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Abstract: Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD),
Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disor-
ders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders
have diverse clinical manifestations, they all share a common cellular stress response. These cellular
stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic
reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened
the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could
reduce cellular stress and have gained much attention in recent years. Evidence has shown the poten-
tial use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet
their mechanism is still elusive. This review provides an insight into the potential role of flavonoids
against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.

Keywords: flavonoids; cellular stress response; neurodegenerative disorders; ER stress proteotoxicity;
oxidative stress; neuroinflammation

1. Introduction

Neurodegenerative disorders are marked by different clinical features including mem-
ory and cognitive impairment, motor dysfunction, speaking disability, and breathing
problems [1–5]. These symptoms are the consecutive results of stress conditions. Expo-
sure to any stress, such as oxidative stress, environmental stress (metals and pesticides),
and pharma chemicals, lead to disruption of cellular homeostasis by changing the nor-
mal cellular function. Cellular homeostasis includes neuroinflammation, protein quality
control (PQC), and endoplasmic reticulum (ER) stress that are consistent in combating
stress conditions [6–10]. A compromised cellular stress response condition leads to an
imbalance in cellular homeostasis that results in cell death. Recent studies have found that
flavonoids can prevent cell death by attenuating the cellular stress response [11,12]. Natural
flavonoids are present in food and these are the most ingested polyphenolic compounds.
These flavonoids have many therapeutic properties, such as anti-microbial, anti-oxidant,
anti-inflammatory, and immune-modulatory [13–19]. Recent studies show the effectiveness
of flavonoids in neurodegenerative disorders [20]. Diet rich in flavonoids have shown ben-
efits against oxidative stress, inflammation [21], cardiovascular disease [22–24], apoptosis,
and cancer [25,26]. The potential roles of flavonoids in neurodegenerative disorders were
also confirmed by many studies. Citrus flavonoids, such as naringenin and hesperidin,
both can cross the blood-brain barrier (BBB) and prevent neuronal deterioration [15,27–29].
Nobiletin (citrus flavonoid) shows the anti-neuroinflammatory effect by alleviating the
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inflammatory response. These pieces of evidence suggest that the therapeutic property of
flavonoids against cellular stress and that could be used as a targeted drug for neurodegen-
erative disorders. This review provides insight on those flavonoids that prevent cellular
death by alleviating the toxic impact of the cellular stress response.

2. Search Strategy

A comprehensive literature search was conducted to identify relevant research articles
showing the beneficial effects of flavonoids in different models of neurodegenerative
diseases. We searched Web of Science, PubMed, Google Scholar, Embase, and Cochrane
Library databases to identify all relevant studies. We used different keywords for the search,
such as “neurodegeneration, neuroprotective, neuroprotection, and neurodegenerative
diseases, combined with “bioflavonoids, flavonols, flavan-3-ols, anthocyanin, flavone,
flavones, isoflavones isoflavonoids or flavonones, and flavonoid”. Studies were included
by studying the abstracts of the collected articles.

Selection Criteria

All studies showing the effects of flavonoids on in vitro and in vivo models of neu-
rodegenerative disease were selected. Administration of drugs, mode of administration,
and treatment schedule were not considered. Studies conducted on any species, age, and
sex were included. Studies where a comparison between different groups was given (e.g.,
control group, diseased group, and treated with flavonoids group) were included. We
did not include incomplete data, unpublished data, abstracts, conference proceedings,
commentary, editorials/letters, and duplicate references.

3. Environmental Stress and Cellular Stress Response
3.1. Environmental Stress

A gradual rise in hazardous chemicals, such as heavy metals, pesticides, and pharma
chemicals, causes an imbalance in the environment that adversely affects human health [30].
Epidemiological studies have suggested that environmental chemical exposure to humans
was associated with several disorders. The toxic effect of these chemicals is due to the
imbalance in cellular stress response. Cells have a well-evolved cellular homeostasis
system; however, stress exposure leads to disruption of cellular homeostasis by causing an
imbalance between the reactive oxygen species (ROS) and the antioxidant system. Under
oxidative stress, the generation of superoxide radical (•O2−) in mitochondria is the former
step in the formation and proliferation of other ROS. These free radicals react with hydrogen
peroxide (H2O2) via the iron-catalyzed Haber–Weiss reaction that generates the hydroxyl
radical (•OH) [31,32]. Another ROS ‘peroxynitrite’ (ONOO−) formation is accompanied
by the reaction of free radical nitric oxide and O2. The presence of peroxynitrite causes
severe toxic effects due to its interactions with amino acids that alter the structure/function
of the protein [33,34]. Exposure to pesticides and heavy metals leads to a rise in ROS
production. These ROS cause irreversible damage to the cellular macro-molecules that
are associated with the alteration of mitochondrial membrane functions, thus causing
mitochondrial dysfunction and apoptosis [35–37]. These environmental stress factors
also induce proteotoxicity by altering the structure of proteins, or affecting the nascent
polypeptide chain folding, e.g., arsenic induces protein aggregation [38]. Furthermore,
studies show that arsenic exposure causes protein misfolding that might affect protein-
protein interactions, thereby causing proteotoxicity and thus affecting cell viability [39,40].
Cadmium exposure to yeast cells leads to the unfolded protein response induction through
impairment of protein folding in the endoplasmic reticulum [41,42]. Exposure to chromium
results in protein damage by oxidation. Chromium also induces protein aggregation by
enhancing mRNA mistranslation. Mistranslation appears to be a primary cause of cellular
chromium toxicity [43]. Copper toxicity induces oxidative stress, inflammation, apoptosis,
astrocytosis, and excitotoxicity in the corpus striatum, hippocampus, and frontal cortex
region of the brain [44,45]. Pesticides are also known to show similar effects. Rotenone
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and dieldrin induce the aggregation of alpha-synuclein and mutant huntingtin (mthtt)
protein [46,47]. Paraquet treatment of SHSY-5Y cells induces the decrease in levels of
proteasome 19S subunits and causes proteasome dysfunction [48]. Thus, exposure to
environmental or intracellular stress could initiate the cellular stress response to protect
the cellular homeostasis, while exaggerated stress conditions could lead to cell death.

