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ABSTRACT
Objectives The enormous toll of the COVID- 19 pandemic 
has heightened the urgency of collecting and analysing 
population- scale datasets in real time to monitor and 
better understand the evolving pandemic. The objectives of 
this study were to examine the relationship of risk factors 
to COVID- 19 susceptibility and severity and to develop risk 
models to accurately predict COVID- 19 outcomes using 
rapidly obtained self- reported data.
Design A cross- sectional study.
Setting AncestryDNA customers in the USA who 
consented to research.
Participants The AncestryDNA COVID- 19 Study collected 
self- reported survey data on symptoms, outcomes, risk 
factors and exposures for over 563 000 adult individuals 
in the USA in just under 4 months, including over 4700 
COVID- 19 cases as measured by a self- reported positive 
test.
Results We replicated previously reported associations 
between several risk factors and COVID- 19 susceptibility 
and severity outcomes, and additionally found that 
differences in known exposures accounted for many 
of the susceptibility associations. A notable exception 
was elevated susceptibility for men even after adjusting 
for known exposures and age (adjusted OR=1.36, 
95% CI=1.19 to 1.55). We also demonstrated that self- 
reported data can be used to build accurate risk models 
to predict individualised COVID- 19 susceptibility (area 
under the curve (AUC)=0.84) and severity outcomes 
including hospitalisation and critical illness (AUC=0.87 
and 0.90, respectively). The risk models achieved robust 
discriminative performance across different age, sex and 
genetic ancestry groups within the study.
Conclusions The results highlight the value of self- 
reported epidemiological data to rapidly provide public 
health insights into the evolving COVID- 19 pandemic.

INTRODUCTION
The COVID- 19 pandemic has resulted in 
over 346 million COVID- 19 cases and over 
5.5 million deaths worldwide,1 including 
nearly 21 million cases and more than 870 
000 deaths in the USA as of late January 

2022.2 The growing impact of the pandemic 
intensifies the need for real- time under-
standing of COVID- 19 susceptibility and 
severity risk factors, not only for public 
health experts, but also for individuals 
seeking to assess their own personalised risk. 
Prior research has indicated that differences 
in COVID- 19 susceptibility, defined in this 
study as a positive nasopharyngeal swab test 
result, are related to age,3 sex- dependent 
immune responses4 and genetics,5 6 while 
heightened severity of COVID- 19 illness, 
defined here as hospitalisation or progres-
sion to a critical case (intensive care unit 
(ICU) admittance, septic shock, organ 
failure or respiratory failure), is associated 
with risk factors such as age,3 7–9 sex,4 10–12 
genetic factors13 and underlying health 
conditions.7 9 10 14–16 Self- reported survey 
data, which can easily be collected in the 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ We performed association analyses for COVID- 19 
susceptibility and severity in a large, at- home sur-
vey and replicated much of the previous clinical 
literature.

 ⇒ We developed risk models and evaluated them 
across different age, sex and genetic ancestry co-
horts, and showed robust performance across all 
cohorts in a holdout dataset.

 ⇒ The most severe cases, especially those resulting in 
mortality, were not sampled due to the self- reported 
nature of the data. As a result, many of the risk fac-
tor effect estimates may be underestimated for se-
vere illness outcomes.

 ⇒ The AncestryDNA cohort is self- selected, slightly 
older, more European and more female than the 
broader US population.

 ⇒ Our results establish large- scale, self- reported sur-
veys as a potential framework for investigating and 
monitoring rapidly evolving pandemics.
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home, afford the opportunity to dynamically monitor 
the continually evolving pandemic and allow for real- 
time estimation of individual- level COVID- 19 risk.17–20 
Furthermore, self- reported surveys allow for collec-
tion of information about known exposures, of which 
few epidemiological COVID- 19 studies have explicitly 
accounted for in association analyses to date.21

In this paper, we aimed to replicate previous litera-
ture and to provide new insight into factors associated 
with susceptibility and severity of COVID- 19 using a 
large survey cohort of 563 141 AncestryDNA customers 
who have consented to participate in the AncestryDNA 
COVID- 19 Study.5 We conducted the survey prior to 
widespread vaccine availability. We performed associa-
tion tests of known or suspected COVID- 19 risk factors 
with one susceptibility and two severity phenotypes and 
report unadjusted ORs and ORs adjusted for potential 
confounding factors. We additionally investigated asso-
ciations of COVID- 19 symptoms with susceptibility and 
severity.

