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Abstract

Tumor metastasis is the major cause of poor prognosis and mortality in colorectal cancer

(CRC). However, early diagnosis of highly metastatic CRC is currently difficult. In the pres-

ent study, we screened for a novel biomarker, GDNF family receptor alpha 1 (GFRA1)

based on the expression and methylation data in CRC patients from The Cancer Genome

Altlas (TCGA), followed by further analysis of the correlation between the GFRA1 expres-

sion, methylation, and prognosis of patients. Our results show DNA hypomethylation-medi-

ated upregulation of GFRA1 in invasive CRC, and it was found to be correlated with poor

prognosis of CRC patients. Furthermore, GFRA1 methylation-modified sequences were

found to have potential as methylation diagnostic markers of highly metastatic CRC. The tar-

geted demethylation of GFRA1 by dCas9-TET1CD and gRNA promoted CRC metastasis in

vivo and in vitro. Mechanistically, demethylation of GFRA1 induces epithelial-mesenchymal

transition (EMT) by promoting AKT phosphorylation and increasing c-Jun expression in

CRC cells. Collectively, our findings indicate that GFRA1 hypomethylation can promote

CRC invasion via inducing EMT, and thus, GFRA1 methylation can be used as a biomarker

for the early diagnosis of highly metastasis CRC.
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Author summary

Abnormal DNA methylation, one of important characteristics in tumor cells, is exploited

as biomarkers for cancer diagnosis and prognosis prediction. Early diagnosis of highly met-

astatic CRC will be helpful for the clinical management, thus prolongs patient survival.

However, it is currently difficult to make early diagnosis of highly metastatic CRC in clini-

cal practice. Currently, we screened a novel biomarker gene, GFRA1, which associated

with the invasion and poor prognosis of CRC. The targeted demethylation of GFRA1

exerted a significant promoting effect on CRC metastasis, and GFRA1 methylation-modi-

fied sequences are valuable diagnostic biomarker for CRC metastasis risk assessment.

Mechanically, demethylation of GFRA1 induced epithelial-mesenchymal transition (EMT)

by upregulating AKT phosphorylation and c-Jun expression in CRC cells. Our results dem-

onstrate the promoting effect of GFRA1 demethylation on CRC invasion and GFRA1

methylation may be a potential prognostic marker for predicting metastasis of CRC.

Introduction

Colorectal cancer (CRC) ranks third in terms of incidence and second in terms of mortality

caused by cancer; more than 1.8 million new CRC cases were diagnosed and 881,000 deaths

occurred from CRC in 2018 [1]. Approximately 25% of the CRC patients present metastases at

the initial diagnosis stage and almost 50% of them developed metastases, contributing to the

high mortality rates associated with CRC [2]. Clinically, colonoscopy is gold standard for the

diagnosis of CRC [3, 4]. However, cancer metastases cannot be predicted or identified by the

histopathologic or imaging examinations of colonoscopy, there is still lacking effective screen-

ing methods for CRC with high metastatic potential [5, 6]. Since invasion of the orthotopic

tumors is the first step and the key point in tumor metastasis progression, thus early diagnosis

of patients with highly invasive tumor cells can predict the risk of metastasis in CRC [7–9].

Although, the mechanism of invasion of CRC had been investigated previously, a specific and

sensitive tumor invasion biomarker capable of predicting CRC metastasis and prognosis in the

clinic is lacking [10]. Therefore, developing a novel biomarker for early diagnosis of high meta-

static CRC is an effective method to improve the treatment effects and survival of CRC

patients.

Substantial evidence has been accumulated suggesting that the epigenome, specifically

DNA methylation has a substantial effect on the development of cancer. Therefore, changes in

DNA methylation hold great promise as biomarkers for tumor risk prediction [11–13]. In pre-

vious study, hypermethylation of DNA measured in blood or stool samples could be used as a

biomarker for CRC [14], indicating that DNA methylation biomarkers can be used for CRC

clinical diagnosis. As compared to histopathology and imaging examinations, biomarkers can

be better predictors of tumor metastasis, including that for CRC [15, 16]. Two methylation-

based biomarkers that are located in the GSTpi and Sept9 gene regions are used to predict

prostate and colorectal cancers and have been approved by the US FDA, showing that methyl-

ated biomarkers have great potential for clinical diagnosis and prediction of cancers [17, 18].