3.2. Cellular Stress Response

Cells eliminate toxic substances in many ways. Several types of stress, such as heat
stress, provoke various protective responses including oxidative stress response, heat shock
response, and unfolded protein response (UPR). All these stress responses work to balance
the cellular homeostasis either by monitoring and protecting the protein quality control or
by neutralizing the toxic effect of reactive nitrogen and oxygen species (RNS; ROS). These
heat shock responses and UPR are generally enhanced either by intercellular (oxidative
stress) or, extra-cellular (pesticide/metals) stresses. Both stress conditions lead to disruption
of the PQC by damaging the protein and making large aggregates. Under stress conditions,
cells enhance the expression of various heat shock proteins (HSPs) that maintain the protein
structure and refolds a misfolded protein. These HSPs are grouped into different subfamily
according to their molecular weight. These include: HSP110, HSP90, HSP70, HSP60, HSP40,
and small HSPs (sHSPs). All these HSPs are ATP-dependent except the sHSPs [49–52].
Hsp27, Hsp70, and Hsp32 (Heme Oxygenase, HO-1) are generally responding to neuronal
injuries including ischemia and hemorrhage. Hsp27 is a sHSP and works by making a
multimer post phosphorylation [53]. HSP90 is associated with the maturation of substrates,
especially those that have a role in various cellular pathways, such as E3 ubiquitin ligases,
kinases, and transcription factors. HSP90 attains certain specific conformational states that
are stabilized by co-chaperones [54,55].

Exposure to stress that interferes with the glucose level, protein glycosylation, and Ca2+

disturbance causes the accumulation of unfolded proteins in the endoplasmic reticulum.
This results in the activation of the UPR [56]. This UPR activates a set of different proteins
including inositol-requiring protein-1 (IRE1), protein kinase RNA (PKR)-like ER kinase
(PERK), and activating transcription factor 6 (ATF6). UPR signaling protects a cell from
an imbalanced unfolded protein load by increasing the folding capacity of the ER [57,58].
However, excessive protein overload in the ER or defects in the UPR may induce cell death,
known as ER stress-induced cell death.

Generally, cells maintain a healthy balance by monitoring the ratio of pro-oxidant:
antioxidant levels, but oxidative stress arises when the cells’ antioxidant systems, such as
superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and other antioxidant
proteins, fail to work [59]. ROS and RNS may interfere with the electron transport system.
Furthermore, ROS and RNS also induce peroxidation of lipids in the plasma membrane
and impair the functional activities of DNA and proteins [30,60,61]. All these cellular stress
responses try to protect the cell from stress, but under extreme conditions, the cellular
defense system fails to recover, thus promoting cell death.

4. Flavonoids

Flavonoids are polyphenolic compounds present in plants and are synthesized by
the phenylpropanoid pathway [62–64]. They have antioxidative and anti-inflammatory
properties [63–65]. Several case studies suggest that the intake of flavonoids reduce the
risk of dementia [66]. Flavonoids have a neuroprotective property and they reduce the
oxidative stress in epilepsy. In the central nervous system (CNS) several flavonoids bind to
the benzodiazepine site on the γ-Aminobutyric acid type A (GABAA)-receptor resulting
in anticonvulsive effects [67]. Intake of berry flavonoids improves memory in elderly
people. Dietary cocoa flavanols improve cognition in older adults by enhancing dentate
gyrus function [68]. Intake of cocoa flavanols improves human cognition and counteracts
different types of cognitive decline [69]. Gratton et al. found that intake of cocoa flavanols
enhances cerebral cortical oxygenation and cognition in healthy adults [70].
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Flavonoids are categorized into different subgroups, summarized in Table 1. The
application of flavonoids could mitigate the harsh effect of stress-induced cellular events.
Hence, the use of these flavonoids could attenuate the toxic effect of environmental stress
and cellular stress response.

Table 1. A subgroup of flavonoids, their natural resources, and example.

Subgroup Chemical Structure Plant Source Example Ref.