We further demonstrate that this type of self- 
reported dataset can be used to build accurate predic-
tive risk models for COVID- 19 susceptibility and 
severity outcomes. For susceptibility, we designed two 
models and additionally applied two literature- based 
models19 to predict COVID- 19 cases among respon-
dents reporting a test result. We also designed models 
to predict two different COVID- 19 severity outcomes 
based on minimal information about demographics, 
health conditions and symptoms: hospitalisation due to 
COVID- 19 infection and progression of an infection to 
a life- threatening critical case among those reporting 
a positive COVID- 19 result.14 To evaluate the potential 
for generalisability, we assessed performance of all of 
the risk models across different age, sex and genetic 
ancestry cohorts.

METHODS
Survey description
Survey responses were collected from AncestryDNA 
customers who consented to research in the USA between 
22 April and 6 July 2020. The survey consisted of 50+ ques-
tions about COVID- 19 test results, 15 symptoms among 
those who tested positive or who tested negative and had 
influenza- like symptoms, disease progression for positive 
testers, age, height, weight, known exposures to biolog-
ical relatives, household members, patients or any other 
contacts with COVID- 19, and 11 underlying health condi-
tions (online supplemental tables 1 and 2). Collection of 
self- reported COVID- 19 outcomes from US AncestryDNA 
customers who consented to research for the study 
and the survey design are described in more detail in a 
genome- wide association study on a very similar Ances-
tryDNA dataset.5 Here, participants reporting a negative 
test result were also assessed for symptoms and clinical 
outcomes.

Patient and public involvement
There was no patient or public involvement in the 
design, conduct, reporting or dissemination plans of this 
research.

Outcome definitions
The study assessed three outcomes: one for susceptibility 
and two for severity of COVID- 19 infection. Cases for 
COVID- 19 susceptibility were individuals who responded 
‘Yes, and was positive’ to the question, ‘Have you been 
swab tested for COVID- 19, commonly referred to as coro-
navirus?’ Responders who answered ‘Yes, and was nega-
tive’ were used as controls for the susceptibility analysis.

The hospitalisation outcome was defined among 
COVID- 19- positive cases if a participant responded ‘Yes’ 
to a binary question about experiencing symptoms due 
to COVID- 19 illness and ‘Yes’ to the hospitalisation ques-
tion (‘Were you hospitalised due to these symptoms?’). 
Controls were defined by a response of ‘No’ to the symp-
toms question or a response of ‘No’ to the hospitalisation 
question in addition to reporting a self- reported positive 
COVID- 19 test result.5

Critical cases of COVID- 19 were defined via a response 
of ‘Yes’ to one or more questions about ICU admittance 
or, alternatively, self- reported septic shock, organ failure 
or respiratory failure resulting from a COVID- 19 infec-
tion.14 Controls were defined by a response of ‘No’ across 
all of these questions in addition to self- reporting a posi-
tive COVID- 19 test result.

Genetic sex and ancestry definitions
All individuals were genotyped, using previously described 
general genotyping and quality control procedures.22 
Both sex and genetic ancestry were defined for individuals 
based on their genotypes. Genetic ancestry was estimated 
using a proprietary algorithm to estimate continental 
admixture proportions.23 All participants were assigned 
to one of four broad genetic ancestry groups: European 
ancestry, admixed African- European ancestry, admixed 
Amerindian ancestry or other ancestry combinations.

Data preparation
Only complete case analyses were performed. Multiple- 
choice categorical questions were one- hot (‘dummy’) 
encoded as binary risk factors. We considered several 
risk factors and outcomes questions in our association 
analyses and risk modelling efforts, some of which are 
summarised in online supplemental tables 1 and 2. Based 
on the dependency structure of the survey, we made the 
following inferences:

 ► Participants reporting ‘No’ to a binary question 
about symptoms arising from COVID- 19 infection 
were designated as negatives for dependent questions 
about individual symptoms, hospitalisation due to 
symptoms and ICU admittance due to symptoms.

 ► Participants reporting ‘No’ to a binary question about 
hospitalisation were assigned to hospital duration of 
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0 days and designated as negative for ICU admittance 
due to symptoms.

