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Abstract

Background: Modern biology uses experimental systems that involve the exploration of phenotypic variation as a
result of the recombination of several genomes. Such systems are useful to investigate the functional evolution of
metabolic networks. One such approach is the analysis of transcript and metabolite profiles. These kinds of studies
generate a large amount of data, which require dedicated computational tools for their analysis.

Results: This paper presents a novel software named *omeSOM (transcript/metabol-ome Self Organizing Map) that
implements a neural model for biological data clustering and visualization. It allows the discovery of relationships
between changes in transcripts and metabolites of crop plants harboring introgressed exotic alleles and
furthermore, its use can be extended to other type of omics data. The software is focused on the easy
identification of groups including different molecular entities, independently of the number of clusters formed. The
*omeSOM software provides easy-to-visualize interfaces for the identification of coordinated variations in the co-
expressed genes and co-accumulated metabolites. Additionally, this information is linked to the most widely used
gene annotation and metabolic pathway databases.

Conclusions: *omeSOM is a software designed to give support to the data mining task of metabolic and
transcriptional datasets derived from different databases. It provides a user-friendly interface and offers several
visualization features, easy to understand by non-expert users. Therefore, *omeSOM provides support for data
mining tasks and it is applicable to basic research as well as applied breeding programs. The software and a
sample dataset are available free of charge at http://sourcesinc.sourceforge.net/omesom/.

Background
At present, there is a data explosion in the biological
sciences. A series of technical advances in recent years
have led to an increase in the amount of data that biolo-
gists can recover concerning many aspects of an organ-
ism, both at genomic and post-genomic levels.
Discovery of hidden patterns of gene expression in
plants of economic importance to agro-biotechnology
may aid in improving the quality of crop products. In
addition, transcript and metabolite integration is gaining

importance given the need for extracting knowledge
from multiple data types and sources, with the aim of
finding informative relations to infer new insights con-
cerning the genetic processes underlying them [1-3]. In
plant experimental biology and crop breeding, widely
used systems include introgression lines and recombi-
nant inbred lines (ILs and RILs, respectively), character-
ized genotypes carrying exotic alleles from related
species. Although ILs and RILs have proven useful tools
in crop domestication and breeding since time imme-
morial, their applicability as experimental systems
exposing thousands of quantitative trait loci has become
increasingly popular in recent years [4-6]. The effects on
gene expression and metabolite accumulation in each
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line may provide important clues regarding the genes
and metabolic pathways impacted by the introgressed
segments [7]. A recent advance in this field has reported
probabilistic associations and visualizations of genes,
metabolites and phenotypes for such datasets [8]. Bioin-
formatics is playing an important role, allowing biolo-
gists to make full use of the advances in computer
science for analyzing large and complex datasets.
Biological data sets in the omics era have several com-

mon problems: they are typically large, have inherent
biological complexity, may have significant amounts of
noise and may change with time requiring proper track-
ing. These challenges require novel design and adapta-
tion of computer science techniques and models. Also,
given the rapid expansion of biological data and the
tools to handle them, there is both an increasing need
and opportunity to extract information that may not
have been obvious using past analysis methods. Large
databases may contain interesting patterns that, if iden-
tified and validated by further laboratory work, can lead
to novel discovery [9].
Bioinformatics has evolved mainly from the develop-

ment of data mining techniques and their application
to automatic prediction and discovery of classes [10].
The prediction of classes uses the information available
from expression profiles and known features of the
data and/or experiments to build classifiers for further
data interpretation. Here we focus primarily on class
discovery, where data are explored from the perspec-
tive that previously unknown relations can be identi-
fied and could lead to the formulation of novel
hypotheses [11]. Two distinct types of class discovery
methods exist: supervised, which are guided by a few
hypotheses to be tested; and unsupervised, where no
target variable is identified a priori and the mining
algorithm searches for structures among all variables.
The most common unsupervised data mining method
is clustering [12]. Clustering refers to the grouping of
observations or samples into classes of similar objects
(named clusters) [13]. These algorithms segment the
entire dataset trying to maximize the similarity of the
samples within a cluster, minimizing their similarity to
outside members [14]. For the analysis of these biolo-
gical data, clustering is implemented under the
assumption that behaviorally similar samples may be
related to common pathways. According to this princi-
ple, named guilt-by-association, a set of genes involved
in a biological process is co-expressed under the con-
trol of the same regulatory network [15]. It is pre-
sumed that if a gene with unknown function is co-
expressed with a gene with known function participat-
ing in a recognised metabolic pathway it can be
inferred that the unknown gene is also likely to be
involved in the same pathway (for a review see [16]).