Isoflavones Soybeans, leguminous plants, microbes, Genistein, Daidzein, Glycerin,
Formanantine [71–74]

Flavones Leaves, flowers, and fruits Luteolin, Apigenin [75,76]

Flavanones All citrus fruits Hesperidin, Naringenin [77]

Flavonols Onions, berries, lettuce, tomatoes, grapes,
and apples Kaempferol, Quercetin [78]

Neoflavonoids Sri Lankan endemic plant Mesuathwaitesii Calophyllolide [79,80]

Flavanols(Flavan-3-ols) Peaches, pears, blueberries, bananas, and
apples

Catechins, Epicatechins,
Epigallocatechin [81,82]

Anthocyanins
Bilberries, cranberries, merlot grapes,

blackberries, black currants, red grapes,
strawberries, blueberries, and raspberries

Cyanidin, Delphinidin,
Malvidine [83]

Flavones Leaves, flowers, and fruits Luteolin, Apigenin [84,85]

Flavanones All citrus fruits Hesperidin, Naringenin [77]

5. Flavonoids and Cellular Stress Response
5.1. Role of Flavonoids in Neuroinflammation

Neuroinflammation is an immune response of the CNS. During neuroinflammation,
glial cells (microglia) get activated and release inflammatory mediators, such as cytokines,
chemokines, and ROS/RNS [86]. The flavonoids can interact with neuronal receptors
and modulate kinase signaling pathways, transcription factors, and gene and/or protein
expression, which control memory and learning processes in the hippocampus [87]. The
level of prostaglandins (PGs) increases in the inflamed neuronal region, a feature of acute
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inflammation [88]. In an aging brain, neuroinflammation is marked by an increase in
prostaglandin E2 (PGE2) levels. Once the neuroinflammation achieves the threshold and
becomes over-activated, it leads to cellular damage and loss of neuronal function. Microglia
activation/proliferation and reactive astrogliosis are commonly observed during neuroin-
flammation. Activated microglia are involved in the onset and maintenance of astrocyte
proliferation. Lipopolysaccharide treatment in primary enriched astrocyte cultures results
in increased proliferation of astrocytes. PGE2 released from activated microglia enhances
astrocyte proliferation [89].

Flavonoids have a neuroprotective role in both in-vitro and in-vivo models against
neuroinflammation [15,65,90]. Flavonoids can suppress the microglial activation and
reduce the neurotoxicity induced by neurotoxic species released by microglia. The plant
flavonoid wogonin inhibits activation-induced death of C6 glial cells by suppressing
nitric oxide (NO) production. These inhibitory effects of wogonin on NO production are
exerted through inhibition of NF-kappaB-mediated inducible nitric oxide synthase (iNOS)
induction [91].

Flavonoids, luteolin, and apigenin protect the dopaminergic neurons by reducing
oxidative stress, neuroinflammation and microglial activation along with enhanced neu-
rotrophic potential in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced parkin-
sonism mice model. Luteolin and apigenin-treated mice model shows increased brain-
derived neurotrophic factor (BDNF) levels in the substantia nigra region of the brain
compared to MPTP treatment mice [92]. Li et al. found that treatment with apigenin
(20 mg/kg, intragastrically) for three weeks remarkably ameliorated chronic unpredictable
mild stress (CUMS)-induced behavioral abnormalities, such as: decreased locomotor activ-
ity and reduced sucrose consumption. Apigenin inhibits IL-1β and caspase-1 via disrupting
the NLRP3 assembly. Apigenin inhibits the NLRP3 (NOD-, LRR-, and pyrin domain-
containing protein 3) inflammasome activation through the upregulation of peroxisome
proliferator-activated receptor-gamma (PPARγ) [93]. Apigenin ameliorated dopaminergic
neuronal loss and improved behavioral, biochemical, and mitochondrial enzyme activities
by suppression of oxidative stress and neuroinflammation [94].

Another flavonoid, rutin, when given to male albino Wistar rats, decreases mRNA
expression of cytokines, caspase-1, apoptosis-associated speck-like CARD-containing pro-
tein (ASC), and ASC-NLRP3 [95]. Daidzein (flavonoid) ameliorates the inflammatory
process and alleviates the risk of Alzheimer’s disease (AD) progression. Daidzein treat-
ment down-regulates the expression of TNF-α, IL-1, and IL-6 in the primary astrocytes
which are stimulated with amyloid-beta or lipopolysaccharide [96]. Catechin (flavonoid)
protected murine microglia N9 cells from tert-butylhydroperoxide induced cell death by
the inhibition of NF-kB, p53 activity, and activation of extracellular signal-regulated pro-
tein kinase (ERK) [97]. Blueberry extract (rich in flavonoids) inhibits the production of
inflammatory mediators iNOS and COX-2 and reduces the level of NO, TNF-α, IL-1β, and
ROS in lipopolysaccharide-activated BV2 microglial cells [98].

Naringenin treatment prevents neuronal cell death in LPS/IFNγ stimulated glial cells
by the reduction in iNOS, NO, and TNF-α level and inhibition of p38 signaling cascades and
STAT-1 transcription factor [99]. Biochanin A protects dopaminergic neurons against LPS-
induced damage through inhibition of microglia activation and reduction in superoxide,
TNFα, and NO [100]. Nobiletin prevents neuroinflammation in LPS-stimulated BV-2
microglial cells by inhibiting the release of TNF-α, IL-1β, ERK, c-Jun NH(2)-terminal kinase
(JNK), and p38 mitogen-activated protein kinases (MAPKs) [101]. Adjunctive treatment
with genistein and daidzein preserve neuronal functioning and sustain neurocognitive
abilities of HIV-1 infected persons via a selective ER-mediated mechanism in neurons [102].