For association analyses, individuals were asked to 
score each of their symptoms (‘Between the beginning of 
February 2020 and now, have you had any of the following 
symptoms? fever; shortness of breath; dry cough; nasal 
congestion; runny nose; sore throat; feeling tired or 
fatigue; chills; body aches; headache; cough- producing 
phlegm; abdominal pain; nausea or vomiting; diar-
rhoea; change in taste or smell’) as ‘None’, ‘Very Mild’, 
‘Moderate’, ‘Severe’ or ‘Very Severe’. Responses for 
each symptom were converted to a binary variable based 
on the following mapping: 0=None, Very Mild, Mild; 
1=Moderate, Severe, Very Severe, for a total of 15 binary 
symptom variables.

Body mass index (BMI) was calculated from responses 
to questions about individual height (‘How tall are you?’) 
and weight (‘How much do you weigh?’) as BMI=(weight 
in kilograms)/(height in metres)2. A BMI beyond six SDs 
of the appropriate sex- stratified mean was considered 
equivalent to a non- response for BMI. We used BMI cate-
gories reported by the Centers for Disease Control and 
Prevention (CDC) for these analyses: underweight (BMI 
<18.5), healthy (18.5≤BMI<25), overweight (25≤BMI<30), 
obese (BMI ≥30), along with the subcategories for 
obesity: obesity I (30≤BMI<35), obesity II (35≤BMI<40) 
and obesity III (BMI ≥40).24

Pre- existing health conditions considered in these 
analyses were gathered from the response to (‘Do you 
currently have any of the following health conditions? 
Select all that apply.’) Allowed responses to this question 
were: asthma; COPD (chronic obstructive pulmonary 
disease); other lung condition; cancer (treated in the 
past year); cardiovascular disease; chronic kidney disease 
(CKD); diabetes; hypertension; organ failure requiring 
a transplant (in the last year); blood disorder requiring 
haematopoietic stem cell/bone marrow transplant; 
other autoimmune disease; other immunodeficiency 
disorder; other; none; not sure. The ‘pre- existing health 
conditions, any’ variable was binarised from the survey 
responses as ‘Y’ for individuals selecting at least one of the 
listed conditions and/or ‘Other’, and ‘N’ for individuals 
selecting ‘None’. Individuals selecting ‘Not sure’ were 
omitted from the analysis.

Association analysis
Analyses were performed either with the statsmodels 
package in Python V.3 or in base R with the glm function. 
For each susceptibility and severity outcome and risk 
factor of interest, a simple logistic regression (LR) model 
was fit using unpenalised maximum likelihood (online 
supplemental tables 3–11).25 Multiple LR was used to 
adjust the ORs for known COVID- 19 exposures and 
potentially confounding risk factors. The adjusted model 
included age, sex and four known exposures (Y/N if any) 
for susceptibility outcomes; and age, sex, obesity (bina-
rised if BMI ≥30) and health conditions (binarised if any) 
for severity outcomes. Individual adjustment variables 

were omitted when analysing associations for risk factors 
within equivalent categories (eg, age was not included in 
adjusted models for age bin risk factors). Complete case 
analyses were performed for adjusted models. No interac-
tion effects were considered.

For each risk factor, 95% CIs for the log OR were esti-
mated under the normal approximation. The signifi-
cance threshold was Bonferroni corrected for the 42 
different risk factors examined (adjusted threshold of 
0.05/42=0.0012).25

Risk factor selection and risk model training
Three risk models were constructed to predict one of 
three binary outcomes: a positive test result among those 
reporting a test result (susceptibility); a hospitalised 
COVID- 19 case among those reporting a positive test result 
(hospitalisation) and a critical COVID- 19 case among 
those reporting a positive test result (critical case). Prior 
to model training, the data were split with a fixed- random 
seed into training and holdout datasets. We chose risk 
factors based on a minimal subset of nominally significant 
ORs within our training data as well as literature guid-
ance.3 4 7 9 11 12 14–16 For the susceptibility models without 
symptoms, we included a subset of exposure- related ques-
tions, based on the training OR analyses, as well as two 
demographic variables (age and sex). For susceptibility 
models with symptoms, we additionally included the 
five symptoms most differentiated between symptomatic 
negative and positive testers from our training ORs. For 
the severity models, we included pre- existing conditions, 
based on the training OR analyses, predictive symptoms 
within our training dataset, severe obesity (obesity III, 
BMI ≥40), age and sex. See online supplemental table 
12 for the final set of risk factors selected for each risk 
model.