In addition, hypermethylated NEUROG1, RASSF1A, RASSF2A, SDC2, SEPT9, TAC1, and

THBD genes were detected in early stage CRC, hypermethylation of ALX4, FBN2, HLTF, P16,

TMEFF1, and VIM genes was associated with poor prognosis, and hypermethylated P16 and

TFPI2 genes were related to recurrence of CRC [14]. However, few studies on DNA methyla-

tion biomarkers associated with CRC invasion or as predictors of metastasis have been

reported.
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Glial cell derived neurotrophic factor receptor alpha 1 (GFRA1), a member of the GDNF

ligand family, plays important roles in nervous system development, spermatogenesis and

tumor progression [19]. Previous studies found GFRA1 regulates the proliferation and differ-

entiation of nerve cells [20, 21] and spermatogenic stem cells via binding GDNF ligand [22–

24]. Meanwhile, GFRA1 gene can be methylated during spermatogenesis [25]. In addition,

GFRA1 can promote the proliferation and migration in pancreatic cancer and breast cancer

[26, 27], and induce chemotherapy resistance in osteosarcoma [28]. However, the function

and methylation level of GFRA1 in CRC is still not clear.

In order to discover a CRC invasion related DNA methylation biomarker, we used TCGA

database data in combination with CRC patient prognostic data to screen for the potential bio-

marker, which could be associated with CRC tumor invasion and prognosis. GFRA1, a cancer-

promoting gene in pancreatic and breast cancers [26, 27], was selected for further analysis.

Furthermore, we used dCas9-mediated DNA methylation editing to target demethylation of

the GFRA1 gene and investigate the potential function and mechanism of GFRA1 in regulat-

ing metastasis in CRC. Our results suggest that GFRA1 methylation can be used as a biomarker

for the early diagnosis of metastasis-risk CRC.

Results

Hypomethylation mediated upregulation of GFRA1 correlated with

invasion and poor prognosis of CRC

To screen for potential genes that were regulated by methylation in CRC, we analyzed the

RNA-seq data and methylation data in 38 normal tissues and 309 Colon adenocarcinoma

(COAD) tumor tissues from The Cancer Genome Atlas (TCGA), in which 65 hypermethylated

genes with significant down-regulation of RNA levels were found (S1A and S1B Fig, Fig 1A).

After that, we compared the methylation and mRNA expression level of candidate genes

between invasive and non-invasive CRC tumors. Among these genes, GFRA1 was screened for

its significant hypomethylation and high expression in invasive CRC compared to non-inva-

sive colon cancer (Fig 1B and 1C). Furthermore, the clinical relevance of GFRA1 in CRC was

determined based on the TCGA database. The results suggested that GFRA1 methylation levels

were significantly reduced and the mRNA levels were significantly elevated in patients with

lymphatic invasion and vascular invasion (Fig 1D and 1E) Next, correlation analysis from

TCGA and HXCRC cohort showed that the methylation levels of GFRA1 were slight nega-

tively correlated with the gene expression (Fig 1F and 1G). The treatment of CRC cell lines

with anti-methylation drug DAC could significantly increase the expression of GFRA1 (S1C–

S1E Fig), this indicates that GFRA1 expression could be upregulated by GFRA1 demethyla-

tion. Then, the GFRA1 mRNA expression was determined in a HXCRC cohort containing 90

malignant tissues of CRC patients. The analysis indicated that the high expression of GFRA1 is

consistently correlated with shorter overall survival and disease-free survival (Fig 1H). Fur-

thermore, we also got similar results on the HXCRC cohort tissue microarrays (TMA) contain-

ing 251 malignant tissues of CRC patients based on the GFRA1 protein expression (Fig 1I, S1F

Fig). Taken together, these results suggested that hypomethylation -mediated GFRA1 upregu-

lation associated with metastasis and poor prognosis of CRC patients.