Transgenic Parkinson’s disease (PD) mice (C57BL/6 mice) received grape polyphenol
concentrate (1.5 mL/kg/day) from the age of 6–8 weeks for four months have improved
their behavioral and cognitive function. Grape polyphenol exhibits neuroprotective activity
by reducing the α-synuclein accumulation in the frontal cortex and neuroinflammatory
response in the frontal cortex and hippocampus [103]. Luteolin protects dopaminergic neu-
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rons against inflammation-induced neurotoxicity by inhibiting microglial activation [104].
Naringin (present in grape and orange) protects dopaminergic neurons by induction of
the activation of the mammalian target of rapamycin complex-1 and inhibited microglial
activation in the 6-OHDA treated mouse model [105]. Naringenin protects against 6-
OHDA-induced neurotoxicity via activation of the nuclear factor E2-related factor 2 (Nrf2)
and antioxidant response element (ARE) signaling pathway [106]. Baicalein inhibits the
upregulation of tumor necrosis factor-α and interleukin-1β in the substantia nigra and
striatum in MPTP-induced PD mice models [107]. Baicalein inhibits α-synuclein aggrega-
tion, inflammasome activation, and cathepsin B production in Sprague-Dawley rats treated
with 1-methyl-4-phenylpyridinium [108].

5.2. Role of Flavonoids in Oxidative Stress

ROS are the major cause of oxidative stress and are linked with the pathogenesis
of several neurological disorders [109]. Accumulation of ROS, such as hydroxyl radicals
(•OH), superoxide radicals (•O2−), and hydrogen peroxide (H2O2), are associate with
neuronal cell death [110,111]. The elevation in ROS induces protein oxidation, DNA dam-
age, and lipid peroxidation (LPO), collectively leading to apoptosis in neuronal cells [112].
Uses of antioxidants, such as flavonoids, might be beneficial in reducing the toxicity of the
oxygen-free radicals. These flavonoids have the potential to counter the toxicity of oxida-
tive stress and decrease the pathogenesis of several neurological disorders [113]. Treatment
with flavonoids, namely quercitrin, isoquercitrin, and afzelin, in human neuronal SH-SY5Y
neuronal cells has shown beneficial effects through regulating inflammation, apoptosis,
and ROS-scavenging. These flavonoids attenuated inflammation by inhibiting the expres-
sion of nitric oxide synthase, cyclooxygenase-2, and caspase activation [114]. Treatment
with quercetin and luteolin and their metabolites 3,4-dihydroxytoluene (DHT) and 3,4-
3,4-dihydroxyphenylacetic acid (DHPAA), respectively, in neuronal PC12 cells, prevents
oxidative stress. These metabolites are less efficient than parent flavonoids [115].

Two novel prenylated flavonoids, morachalcone D and morachalcone E, isolated from
mulberry leaf, have antioxidant properties since their exposure to HT22 cells. Morachalcone
D has higher efficiency than morachalcone E as it inhibits glutamate and erastin-induced
cellular damage. Morachalcone D inhibits ROS production, glutathione (GSH) depletion,
and iron accumulation. It is also involved in the upregulation of the expression of several
genes of the antioxidant systems including Nrf2, GPx4, SOD2, SLC7A11, HMOX1, and
CAT [116].

Phloretin and phlorizin (dihydrochalcone, a type of natural phenol, a dihydrochalcone,
a family of bicyclic flavonoids) have neuroprotective effects against rotenone-induced toxi-
city in human SH-SY5Y neuroblastoma cells. They reduce rotenone-induced cell death by
actively scavenging ROS, normalizing mitochondrial transmembrane potential, inhibiting
caspase 3 activity, and DNA damage [117]. Administration of 6′ ′ ′-p-coumaroylspinosin (P-
CS) (flavonoid isolated from Ziziphi Spinosae Semen) on PC12 neuronal cells significantly
prevents acrylamide-induced cell death, decreases GSH content, and ROS overproduc-
tion. P-CS was also suppressing the expression of Bax (apoptosis regulator) and Bim
(pro-apoptotic protein) induced by acrylamide and inhibits the JNKs pathway [16].

Baicalein exerts protective effects in vivo and in vitro against 6-hydroxydopamine (6-
OHDA) [118]. Baicalein prevented abnormal behavior by increasing dopaminergic neurons
and dopamine and serotonin levels in the striatum and also inhibited oxidative stress and
astroglia response [119]. Similarly, baicalein protects cells against the toxicity of a point
mutation in α-synuclein [120], and inhibited the formation of α-synuclein oligomers, and
consequently prevents its oligomerization [121]. Mitochondrial dysfunction in SH-SY5Y
cells and upregulation of DJ-1 protein expression induced by 6-OHDA are prevented
by baicalein [122]. Baicalein downregulates the activation of NF-κB, ERK, and JNK and
attenuates astrocyte activation in MPTP mice [123].

Rutin protects dopaminergic neurons against 6-OHDA-induced neurotoxicity by
and activating SOD, catalase, GPx, and total GSH activity and inhibition of LPO [124,125].
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Kaempferol improves motor coordination, raises striatal dopamine and its metabolite levels,
increases SOD and GSH activity, and reduces the content of LPO, also preventing the loss
of TH-positive neurons induced by MPTP [126]. Kaempferol exhibit neuroprotection in
models of rotenone-mediated acute toxicity by protecting SH-SY5Y cells and primary
neurons from rotenone toxicity [127].