Similar reasoning can be applied to analysis of metabo-
lites and to the integration of both types of data.
Due to the limitations of traditional algorithms, com-

putational intelligence has been recently applied to
bioinformatics with promising results [17]. This research
area includes artificial neural networks, evolutionary
algorithms and fuzzy systems, each of them having its
own characteristics and significant history. However,
their application to bioinformatics problems remains a
recent development [18]. In particular, artificial neural
networks have been recently stressed as suitable for the
task of clustering and knowledge discovery, for example
the Self-Organizing Maps (SOMs) [19]. These neural
models have proven to be adequate for handling large
data volumes and projecting them in low dimensional
maps while showing, at the same time, previously
unknown relationships [20].
SOMs have been used for unsupervised clustering of

transcriptome profiles increasingly over the past decade
[21,22]. For example, GenePattern [23] provides support
for several categories of gene expression analysis such as
differential expression and selection, pathway analysis
and class prediction/discovery through clustering. Gene-
Pattern supports SOMs as well as several traditional
clustering methods, such as hierarchical clustering. Its
use [24] in an earlier version called GeneCluster has
indicated significantly regulated genes over time. More
recently, AutoSOME [25] has been presented as a new
method for automatically clustering SOM ensembles of
high-dimensional data, such as that from whole genome
microarrays.
Regarding metabolites, in [26] a correlation network

analysis has revealed a sequential reorganization of
metabolic and transcriptional states during germination
and revealed gene-metabolite relationships in Arabidop-
sis. In [27] SOM clustering is used for the analysis of
Arabidopsis thaliana metabolome and transcriptome
datasets, helping in the hypothesis validation of a meta-
bolic mechanism responding to sulfur deficiency. The
results obtained after examination of each cluster by
hand indicated that functionally related genes were clus-
tered in the same or neighboring neurons.
In many cases, however, the biological experiment

does not involve time or developmental change of a par-
ticular condition within a given genotype; rather genoty-
pic differences form the basis of differential gene
expression and metabolite accumulation. For example, it
may involve an original genome that has been modified
by introgression of wild species alleles (cisgenic plants)
or transgenic plants expressing a gene of interest.
Furthermore, the focus may be the identification of
meaningful biological points (markers) that are hidden
within large-scale analytical intensity measurements
from metabolomic experiments. In [28] we have
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proposed a SOM model for finding relationships among
ILs compared to a wild type control (IL-SOM) at a
given developmental stage in contrast to genotype-speci-
fic data representing a time-course. Furthermore, the
proposed model is oriented towards discovering new
relationships among transcriptional and metabolic data,
instead of verifying an a-priori condition.
For all of these tasks, many software tools implement-

ing the use of SOMs have recently been presented. Mar-
Vis [29] performs data mining on intensity-based
profiles using one-dimensional self-organizing maps. It
has been developed for metabolome analysis, but it can
also be applied to gene expression experiments. Simple
BL-SOM [30] sets a SOM model for following the evo-
lution of a previously-established condition over time.
Vanted [31] is mainly presented as a tool for visualiza-
tion of networks with related experimental data from
large-scale biochemical experiments. Additionally, this
tool uses a SOM for clustering the input data files
according to similar behavior over time.
In this paper, we present the *omeSOM software,