Once final risk factors were selected, we trained LR 
models with fivefold cross- validated grid search on the 
training dataset to select an optimal lasso regularisation 
parameter lambda.25 For the grid search, we scanned 
eight different values for lambda, equally partitioned 
geometrically across a four- log space. We then retrained 
on the entire training dataset with the optimal lambda 
and evaluated the final model on the holdout dataset.

Model thresholding
Phenotypes were predicted from the output of trained 
models based on a 50% probability threshold (ie, logistic 
model output >0.5). Sensitivity and specificity were then 
calculated based on the true versus predicted binary 
outcomes.

Estimation of performance error
To estimate error in model performances, we boot-
strapped our holdout dataset 1000 times to generate a 
sampling distribution for each evaluation metric. We esti-
mated the mean and 95% CIs for each metric based on 
the mean and SD of this sampling distribution.25
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RESULTS
Survey response and study population
A total of 563 141 responses were collected, with 4726 
individuals reporting a COVID- 19 positive test result, 28 
872 a negative test result, 71 761 no COVID- 19 test but 
influenza- like symptoms, and 454 542 no COVID- 19 test 
and no influenza- like symptoms. A total of 3240 reported 
pending test results and were excluded from further 
analyses. The survey completion rate was approximately 
95%. In general, the COVID- 19 positive test rate and self- 
reported clinical outcomes were consistent with those 
reported by the US CDC over a similar period (online 
supplemental note 1).26 The majority of participants 

were female (67.5%) and of European ancestry (75.4%), 
with some individuals of admixed Amerindian (6.5%) 
or admixed African- European (3.0%) ancestries. The 
median age of the entire cohort was 56, and the median 
age of those reporting a positive test result was 49 (table 1 
and online supplemental tables 13–15). Case definitions 
are summarised in figure 1 and table 2.

Susceptibility associations: replicated and novel
We replicated many previously reported literature asso-
ciations for susceptibility. The strongest associations for 
a positive COVID- 19 test result were known COVID- 19 
exposures, either through a household case (OR=26.03; 

Table 1 Study population demographic information

COVID- 19 nasopharyngeal swab 
test positive

COVID- 19 nasopharyngeal swab 
test negative

Full AncestryDNA 
COVID- 19 cohort

n=4726 n=28 872 n=563 141

No COVID- 19 nasopharyngeal swab test

  With influenza- like symptoms 71 761

  Without influenza- like symptoms 454 542

Nasopharyngeal swab test results pending 3240

Age

  Median, mean (SD) 49, 49.49 (15.43) 53, 52.68 (15.5) 56, 53.90 (16.13)

  Bins (counts, fraction)

   18–30 600 (0.13) 2496 (0.09) 52 580 (0.09)

   31–40 941 (0.20) 5001 (0.17) 87 261 (0.15)

   41–50 926 (0.20) 5333 (0.18) 90 473 (0.16)

   51–60 1057 (0.22) 6009 (0.21) 108 062 (0.19)

   61–70 735 (0.16) 5961 (0.21) 128 200 (0.23)

   71–90 467 (0.10) 4072 (0.14) 96 565 (0.17)

Genetic sex (counts, fraction)

  Female 3013 (0.64) 19 945 (0.69) 380 349 (0.67)

  Male 1706 (0.36) 8867 (0.31) 183 153 (0.32)

Genetic ancestry continental groupings

  Admixed African- European ancestry 275 (0.06) 1244 (0.04) 17 019 (0.03)

  Admixed Amerindian ancestry 520 (0.11) 2336 (0.08) 36 865 (0.07)

  European ancestry 3026 (0.64) 20 269 (0.70) 424 328 (0.75)

  Other ancestry 905 (0.19) 5023 (0.17) 84 929 (0.15)

Pre- existing health conditions (any) 1911 (0.46) 15 261 (0.55) 255 788 (0.47)

BMI

  Median, mean (SD) 28.59, 29.83 (7.04) 28.67, 29.92 (7.05) 28.29, 29.53 (6.87)

  Bins (counts, fraction)

   Underweight (BMI<18.5) <100 (0.03*) 204 (0.01) 4407 (0.01)

   Healthy (18.5≤BMI<25) 971 (0.25*) 6442 (0.24) 139 565 (0.27)