Quercetin protects against oxidative stress and increases activities of ATPase, SOD,
GPx, Acetylcholinesterase, and dopamine depletion in MPTP-treated mice [128]. Fur-
thermore, in a rotenone model, quercetin has been shown to upregulate mitochondrial
complex-I activity and increase catalase and SOD activity [129]. In the 6-OHDA rat model,
treatment of quercetin increased levels of antioxidants and striatal dopamine and reduced
dopaminergic neuronal loss [130]. Luteolin also reduces cytotoxicity induced by 6-OHDA
and ROS production in neuronal PC12 cells by modulating changes in the stress response
pathway [131]. In MPTP-treated mice, luteolin and apigenin protect dopaminergic neurons
by reducing oxidative damage, neuroinflammation, and microglial activation and also
improve muscular and locomotor activity [92].

Baicalein prevented the progression of α-synuclein accumulation and protected
dopaminergic neurons, and also inhibited the formation of α-synuclein oligomers in a
rotenone mouse model [132]. Hesperidin (found in oranges and lemons) protects against
iron-induced oxidative damage in the Drosophila melanogaster model of PD. Hesperidin
restores dopamine levels, cholinergic activity, and improves motor function [133]. An-
tunes et al. found that hesperidin protects against neurotoxicity by reducing oxidative
damage, increasing dopamine levels, and also improving the behavioral parameters in
6-OHDA-treated mice [134].

5.3. Role of Flavonoids in Proteotoxicity

Neurological disorders are marked by the presence of protein aggregates termed as
amyloid, malfunctioned ubiquitin-proteasome system (UPS), and disrupted PQC network.
These aggregates are present as insoluble prefibrillar amyloid-β oligomers (AβO) or in-
soluble amyloid-β oligomers [135–138]. In AD, the aggregated protein species, known as
amyloid-β, are considered as the most neurotoxic species, while, in PD, the presence of
α-synuclein aggregates and Lewy bodies are prominent hallmarks of PD pathology. These
aggregates or disrupted UPS are the consecutive resultants of various stress conditions.
Under stress conditions, the PQC system fails, thus being unable to combat proteotoxicity.
Under such conditions, it has been found that flavonoids can effectively exclude proteotoxi-
city by preventing the formation of protein aggregates. Different cell model studies suggest
that flavan-3-ols (especially their metabolites) could serve as great therapeutic targets
for AD prevention. ‘Phenyl-γ-valerolactones (PVL)’ a flavan-3-ols’s metabolite efficiently
reduces the Aβ-mediated toxicity. In yeast and mammalian cells, these PVLs especially
monohydroxylated PVL, exclude the β-oligomer-induced toxicity and prevent cell death.
Another PVL ‘(4′-OH)-PVL’ has been found to disrupt the Aβ assembly. Atomic force mi-
croscopy (AFM) images have shown the remodeling of toxic AβO aggregates into non-toxic
amorphous aggregates [139]. Cellular protein aggregates hamper the PQC, thus causing
disrupted protein homeostasis [140]. Myricetin (a type of flavone) inhibits aggregation
of different aberrant proteins and modulates the HSP70 chaperone and quality control
(QC)-E3 ubiquitin ligase E6-AP levels. Myricetin alleviates cytotoxicity by stabilizing the
E6-AP, thus reducing the misfolded protein inclusions [141].

Modified flavonoids could be a promising candidate against various diseases. Dihy-
droquercetin, a modified form of quercetin, enhances the quercetin quality. Under physical
stress conditions (thermal and chemical), quercetin fails to prevent stress-induced cell
death. In contrast, dihydroquercetin has successfully prevented cellar injuries. Moreover,
under hyperthermic stress, as well as sodium arsenite exposure to cells, quercetin led to a
reduction in HSP70 synthesis and accumulation [142].

Pesticides cause various diseases as evidenced by many epidemiological studies.
Mechanistic studies have shown their association with proteotoxicity as they induce the
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formation of Aβ amyloids. Silymarin, a flavonolignan extracted from the seeds of the milk
thistle Silybummarianum, promotes the reduction of paraquat-induced Aβ aggregates
formation in C.elegans [143]. Epimedium treatment on two C. elegans models of human
proteotoxic disease namely CL4176 (expressing amyloid-β (1–42) peptide) and AM140
(expressing apolyglutamine protein), have shown the anti-proteotoxic property. Moreover,
it also involves the reduction of Aβ1–42 and polyglutamine-induced paralysis in both
models [144].

Treatment of 6′ ′ ′-feruloylspinosin (6-FS), one of the main active flavonoid components
in Sour Jujube seeds, on the β-amyloid protein of transgenic C. elegans (GMC101) and
PC12 cells resulted in delaying the aging process, reduced the rate of paralysis, enhanced
the resistance to heat stress, increased the chemotaxis ability and promoted autophagy
activity through the autophagy/lysosome pathway. Furthermore, 6-FS reduced the β-
amyloid-induced toxicity by suppressing the deposition of β-amyloid and aggregation
of the protein. It also increased the level of mitophagy in PC12 cells by promoting the
expression of Pink1/Parkin in the mitophagy pathway [145].