which trains a two-dimensional SOM for the analysis
and interpretation of large amounts of data of different
types such as gene expression and metabolite profiling.
The analysis is performed over their genotypic differ-
ences instead of time evolution. The raw dataset used
to test this software were derived from ripe tomato
fruits harvested from a population of introgression
lines derived from a cross between the tomato domes-
ticated species Solanum lycopersicum and its wild rela-
tive Solanum pennellii [32]. The high variation in
metabolite and transcript accumulations displayed by
this kind of genetic material prompted us to select it
to test the feasibility of using this software on these
data. This work adds a new analytical dimension pro-
viding a specialized tool for data exploration, as well as
for grouping and searching for new relationships
between metabolites and transcripts. Furthermore, this
software could be used to analyze many different types
of omics data.
With *omeSOM we provide simple visualization inter-

faces for the identification of co-expressed and co-accu-
mulated genes and metabolites at a glance, in a way that
neurons grouping both types of data together are
quickly highlighted. The focus of *omeSOM is on the
easy identification of groups and pattern types, indepen-
dently from the large collection of formed clusters.
The paper is structured as follows: first, implementa-

tion and software features are described followed by a
discussion of the *omeSOM clustering. The visualization
tools and a final discussion of biological applications
round out the presentation.

Implementation
The *omeSOM software has been implemented in the
Matlab® programming language. We used a standard
toolbox for SOM training, provided by the original
developers of this neural network model [33]. The soft-
ware packages and documentation can be downloaded
from the project home page http://sourcesinc.source-
forge.net/omesom/.
The *omeSOM software provides the following main

options:

• Create *omeSOM model: creating an *omeSOM
model requires an input file with the .data exten-
sion, for example datasetname.data (a detailed
explanation of the required format file is given
below). The map size should be typed by the user in
the command line.
• Search: any input data point can be located on
*omeSOM. This function returns the neuron num-
ber where a given metabolite name/transcript code
has been grouped.
• Neurons map: several views of a trained map are
possible, showing transcript (red), metabolite (blue)
and both molecular entities (black) grouped into
neurons. Detailed plots of normalized and un-nor-
malized data are shown. Additionally, in the case of
transcripts, their corresponding Arabidopsis [34] and
Solanaceae Unigene [35] annotations can be
retrieved. Also, a list of metabolic pathways [36]
associated with each metabolite is shown.
• 3-colors map: a specific view of the map is shown,
painting the neurons according to a color scale that
easily indicates those grouping transcripts and meta-
bolites which are 1 standard deviation out of the
neuron mean.
• Neurons error measure: a typical measure of clus-
tering quality (cohesion) is calculated for each neu-
ron and shown graphically over the feature map
with different marker sizes.
• Neurons having pseudo-zeros: there are special
situations where some metabolite may show unde-
tectable levels in a specific genotype, having however
valid measurements for many others.

The features described above constitute the funda-
mental functions of the software, which are constantly
extended according to the users feedback.

Results and Discussion
The case study used to test the *omeSOM software
applicability involves the analysis of fruit transcriptome
and metabolite profiles from a set of tomato ILs derived
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from a cross between Solanum lycopersicum and its wild
relative Solanum pennelli. An example dataset can be
downloaded from the project home page http://source-
sinc.sourceforge.net/omesom/.

IL-dataset input file
Table 1 shows an example of an input dataset appropri-
ate for *omeSOM. The input matrix must have the fol-
lowing format: a first row with the number of genotypes
studied; a second one may have a comment line enclos-
ing the name of each genotype. From the third row on,
each line must have the measurements (x) for each IL
of a single molecule (m for metabolite, t for transcript).
Each measurement is an average log value (logRi*),

where * stands for the metabolite or transcript at the
genotype i, calculated from the relative measurements of
the compounds studied for valid experiments, where
there are measurements for at least two technical repli-
cates. The resulting log ratios are normalized. For each
pattern, the sum of the square of log ratios is set equal
to 1 according to

x
logRi

logR j
j

Pi
*

*

( *)