   Overweight (25≤BMI<30) 1225 (0.31*) 8503 (0.32) 172 941 (0.33)

   Obese (BMI≥30) 1629 (0.42*) 11 264 (0.43) 203 325 (0.39)

Symptoms (tested positive)

  General, yes (counts, fraction) 3862 (0.82) 9237 (0.02)

Hospitalisation (counts, fraction) 453 (0.10) 1397 (0.00)

  Duration, days (median, mean (SD)) 5, 7.62 (9.08) 3, 4.78 (7.22)

*Approximate % for privacy reasons; 100 counts used in place of <100.
BMI, body mass index.
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95% CI=22.26 to 30.43), biological relative (OR=5.77; 
95% CI=4.99 to 6.68) or other source of ‘direct’ expo-
sure (OR=6.94; 95% CI=6.02 to 7.99) (figure 2 and online 
supplemental table 3). In general, adjusting for known 
exposures, age and sex resulted in attenuation of the 
ORs, with many associations becoming insignificant after 
adjustment (figure 2 and online supplemental table 4).

One novel result was that the OR for men was not atten-
uated after adjustment, and men remained at elevated 
odds after adjusting for known exposures and age 
(adjusted OR (aOR)=1.36; 95% CI=1.19 to 1.55; figure 2 
and online supplemental table 4). We also note that men 
and women reported comparable exposure burden, with 

men slightly more likely to report a household case of 
COVID- 19 but less likely to report a case of COVID- 19 
among biological relatives (online supplemental tables 6 
and 7).

Consistent with previous reports,27–31 younger individ-
uals (ages 18–29 years; OR=1.51; 95% CI=1.26 to 1.81) 
were significantly more likely to test positive compared 
with older individuals (ages 50–64 years, the largest age 
group in this cohort), and individuals of admixed African- 
European (OR=1.48; 95% CI=1.18 to 1.85) or admixed 
Amerindian ancestry (OR=1.49; 95% CI=1.26 to 1.77) 
were more likely to test positive compared with those of 
European ancestry (figure 2 and online supplemental 

Figure 1 Susceptibility and severity association cohort definitions. The susceptibility cohort for association analyses and risk 
models (short- dashed boxes) was comprised of a subset of the individuals who reported taking a nasopharyngeal swab test 
and receiving a positive or negative result. The severity cohort for the hospitalisation association analyses (long- dashed boxes) 
was comprised of those who reported receiving a positive test result. They were further subdivided into those who reported 
hospitalisation and those who did not (either directly or inferred, see the Methods section). The severity cohort for the critical 
case association analyses (dash- dotted boxes) was also comprised of those who reported receiving a positive test result. They 
were further subdivided into those who reported meeting the criteria for a critical case and those who did not (either directly or 
inferred, see the Methods section).

Table 2 Case definitions

Outcome Case definition Total cases Total controls

COVID- 19 positive test result Self- reported positive COVID- 19 swab test result 4726 28 872

COVID- 19 hospitalisation Self- reported positive COVID- 19 swab test result and hospitalisation due 
to COVID- 19 symptoms

453 3751

COVID- 19 critical case Self- reported positive COVID- 19 swab test result, hospitalisation due 
to COVID- 19 symptoms, and one or more of: ICU admittance, ICU 
admittance with oxygen, respiratory failure, septic shock, or multiple organ 
dysfunction or failure
OR
Self- reported positive COVID- 19 swab test result and one or more of: 
respiratory failure, septic shock, or multiple organ dysfunction or failure

245 3975

ICU, intensive care unit.
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Figure 2 Susceptibility (positive test result) ORs and 95% CIs estimated from simple (‘unadjusted models’, grey) and multiple 
(‘adjusted models’, black) logistic regression with adjustment for other risk factors. Open circles indicate not significant (p>0.05) 
after accounting for multiple hypothesis tests using Bonferroni correction. Age, sex, genetic ancestry and obesity ORs were 
estimated in relation to the reference variables indicated. Exposure, health and symptom ORs were each estimated separately 
as binary variables. Symptom ORs were estimated as binary variables among symptomatic testers only (see the Methods 
section). Risk factor adjustments for susceptibility include: sex, age and at least one known COVID- 19 exposure. Where 
applicable, individual adjustment variables were omitted to avoid duplicate adjustment (see the Methods section). BMI, body 
mass index.
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table 3). Individuals in all three of these groups reported 
higher levels of COVID- 19 cases within the household, 
cases among biological relatives, and/or other known 
‘direct’ COVID- 19 exposures (online supplemental 
tables 5–7). Adjusting for age (ancestry groups only), sex 
and known exposures attenuated the OR for all of these 
groups (younger aOR=1.28; 95% CI=1.03 to 1.59, African- 
European aOR=1.23; 95% CI=0.94 to 1.62, and Amerin-
dian aOR=1.27; 95% CI=1.04 to 1.57; figure 2 and online 
supplemental table 4).