5.4. Role of Flavonoids in Endoplasmic Reticulum (ER) Stress

ER stress is a condition caused by the accumulation of misfolded proteins and al-
terations in the calcium homeostasis which leads to the disruption of the structure and
function of the ER. The ER stress response uplifts the expression of specific proteins includ-
ing ER chaperones and proteins associated with the degradation of misfolded proteins. In
ER stress, the accumulation of unfolded proteins disrupts the cellular proteostasis balance.
This condition triggers the downstream signaling cascade in the ER, termed unfolded
protein response (UPR). Prolonged ER stress induces several pathological conditions and
aggravated ER stress may even lead to cell death. In several human neuronal pathologies,
such as PD, AD, and Huntington’s disease (HD), ER stress has been reported. In recent
years, the discovery of small molecules that could inhibit the UPR and ER stress have
gained much attention to produce potential therapeutics [12,146–150].

Case studies on intake of diet rich in flavonoids have shown potential against many
diseases. Kaempferol a natural flavonol attenuates the ER stress-induced cell death in
human neuroblastoma cell line IMR32 via inhibiting the UPR signaling. Kaempferol
significantly reduces the Brefeldin-A (BFA) induced mRNA expression of UPR mark-
ers like glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) in
IMR32 [146]. Luteolin, flavanol, is present in various plant products, such as celery and
broccoli. Treatment with luteolin in PC12 cells has shown the attenuation of GRP78 and
CHOP upregulation [131]. Apigenin treatment on murine HT22 hippocampal neuronal
cells has shown a reduced level of ER stress-associated proteins including CHOP, GRP 78,
and GRP94. Additionally, it has a role in the cleavage of activating transcription factor
6a, phosphorylation of eukaryotic initiation factor 2a, and inositol-requiring enzyme 1a,
and the activation of mitogen-activated protein kinases, such as p38, c-Jun NH2-terminal
kinase, and extracellular-regulated kinase [151]. Epicatechin (EC), a type of flavan-3-ol,
has antibacterial, antitumor, antimutagenic, antiviral, and antioxidant properties. EC treat-
ment on HT22 hippocampal neuronal cells successfully prevents the methamphetamine
(METH) induced neurotoxicity. EC inhibits the activation of ERK, p38, CHOP, and DR4
expression [12]. Thus, ER-stress may be prevented using EC flavonoids. Effect of different
flavonoids on the cellular stress response is summarized in Table 2.
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Table 2. Effect of flavonoids on the cellular stress response.

Flavonoids Cellular Stress Response Host Model Ref

Kaempferol Inhibits the expression of GRP78 (a chaperone) and CHOP (ER stress
associated pro-apoptotic transcription factor) Human IMR32 [146]

Quercetin Reduction in the expression of glucose-regulated protein 78 (GRP78)
and C/EBP-homologous protein (CHOP)

Human umbilical vein endothelial
cells [152]

Morin Inhibition of the expression of GRP78,
Decreased ROS and apoptosis renal proximal tubular HK-2 cells [153]

Methoxyflavones
Activation of the UPR pathway via activating eIF2α and Nrf2 and

induces the expression of downstream genes, such as GRP78, HO-1,
and CHOP, without causing ER stress

Mouse insulinoma MIN6 cells [147]

Agathisflavone

Increases the remyelination and alters microglial activation state.
Neuroprotective effect via increase the expression of neurotrophic
factors ciliary neurotrophic factor (Cntf), epidermal growth factor
receptor (Egfr), and neuronal GABA b1 receptor subunit (Gabrb1)

Mice belonging to the C57BL/6
background [154]

Apigenin

Neuroprotection, astrocytes integrity and have an
anti-neuro-inflammatory response. These responses are generated via

the modulation of inflammatory cytokines mRNA expression and
reduce the expression of OX42, IL-6, and gp130. Induces the

expression of brain-derived neurotrophic factor (BDNF).

Wistar rats’ hemispheres brain’s
Glial cells and neurons [154]

Hesperetin

Reduction of the expression of inflammatory Cytokines by
ameliorating Toll-like receptor-4 (TLR4)-mediated ionized

calcium-binding adapter molecule 1/glial fibrillary acidic protein
(Iba-1/GFAP) expression.

Attenuation in the LPS-induced generation of reactive oxygen
species/lipid peroxidation (ROS/LPO) and improved the antioxidant
protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2)

and Haem-oxygenase (HO-1), in the mouse brain

C57BL/6 N mice [155]

Epimedium Have anti-proteotoxic potency as it reduces the Aβ1–42- and
polyQ-induced paralysis in CL4176 and AM140

C. elegans human proteotoxic
disease models (CL4176, AM140) [144]

Rutin
Rutin treatment reduces polyglutamine (polyQ) protein aggregation
in muscle, reduced polyQ-mediated neuronal death in ASH sensory

neurons, and extended lifespan.

C. elegans model of Huntington’s
disease [156]

phenyl-γ-
valerolactones
(metabolites of

flavan-3-ols)

(4′-OH)-PVL interferes with AβO (but not fibril) assembly and
actively remodels performed AβOs into nontoxic amorphous

aggregate.