=

=
∑ 2

1

(1)

where P is the total number of genotypes studied.
Several data integrations are possible. For example,

before integration of two datasets, the plus/minus sign
of one dataset can be reversed to obtain negatively cor-
related items. All possible relations are direct relations
between transcripts (t) and metabolites (m): ↑t ↔↑m

(inverted sign ↓t ↔↓m), ↑t ↔↑t (inverted sign ↓t ↔↓t)
and ↑m ↔↑m (inverted sign ↓m ↔↓m); and cross rela-
tions: ↑t ↔↓m (inverted sign ↓t ↔↑m), ↑t ↔↓t (inverted
sign ↓t ↔↑t) and ↑m ↔↓m (inverted sign ↓m ↔↑m).
Moreover, from an input dataset with only the original
data, the software can generate the inverted patterns
automatically. The main input file for the *omeSOM
should be named in the following manner:

• omesom <dataversion >- <date >T <time >-oToM.
data: input data where <dataversion> indicates the
version of the data file format and oToM indicates
original transcriptes and original metabolites.

Once the main. data file has been loaded, the follow-
ing files are automatically searched for and loaded from
the same directory:

• omesom <dataversion >- <comp >- <date >T <time
>-ilexp.data: markers for expressed ILs, where <
comp > indicates the component type: trs for tran-
scripts and mts for metabolites;
• omesom <dataversion >-mts- <date >T <time
>-nonormsq.data: un-normalized metabolites;
• omesom <dataversion >-trs- <date>T <time >-nolo-
wess.data: un-normalized transcripts;

For the case study, the metabolic data were obtained
analyzing polar extracts of tomato fruits, through Gas
Chromatography coupled to Mass Spectrometry (GC-
MS). The peak intensities were normalized to the inter-
nal standards added and to the mass of the tissue sam-
ple processed [37]. The metabolite profiling technique
used allows the identification of approximately 80 pri-
mary metabolic compounds [2]. Metabolite accumula-
tion measurements are obtained from 4 to 6 replicates
of an experiment. Metabolites that do not appear in at
least two independent replicates are not considered for
further analysis. For each metabolite in each IL, the log
ratio of the mean of the valid replicates is calculated. In
the selection step only metabolites with log ratio greater
than 0.1 are kept for data integration and cluster
analysis.
Transcriptional levels were obtained from TOM2

chips (long oligo arrays representing approximately
12,000 tomato unigenes) ordered into spots, previously
marked by hybridization with two fluorescence probes.
Poor quality spots, negative spots, spots not expressed
in both channels and empty spots were filtered out.
Non-expressed spots were detected for each IL and con-
trol slide. Spots having a foreground signal mean less
than the spot mean background plus two times the spot
background standard deviation were selected. Spots with
at least two replicated data points are included for

Table 1 Input training set containing measurements for T
transcripts and M metabolites from P genotypes.

P IL1 IL2 ... ILi ... ILP

x
t
1

1 x t
2

1 ... xi
t1 ... xP

t1 Transcript1

−x t
1

1 −x t
2

1 ... −xi
t1 ... −xP

t1 Transcript1(inv)

x t
1

2 x t
2

2 ... xi
t2 ... xP

t2 Transcript2

−x t
1

2 −x t
2

2 ... −xi
t2 ... −xP

t2 Transcript2(inv)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ...

xT
1 xT

2 ... xi
T ... xP

T TranscriptT

−xT
1 −xT

2 ... −xi
T ... −xP

T TranscriptT(inv)

xm
1

1 xm
2

1 ... xi
m1 ... xP

m1 Metabolite1

−xm
1

1 −xm
2

1 ... −xi
m1 ... −xP

m1 Metabolite1(inv)

xm
1

2 xm
2

2 ... xi
m2 ... xP

m2 Metabolite2

−xm
1

2 −xm
2

2 ... −xi
m2 ... −xP

m2 Metabolite2(inv)

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ...

x M
1 ... xi

M ... xP
M MetaboliteM

−x M
1 −x M

2 ... −xi
M ... −xP

M MetaboliteM(inv)

*omeSOM input file format.