Individuals reporting pre- existing medical conditions 
(eg, cancer, cardiovascular disease, CKD, diabetes, hyper-
tension) were less likely to test positive for COVID- 19 
(figure 2 and online supplemental table 3). We observed 
significantly decreased odds of a known ‘direct’ exposure 
to COVID- 19, as well as significantly decreased odds of 
a household case of COVID- 19, among such individuals 
relative to those without any health conditions (OR=0.71; 
95% CI=0.65 to 0.78 and OR=0.74; 95% CI=0.65 to 0.84, 
respectively; online supplemental tables 5 and 6).

Replicated associations for COVID-19 severity
Consistent with previous reports,7 9 12 14–16 we observed 
positive associations between certain health conditions 
and COVID- 19 severity outcomes; many of these asso-
ciations remained significant after adjustment for age, 
sex and obesity (BMI ≥30) (figure 3 and online supple-
mental tables 8–11). COVID- 19 cases reporting at least 
one underlying health condition were significantly more 
likely to progress to a critical case (OR=2.85; 95% CI=1.78 
to 4.57; figure 3, online supplemental figure 1 and online 
supplemental table 10). Specific underlying health condi-
tions that were associated with hospitalisation and/or 
critical case progression included CKD, COPD, diabetes, 
cardiovascular disease and hypertension (figure 3, online 
supplemental figure 1 and online supplemental tables 9 
and 11). Among individuals testing positive for COVID- 
19, the oldest (≥65 years) were significantly more likely 
to be hospitalised compared with those aged 50–64 years 
(OR=1.70; 95% CI=1.13 to 2.56; figure 3 and online 
supplemental table 8). Individuals of admixed African- 
European ancestry who tested positive were significantly 
more likely to report progression to a critical case, 
compared with those with European ancestry (OR=2.07; 
95% CI=1.03 to 4.17; online supplemental figure 1 and 
online supplemental table 10). Among COVID- 19 cases, 
men were significantly more likely than women to report 
progression to a critical case (OR=1.54, 95% CI=1.00 to 
2.37; online supplemental figure 1 and online supple-
mental table 10); these findings are consistent with CDC 
reports of increased ICU admittance rates in men (3% vs 
2%).26

Differential symptomatology between susceptibility and 
severity
We compared associations between susceptibility and 
severity to provide a more nuanced view of symptoms 
and other risk factors associated with susceptibility versus 

those associated with severity (figure 4 and online supple-
mental figure 2).18 19 32 Among symptomatic people 
reporting a COVID- 19 test result, those reporting change 
in taste or smell (OR=7.26; 95% CI=5.54 to 9.50), fever 
(OR=1.60; 95% CI=1.28 to 2.01), or feeling tired or 
fatigue (OR=1.41; 95% CI=1.05 to 1.89) were more likely 
to test positive (figure 4 and online supplemental table 
3). Those reporting runny nose (OR=0.59; 95% CI=0.47 
to 0.75) or sore throat (OR=0.49; 95% CI=0.39 to 0.62) 
were more likely to test negative, consistent with previous 
reports that these symptoms are more indicative of influ-
enza or the common cold (figure 4 and online supple-
mental table 3).18 19 32 Change in taste or smell, a hallmark 
symptom of COVID- 19 infection, was not associated with 
hospitalisation (OR=0.77, 95% CI=0.55 to 1.07; figure 4 
and online supplemental table 8). By contrast, dyspnoea 
(shortness of breath) was strongly associated with hospi-
talisation and critical case progression (OR=7.52; 95% 
CI=4.92 to 11.49 and OR=11.55; 95% CI=5.91 to 22.59, 
respectively),33 but was not associated with susceptibility 
(OR=1.14; 95% CI=0.91 to 1.44; figure 4 and online 
supplemental tables 3, 8 and 10).