Yeast strains expressing different
variants of the human Aβ42 and

β23 peptides
[139]

6. Pre-Clinical/Clinical Studies of Flavonoids

After knowing the beneficial effects of flavonoids, several pre-clinical studies have
been conducted to know the way of administration and the doses in animal models specific
to AD, PD, Amyotrophic lateral sclerosis (ALS), and HD. A systematic review of the
preclinical study on AD and PD suggested that flavonoids could be a potential drug to
treat neurodegenerative diseases [157]. The possible mode of action, dose, and route of
administration are summarized in Table 3.

An epidemiological study on 808 adults Italian cohort found that higher dietary intake
of anthocyanins, flavan-3-ols, catechins, and flavonols are associated with better cognitive
health [158]. Intake of dietary flavonoids can mitigate the pathogenesis of neurological
disorders by reducing oxidative stress. A cohort study performed on 1367 elderly (more
than 65 years) depicted that flavonoid intake is inversely related to the risk of incident
dementia [159].
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Table 3. Studies related to the effect of flavonoids on the animal model.

Disease Clinical Onsets Behavioral Onsets Disease Model Flavonoids Dose Effect of Flavonoids Treatment on the Animal Model Ref.

Alzheimer’s disease (AD)

Presence of extracellular
neuritic plaques containing

(Aβ) peptide and
intracellular neurofibrillary

tangles containing tau

AD results in a progressive
loss of cognitive ability and

eventually daily function
activities

5 × FAD model 7,8-dihydroxyflavone
(7,8-DHF)

IP injection (5 mg/kg) Improved memory [160]

Oral administration (5 mg/kg/day) Improvement in memory and reduction in synapse
loss [161]

2 × FAD model Apigenin Oral administration (40 mg/kg/day) Improvement in learning and memory, reduction in
deposition of insoluble Aβ

[162]

1 × FAD model, 3 × FAD
model, SAMP8 mice Nobiletin

IP injection (10 mg/kg) Improvement in memory and reduction in levels of
both soluble and insoluble Aβ

[163]

IP injections (10 and 30 mg/kg) Improvement in memory; reduction in soluble Aβ
levels [164]

1 × FAD model Baicalein IP injections 10 and 50 mg/kg Improves the memory, reduces some markers of
oxidative stress [162]

(SAMP8) Quercetin
IP injections (10 mg/kg) Improves working memory and reduces the

production of Aβ [165]

Oral administration (25 mg/kg/day) Reduces the markers of oxidative stress, LPO and
activates the ERK pathway

Huntington’s disease (HD)

Presence of a trinucleotide
repeat (CAG) that encodes

an abnormally long
polyglutamine tract in the

huntingtin protein

Movement and psychiatric
disturbances, as well as
cognitive impairment

3-NP model of HD in rats Chrysin Oral administration (50 mg/kg/day)
Improvement in behavior and reduction in markers of

oxidative stress and cell death, and enhancement in
the survival of striatal neurons

[166]

R6/1 N-terminal
transgenic mouse model 7,8-DHF Oral administration (5 mg/kg/day)

Delay the development of motor and cognitive
deficits, prevention of the loss of striatal volume,

enhances the marker of neurotrophic factor signaling,
and reduction in some markers of inflammation

[167]

3-NP model Quercetin oral administration (25 mg/kg/day)
Reduce motor deficits, improve mitochondrial

function, and attenuate some markers of oxidative
stress

[168]

R6/1 N-terminal
transgenic mouse model Anthocyanins 100 mg/kg/day Delay the loss of motor function [169]

3-NP model in rats Hesperidin Oral administration (100 mg/kg/day) Reduce motor deficits, as well as markers of
inflammation and oxidative stress [170]

Amyotrophic Lateral
Sclerosis (ALS)

Heritable gene mutations

Loss of the motor neurons
that control the voluntary

movement of muscles,
resulting in paralysis and

death

SOD1-G93A model

7,8-DHF IP injection (5 mg/kg)
Reduction in the age-dependent decrease in motor

performance and preserving the total motor neuron
count and dendritic spine density on motor neurons

[171]

Fisetin Oral administration (9 mg/kg) Delay the development of motor deficits, reduction in
their rate of progression, and increases lifespan [172]

(−)-epigallocatechin
gallate (EGCG) oral administration (5.8–10 mg/kg) Delay symptom onset and extend the lifespan [173]
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7. Flavonoid Metabolism

To use flavonoids as a therapeutic agent, it is important to know their pharmacoki-
netics. As these dietary flavonoids are used as traditional medicines from past decades,
many studies have been conducted to know their absorption and metabolism to rule out
their possible way of action. Dietary flavonoids are mostly found in the glycoside form.
After ingestion of these dietary flavonoids, the deglycosylation process occurs in the small
and large intestine. Lactase-phlorizin hydrolase (LPH) is the first enzyme reported for
the hydrolysis of quercetin 3-O-glucoside (Q3G) and quercetin 4′-O-glucoside (Q4′G) that
are monoglucosides of genistein and daidzein to produce aglycons in-vitro [174]. Before
hydrolysis, the glucosides are taken up into the cells via sodium-glucose co-transporter
type 1 (SGLT1) membrane transporter and this is reported for Q4′G, which was found using
human Caco-2 cells and SGLT1 transfected rodent G6D3 cells [175]. After the hydrolysis,
the produced aglycons are inserted in the epithelial cells and metabolized via phase II
enzymes to produce corresponding conjugated metabolites. These phase II enzymes are
uridine-5′-diphosphate-glucuronosyltransferases (UGT), sulfotransferases (SULT), and
catechol-O-methyltransferases (COMT) [176]. After intestinal conjugation, further conju-
gation including sulfation and methylation occurs in the liver. Post metabolism, several
chemical forms of flavonoids are found in the urine, and systemic circulation [177–179]. Af-
ter excretion, metabolites are further deconjugated by the microbiota and reabsorbed. The
transportation of these absorbed flavonoids is conducted via the lymph in the body [180].
Flavonoids are found in the form of conjugated metabolites in the blood and tissues which
are reported to have lower activity than the aglycon form. The functions of flavonoid
metabolites are controlled by the balance of the conjugation-deconjugation process.