Original and inverted versions of all data samples are included in the
example.
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analysis. These measures are then normalized using the
print-tip Lowess normalization strategy [38] and the
valid replicates were averaged. A total of P = 21 ILs
were analyzed, with introgressions in chromosomes: 1,
2, 3, 5, 8, 10, 11 and 12. After pre-processing and selec-
tion steps, M = 71 metabolites and T = 1385 transcripts
reached the threshold value to be considered valid data.
For further details on the preprocessing and selection
steps see [28].

*omeSOM Clustering
Neural network-based clustering is closely related to the
concept of competitive learning, which is based on the
idea of units (neurons) that compete to respond to a
given subset of inputs. The nodes in the input layer
admit input patterns and are fully connected to the out-
put nodes in the competitive layer. Each output node
corresponds to a cluster and is associated with a proto-
type or weight vector. Given an input pattern, its dis-
tance to the weight vectors is computed and only the
neuron closest to the input becomes activated. The
weight vector of this winning neuron is further moved
towards the input pattern. This competitive learning
paradigm is also known as winner-takes-all learning
[39]. Self-organizing maps (SOMs) represent a special
class of neural networks that use competitive learning.
Their aim is to represent complex high-dimensional
input patterns in the form of a simple low-dimensional
discrete map, with neurons that can be visualized in a
two-dimensional lattice structure, while preserving the
proximity relationships of the original data as much as
possible [20]. Therefore, SOMs can be appropriate for
cluster analysis when looking for underlying or so-called
hidden patterns in data. A neighborhood function is
defined for each neuron and when competition among
the neurons is complete, SOMs update a set of weight
vectors within the neighborhood of the winning neuron.
The *omeSOM software builds a SOM model oriented

towards discovering unknown relationships among tran-
scriptional and metabolite data, showing previously
unknown clusters of coordinated up-regulated and
down-regulated patterns in each tomato genotype. Sev-
eral model topologies, map sizes and initialization strate-
gies are possible. The initial vectors are set by principal
component analysis, obtaining a learning process inde-
pendent of the order of input of vectors, and hence
reproducible. The model learning method is the batch
training algorithm [20], where the whole training set is
gone through at once and only after this the map is
updated with the net effect of all the samples. Compari-
son between each pattern x* and each neuron weight
vector wj is measured through the standard Euclidean
distance d(x*,wj) = ||x* - wj||2. We use a gaussian

neighborhood function of the form
g eij

ij

r=
−
 2

2 2 , where δij is

the distance between neuron i and neuron j on the map
grid and r is the neighborhood radius.

*omeSOM Visualizations
An appropriate visualization of the resulting characteris-
tics map, painting the neurons according to the type of
data grouped, is proposed for helping in the rapid iden-
tification of combined data types. The setting of several
possible visualization neighborhoods (Vn) of a neuron is
also helpful for the easy detection of groups of com-
bined data types, avoiding the need for an identification
procedure. When a Vn is defined, all the neurons in the
neighborhood of radius Vn are considered as a group
and treated altogether accordingly.
For the special case of the *omeSOM, many interesting

representations of clusters can be obtained from the pro-
jection of the patterns in the lattice of neurons. If the
dataset includes the original data and all the data with
inverted sign, the resulting map shows a symmetrical “tri-
angular” configuration. This means that the top-right and
down-left zones of the map group exactly the same data
but have opposite sign. It can be seen directly from the
data visualisation which genes and metabolites are up-
regulated and down-regulated together or with the
inverse relationship (down regulated genes grouped
together with up-regulated metabolites). There is a speci-
fic zone in the map where the exactly opposite behavior
for each IL can be found, which is useful for associating
specific genes/metabolites to a specific genotype.
In a standard SOM, clusters are recognized as a group

of nodes rather than considering each node as a cluster.
The identification of clusters is mainly achieved through
visualization methods such as the U-matrix [40]. This
method computes the average distance between the
codebook vectors of adjacent nodes, yielding a landscape
surface where light colors stand for a short distance (a
valley) and dark colors for longer distances (a hill).
Then, the number of underlying clusters must be deter-
mined by visual inspection.
The visualizations provided by the proposed *ome-

