the
main rotational movement of the workpiece (vw) itself, the tool rotates throughout the
cutting process with the actively driven rotation rotary tool (vt). The tool itself, which
was applied in the conducted experiments, was designed by the staff of the Department
of Machining and Production Technology of the University of Žilina and is registered for
patent recognition under the number: 3-2020. The used version of the tool was modified to
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meet the requirements for machining Ti-6Al-4V. The influence of the change in the cutting
parameters was investigated in terms of the achieved cutting force and the size of the
selected parameters of the roughness of the machined surface. The data were statistically
analyzed and displayed graphically. From the experimental measurements and the gained
data, we provide the following conclusions:

• The new monolithic rotary tool with a defined cutting wedge geometry is also suitable
for machining materials with enhanced mechanical properties.

• Specialized CNC control is not required for real deployment (application) of the tool.
However, the control system must allow for the control of at least three basic axes
with the additional fourth axis (second spindle allowing independent rotation of
the workpiece).

• With the appropriate setting of the process parameters, it is possible to use a kine-
matic scheme of actively driven rotation machining even without the presence of a
cooling medium.

• The cutting parameters have a significant effect on the size of the cutting force; as their
values increase, the cutting force also increases. The workpiece rotation speed (vw) has
the most significant effect on the cutting force.

• With the appropriate settings, the dependencies of the cutting parameters and
their interaction can result in a reduction in the total cutting force during the
machining process.

• With a monolithic driven rotary tool, the state of the machined surface does not
indicate critical values; hence, this kinematic machining scheme is suitable for standard
turning tasks.

• When selecting cutting parameters in terms of the quality of the machined surface, it
is possible to select higher values of the feed (f ) and depth of cut (ap), which can lead
to the process being included in high feed machining technologies.

Based on the experimental measurements and the reported results, we can conclude
that the monolithic turning tool shows favorable results. Further research, possibly focusing
on its critical load, temperature resistance, and durability, is required before it can be
employed in industrial manufacturing.
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