Predictive risk models
We further developed risk models that predict an indi-
vidual’s COVID- 19 risk (susceptibility or severity, see the 
Methods section).7 17–19 34 35 The susceptibility models 
were designed to predict a COVID- 19 result (positive or 
negative) from risk factors among testers. We compared 
four models: our model based on demographics and 
exposures only (‘Dem+Exp’); our model based on demo-
graphics, exposures and symptoms (‘Dem+Exp+Symp’); 
and for benchmarking purposes, a replication of a previ-
ously published model called ‘How We Feel’ based on 
nearly identical self- reported symptoms (‘HWF Symp’), 
and one which also included self- reported exposures 
(‘HWF Exp+Symp’) (online supplemental note 2 and 
online supplemental table 12).19 The risk factors for the 
models ‘Dem+Exp’ and ‘Dem+Exp+Symp’ were selected 
from our training dataset (online supplemental table 16) 
and/or guidance from the literature (see the Methods 
section).

All four susceptibility models performed robustly; 
the three models that included one or more symptoms 
outperformed the model without symptoms (Dem+Exp), 
underscoring the value of self- reported symptoms for 
discriminating between cases and controls (figure 5, see 
online supplemental tables 17–20 for detailed model 
performance data). The model with demographics, 
exposures and symptoms (Dem+Exp+Symp) achieved 
the highest overall performance with an area under the 
curve (AUC) of 0.94±0.02, a sensitivity of 85% and a spec-
ificity of 91% (online supplemental note 3 and figures 
3–4). Each of the models performed comparably across 
different age, sex and genetic ancestry cohorts (figure 5 
and online supplemental tables 17–20). We observed no 
significant overfitting in any of the models as evidenced 
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Figure 3 Severity (hospitalisation) ORs and 95% CIs estimated from simple (‘unadjusted models’, grey) and multiple (‘adjusted 
models’, black) logistic regression with adjustment for other risk factors. Open circles indicate not significant (p>0.05) after 
accounting for multiple hypothesis tests using Bonferroni correction. Age, sex, genetic ancestry and obesity ORs were 
estimated in relation to the reference variables indicated. Exposure, health and symptom ORs were each estimated separately 
as binary variables. Symptom ORs were estimated as binary variables among symptomatic testers only (see the Methods 
section). Risk factor adjustments for severity include: sex, age, obesity (binarised if BMI ≥30) and underlying health conditions 
(Y/N if any). Where applicable, individual adjustment variables were omitted to avoid duplicate adjustment (see the Methods 
section). See online supplemental figure 1 for critical case severity ORs. BMI, body mass index.
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by comparable train–test performances (online supple-
mental table 21).

We trained two severity models, designed to predict either 
hospitalisation or progression to critical illness among 
COVID- 19 cases. We included a number of risk factors 
and symptoms most associated with severe COVID- 19 
outcomes from the literature and/or our training dataset 
(figure 4 and online supplemental tables 22 and 23); these 
included age,7–9 14 sex,4 7 11 12 14 severe obesity (obesity III, 
BMI ≥40)7 36 and health conditions,7 9 12 14–16 as well as 
symptoms including shortness of breath,33 fever, feeling 
tired or fatigue, dry cough and diarrhoea. Both models 

performed robustly on an independent holdout dataset 
(AUCs of 0.87±0.03 and 0.90±0.03 for the hospitalisation 
and critical models, respectively; figure 5). The severity 
models performed comparably when stratifying by age, sex 
and genetic ancestry (figure 5 and online supplemental 
tables 24 and 25), and there was no significant overfitting 
bias as evidenced by comparable train–test performances 
(online supplemental table 21).

DISCUSSION
The AncestryDNA COVID- 19 Study provides a highly 
complete, self- reported dataset that contains information 

Figure 4 Comparison of susceptibility- adjusted ORs (horizontal axis) and severity- adjusted ORs (vertical axis) for symptoms 
in figures 2 and 3. Severity aORs are for hospitalisation. Note that aORs for susceptibility and severity are adjusted differently 
according to descriptions in figures 2 and 3 captions. The aORs are plotted on a log scale for visibility. Shortness of breath 
is the strongest indicator of increased severity, while change in taste or smell is the strongest indicator for testing positive for 
COVID- 19 among symptomatic individuals (see the Methods section). Refer to online supplemental figure 2 for demographic, 
health condition and exposure aORs. aORs, adjusted ORs.
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about a plethora of risk factors in the context of COVID- 19 
susceptibility and severity outcomes. The self- report 
framework provides fast, low- cost, population- scale data 
that are particularly valuable in a pandemic, where 
knowledge is both limited and evolving rapidly based on 
changing circumstances. Additionally, the broad collec-
tion mechanism enables data gathering from many more 
participants than typically seen in a medical setting, 
including those with mild or no symptoms, and partici-
pants can safely provide data from their homes.