SOM model, instead, provide a simple interface for
helping in the rapid identification of co-expressed genes
and co-accumulated metabolites via a simple color code.
The focus is on the easy identification of groups of dif-
ferent patterns, independently of the number of neurons
in a cluster. Furthermore, setting of several possible
visualization neighborhoods (Vn) for a given neuron is
also helpful for the easy detection of groups of com-
bined data types, avoiding the need for the identification
of neuron clusters. When a Vn is defined, all the neigh-
boring neurons (according to the neighborhood radius
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set) are considered as a group and treated altogether
accordingly, also for counting whether metabolites and
transcripts are grouped.
The following visualizations are supported by

*omeSOM:
Easy identification of clusters of combined data types
Figure 1 shows different marker colors which indicate
the kind of pattern grouped in the neuron: black for
combined data types, blue for metabolites and red for
transcripts that are grouped alone, with the option of
setting these parameters in a black and white color
scale. Also the marker size indicates the relative number
of patterns grouped. In the neuron maps, when spots
are selected they stay green after selecting another spot,
to indicate to the user which neuron has already been
analysed in detail. The figure shows the activation map
resulting from the integrated analysis of 21 tomato ILs
with a 40 × 40 neuron topology, with Vn = 0 and
Vn = 1.
Detail view of original data measurements
Figure 2 shows the resulting *omeSOM integrated
model for the 21 IL dataset (a), with the same color
code as that shown in Figure 1. Curves presented in b
show a detail of the normalized patterns which have all
been clustered together in neuron 604: three metabo-
lites: L-aspartic acid, calystegineB2 and D/L-pyrogluta-
mic acid, together with three inverted sign transcripts:
LE12J18, LE13G19 and LE22O03. Figure 2 c shows the
non-normalized (original) log ratios of pyroglutamic
acid. Red circles indicate missing values for metabolites
(samples in an IL not having enough significantly
detected replicate experiments for the average log ratio
calculation). In the case of a transcript, red circles indi-
cate non-significant expression levels with respect to the
control genotype. The lower-left panel shows the anno-
tation of one transcript according to its probe code

which is automatically linked into the Arabidopsis (At)
and Unigene (SGN-U) annotations and metabolite path-
ways. A screenshot of these figures in the software can
be found in the Additional file 1: Supplemental Figure
S1.
KEGG pathways associated with grouped compounds
If metabolites and transcripts are named consistently
with the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [41] conventions, data grouped by neurons can
be checked against metabolic pathways available online,
for finding candidate genes belonging to metabolic path-
ways. For each metabolite, a list of KEGG pathways
where it participates can be easily visualized in the same
interface. The software performs cross-references
searches inside KEGG to obtain the corresponding path-
way descriptions, using the metabolite KEGG codes.
Visualization of clusters inside a specific chromosome
segment
Another possibility is the visualization of clusters from
all ILs belonging to the same chromosome. It is possible
to select the data from a particular chromosome from a
full genome dataset. This allows users to dissect particu-
lar clustering patterns showed by ILs spanning a given
chromosome. When components of a neuron (tran-
script, metabolite or both) show significant deviations of
the neuron mean with respect to the other ILs, they can
be visualized in separated maps as those showed in Fig-
ure 3 for ILs spanning chromosome 12. This allows the
comparison of pattern expressions according to a color
scale that paints only neurons having patterns with an
important deviation from the neuron mean, for each
dimension/IL. That is, neurons where at least one pat-
tern has a value greater than the mean plus one stan-
dard deviation in the corresponding IL are depicted in
green. If in this IL there is at least one pattern in the
neuron with a value lower than the mean plus one