8. Neuronal Access of Flavonoids

There exists a lacuna of experimental evidence of whether flavonoids can cross the
BBB [181]. This lacuna hinders the development of flavonoids-based therapeutics. Daily in-
take of dietary flavonoids is beneficial for many neurodegenerative disorders as supported
by epidemiological studies. Therefore, numerous studies are being conducted to enhance
access and promote the neuronal accessibility of flavonoids.

A study on the human brain endothelial cell line (HBMEC) model has revealed that
amongst three flavonoids: quercetin, epigallocatechin gallate (EGCG), and cyanidin-3-
glucoside (C3G), EGCG crosses the BBB more rapidly than C3G while quercetin was unable
to cross BBB. Another study conducted on eighteen, three-month-old male Sprague-Dawley
rats showed that quercetin can cross the BBB if administered with α-tocopherol (Vitamin
E) [182]. These studies have proven that flavonoids can be used in combating neuronal
disorders since they can reach the site of damage (by crossing the BBB) and exert their
therapeutic effect.

9. Flavonoid Extraction: A Key to Improved Flavonoid Property

The traditional method for flavonoid extraction reduces its quality. Thus, recent
studies have gained attention for improving the flavonoid property by modulating the
extraction method. Many approaches, such as solvent extraction (SE), microwave-assisted
extraction (MAE), supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE),
and ultra-high pressure extraction (UHPE), are gradually being used for improving the
content and quality of flavonoid [183].

The fruits of Ziziphus jujube Mill., known as jujube or Chinese date have neuropro-
tective properties. Jujube protects neuronal cells against neurotoxin stress, promoting
memory and learning, stimulating neuronal differentiation, and increasing the expression
of neurotrophic factors [183]. Flavonoids extracted from jujube seed by using the UAE
method improves its medicinal quality [184,185]. Moreover, jujube seed flavonoid extracted
by UAE method displayed a higher capacity of scavenging ABTS, DPPH, superoxide, and
hydroxyl radicals and reducing the level of ROS accumulation in PC12 cells. Moreover,
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administration of these flavonoids in the transgenic C. elegans model (GMC101) reduces
the Aβ toxicity [17]. The UHPE method has many advantages, such as shortening the time,
reducing the temperature, and reducing the solvent. Flavonoid extracted from jujube seed
through UHPE shows higher concentrations of total flavonoids extracted and stronger
DPPH and ABTS radical-scavenging activities in a shorter period [186]. Thus, applying the
improved flavonoid extraction method would be beneficial for improving the flavonoid
property. The role of flavonoids in prevention against oxidative stress, neuroinflammation,
and ER stress is summarized in Figure 1.

Figure 1. Role of flavonoids in prevention against cellular stress response. Exposure to stress conditions leads to the
activation of cellular stress responses, such as UPR, ER stress, oxidative stress, proteotoxicity, and neuroinflammation.
When cells are exposed to any stress condition, it affects the cellular proteome, thus inducing the UPR in the ER and further
activation of ER stress. Stress conditions also initiate proteotoxicity by affecting the proteins’ structure, as well as proteasome
subunits of the proteasomal degradation machinery, causing the release of misfolded/aggregated proteins in the cytosol,
thus inducing proteotoxicity. The release of ROS from mitochondria leads to the generation of oxidative stress. All these
cellular stress responses try to eliminate the stress-induced toxicity, but extreme cellular stress responses may lead to cell
death. During stress exposure, microglia start to release neuroinflammatory mediators thus causing neuroinflammation.
This inflammation creates a hostile environment within the cell and under harsh conditions, leads to cell death. Flavonoids
have the potential to combat and prevent these exaggerated cellular stress responses in-turn preventing cell death. ER:
Endoplasmic reticulum, ROS: Reactive oxygen species, UPR: Unfolded protein response.

10. Conclusions

Current data on neurodegenerative disorders suggest the need for a potential thera-
peutic target. With a deep understanding of the neurological pathologies, it becomes easy
to target the potential hallmarks that are responsible for these diseases. Flavonoids are
phytochemicals, and many studies on these compounds depict their effective role against
neurological disorders. Flavonoids have shown beneficial effects on the cellular stress
response. As described by several studies, these flavonoids could be promising candidates
for neurological disorders. Further studies are needed to focus on their clinical acceptance.
Modified flavonoids also need to be studied in detail to assess their role as therapeutics in
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neurological disorders. Risk assessment and pharmacokinetics of flavonoids are essential
parameters that need to be explored for their clinical use. Hence, a multi-fold increase in
the number of in-vivo and clinical studies is the need of the hour.
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