The study highlights exposure burden as the primary risk 
factor for COVID- 19 susceptibility, and the importance of 
accounting for known exposures when assessing differences 
in susceptibility to COVID- 19. Few studies have measured 
and explicitly adjusted for known COVID- 19 exposures at 

this scale.21 Importantly, we found elevated susceptibility risk 
in men after adjusting for age and known exposures, and 
unlike most of the risk factors we evaluated, the adjusted 
odds were not attenuated compared with the unadjusted 
odds. This finding is distinct from previous findings on 
elevated severity risk in men.4 7 11 This result could be due 
to differences between men and women in behaviours, 
unknown exposures, biology, genetics,4–6 or other risk factors 
not measured within this dataset and should be investigated 
in future studies.

Another major contribution of this study is the use of 
self- reported data for the development of novel risk models 
for predicting an individual’s COVID- 19 susceptibility 
and severity risk. The risk models presented here perform 
comparably or better than similar and more complex 

Figure 5 Performance of risk models on independent holdout data. (A) Receiver operating characteristic (ROC) curves for 
susceptibility models to predict COVID- 19 cases among testers reporting a result (positive or negative). (B) Area under the curve 
(AUC) for the four susceptibility models in (A), stratified by cohort. ‘All’ represents everyone in (A). (C) ROC curves for severity 
models to predict either hospitalisation (red) or critical illness progression (black) among COVID- 19 cases. (D) Area under the 
curve (AUC) for the two severity models in (B), stratified by cohort. ‘All’ represents everyone in (C). Refer to the Methods section 
as well as online supplemental figure 3 and online supplemental tables 12, 17–21, 24 and 25 for additional model performance 
data and model risk factor information. Dem+Exp, model based on demographics and exposures only; Dem+Exp+Symp, model 
based on demographics, exposures and symptoms; HWF Exp+Symp, model called ‘How We Feel’ based on nearly identical 
self- reported symptoms and self- reported exposures; HWF Symp, model called ‘How We Feel’ based on nearly identical self- 
reported symptoms.
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models reported previously.17–19 34 35 Although some previ-
ously reported risk models have been assessed in different 
age or sex cohorts,17–19 we are not aware of any that have 
been assessed across genetic ancestry cohorts.7 17–19 34 35 To 
ensure model fairness, it is important to assess risk model 
performance parity (or lack thereof) on known subgroups 
in the cohort. The parity in performance across genetic 
ancestry cohorts highlights the potential utility and general-
isability of the models to broader populations.18 19 32

Limitations
We note that there are some inherent limitations of self- 
reported data for studying COVID- 19 risk factors. The most 
severe cases, especially those resulting in mortality, were not 
sampled. As a result, many of the risk factor effect estimates 
may be underestimated. Additionally, the AncestryDNA 
cohort is self- selected, slightly older, more European and 
more female than the broader US population. Another 
potential issue is that those who reported a negative test 
may have underestimated their exposures and symptoms 
relative to those who tested positive, leading to upwardly 
biased exposure effect estimates. Finally, misclassification 
of COVID- 19 positive status is likely given the uneven avail-
ability of tests over the time period surveyed, potentially 
leading to susceptibility effect estimates that are biased 
toward the null. However, the fact that most of the associa-
tions observed in this study were similar to those previously 
reported in the literature and the fact that risk model perfor-
mance remained high when data were stratified by age, sex 
and genetic ancestry lend confidence to our findings in spite 
of limitations.

CONCLUSION
The COVID- 19 pandemic has exacted a historical toll on 
healthcare systems and global economies and continues to 
evolve based on changes in human behaviour, public health 
guidelines and societal factors. This study demonstrates 
the power of self- reported data in a large cohort to rapidly 
elucidate more details about COVID- 19 risk factors and help 
point the way to minimising disease burden.
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