Figure 1 Main *omeSOM maps. Activation *omeSOM resulting from the integrated analysis of 1385 genes and 71 metabolites from 21 tomato
ILs. Map topology of 40 × 40 neurons with a) V n = 0 and b) V n = 1
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standard deviation, the neuron is painted in gray. The
variations in the gene expression levels and/or metabo-
lite variation of the grouped patterns may provide useful
information regarding genes/metabolites specifically
associated with a certain introgressed chromosomal seg-
ment. This feature could help in the association of
metabolite and transcript networks with genetic maps.
Figure 3 presents the output of the 3-color map func-
tion which shows the activation of a 20 × 20 map for all
ILs comprising chromosome 12. The comparison of
these maps allows identifying those ILs showing distinc-
tive neurons. This feature might facilitate mapping those
genetic factors involved in the clusters.
Quality evaluation of clusters of combined data types
It is quite important to be able to evaluate the quality of
a clustering algorithm when applied to biological data,
in particular if later biological inferences should be
made. Inside *omeSOM, a typical clustering measure is
calculated for each neuron and shown graphically over
the feature map with different marker sizes, when the
feature Neurons error measure is selected. This measure
comprises validation measures assessing cluster com-
pactness or homogeneity [42]. Intracluster variance is
their most popular representative:

C
j

j i j

i j

= −
∀ ∈
∑1

2| |
,

Ω
Ω

x w
x

(2)

where |Ωj| is the number of patterns in node j. As a
global measure of compactness, the average over all
nodes is calculated C Ck jj

= ∑1 . Values of C close to
0 indicate more compact nodes.

Conclusions
The *omeSOM model is oriented towards discovering
unknown relationships among data, as well as providing
simple visualizations for the identification of co-
expressed genes and co-accumulated metabolites. It has
a user-friendly interface and provides several visualiza-
tion tools easy to understand by non-expert users. A
case study which involved gene expression measure-
ments and metabolite profiles from tomato fruits was
presented here to show the application of the software.
The interest in comparing the cultivated tomato against
the different ILs lies on the fact that, as has been
shown, some wild tomato relatives can be sources of
important agronomical characters which could be used
for the improvement of commercial tomato lines.

Figure 2 Integration model visualizations. (a) Resulting *omeSOM integrated model for the 21 ILs having 25 × 25 neurons with V n = 0.
(b) Detail of the normalized cluster patterns values clustered together in neuron 604. (c) Detail of the de-normalized (original) values for
the metabolite pyroglutamic acid. Down left panel: transcript codes decodification and metabolite pathways.
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Figure 3 3-colors maps example. 3-colors maps activation for the tomato chromosome 12 (ILs 12-1-1, 12-1, 12-2 and 12-3). In gray: mean
transcripts and/or metabolites which are below 1 standard deviation out of the neuron mean. In green: mean transcripts and/or metabolites
which are above 1 standard deviation out of the neuron mean. In other cases, the neurons are painted white.
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Therefore, *omeSOM is presented as a software
designed to give support to the data mining task applied
to both basic research and applied breeding programs.

Availability and requirements
• Project name: *omeSOM.
• Project home page: http://sourcesinc.sourceforge.
net/omesom/.
• Operating system(s): Linux and Microsoft
Windows.
• Programming language: Matlab®(release 2007a).
• Other requirements: SOM toolbox.
• License: opensource, free for academic use.

Additional material

Additional file 1: *omeSOM screenshot. Several windows of the
software are shown in the picture. The main menu (down right) shows
the features provided by the software. By clicking on Neurons map, the
upper left window appears showing a 2-D SOM model, where each
neuron is painted according to the type of data it contains. Right-clicking
on one neuron, let us suppose neuron 16, the upper right window
appears showing a detail of the normalized patterns values that have
been clustered together in neuron 16. Here, if one of the patterns is
selected, the down right window appears, with detail of the de-
normalized (original) values for the pattern; in this case, transcript LE7E01.
In the background (down left) the corresponding transcript code
decodification appears (Arabidopsis (At) and Unigene (SGN-U)
annotations), as well as a list of related KEGG pathways.
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