GFRA1 hypomethylation associates with tumor invasion and poor

prognosis in CRC

To further explore the relationship between GFRA1 methylation and tumor invasion, we per-

formed a full-length methylation modification analysis of GFRA1 using 450K methylation
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Fig 1. Hypomethylation mediated upregulation of GFRA1 in colorectal cancer is associated with tumor invasion

and poor prognosis. A Heat map showing associated with the methylation profile of 65 genes in normal and tumor

tissues from S1A Fig, β value indicating the DNA methylation levels are represented by the color of the heat map(Red

means high methylation, green means low methylation). B Violin plot of differentially methylated genes in CRC tumors

with or without invasion based on TCGA (��p< 0.01, ���p< 0.001; student t-test). C Violin plot of differentially

expression level of methylated genes in CRC tumors with or without invasion based on TCGA (�p< 0.05, ��p< 0.01;

student t-test). D Comparison the GFRA1 gene methylation in tumors with or without lymphatic invasion and venous

invasion from TCGA (��p< 0.01; student t-test). E Comparison the GFRA1 mRNA expression (z-scores relative to

diploid samples) in tumors with or without lymphatic invasion and venous invasion from TCGA (�p< 0.05; student t-

test). F Correlation analysis between GFRA1 gene expression (z-scores relative to diploid samples) and methylation levels
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chip data derived from TCGA. As compared to the non-invasive tumor tissues, the signifi-

cantly hypomethylated region in the invasive tumor was mainly located in the CpG island of

the transcription start site (TSS) (Fig 2A). Combining clinical invasion phenotype and GFRA1
expression correlation analysis, we found 10 eligible probe sequences (Fig 2B and S1 Table).

Among them, three sequences are located upstream of the TSS, and seven sequences are

located downstream of the TSS (Fig 2A). In further analysis, the three probe sequences

upstream of TSS were found to be negatively correlated with the gene expression (Fig 2C–2E).

The methylation level of this sequence was also significantly reduced in stage 3–4 colon cancer

tissues, and in tumor tissues with lymphatic invasion and vascular invasion (Fig 2C–2E). The

other seven probe sequences downstream of TSS were found to have similar results (S2 Fig).

To further evaluate the performance of GFRA1 methylation in predicting CRC invasion, ROC

curves were initially calculated using probe sequence data with significantly reduced methyla-

tion levels (P<0.001) in lymphatic invasive tumors. As shown in S3 Fig, the AUC values of the

eight probe sequences ranged from 0.6 to 0.7, indicating that GFRA1-low methylation can be

used as a methylation biomarker for tumor invasion. After that, we used 92 clinical patient

samples (75 tumor tissues and 17 paracancerous tissues) to determine the degree of methyla-

tion upstream of GFRA1 TSS by time-of-flight mass spectrometry. The methylation sites

around the cg25617725 probe sequence have higher methylation modification in colon cancer

patients (Fig 2F), but hypomethylated patients with shorter overall survival and disease-free

survival (Fig 2G). In summary, GFRA1 epigenetic modification sequences in TSS associated

with tumor invasion and poor prognosis.

dCas9-TET1CD mediated GFRA1 specific demethylation

To test whether demethylation of the hypermethylated TSS can reactivate GFRA1, we con-

structed gRNA-mediated GFRA1-targeted methylation editing plasmid (Fig 3A). This plasmid

recruits dCas9-TET1CD to the TSS of GFRA1 via gRNA [29], thus specifically demethylating

the TSS region of GFRA1. We found that most of the GFRA1 gene in CRC cell lines has high

methylation modifications in the CCLE database (S4A Fig). Therefore, HCT116 and SW480

cells, which show hypermethylation of GFRA1 by BSP sequencing (S4B Fig), were used for tar-

geted GFRA1 demethylation. We designed eight gRNAs and selected the two best gRNAs

(gGFRA1-5 and gGFRA1-6) based on the GFRA1 protein expression in western blotting (Fig

3B, S2 Table), Furthermore, we subsequently proved that dcas9-TET1CD-gGFRA1-5 and

dcas9-TET1CD-gGFRA1-6 significantly removed the GFRA1 gene methylation and upregu-

lated the GFRA1 mRNA expression in HCT116 and SW480 cells (Fig 3C and 3D). Since our

DNA targeting methylation editing system is mediated through the use of gRNA, it was

required to determine whether gene-targeted demethylation was off target. By using the gRNA

off-target sequence prediction website (https://crispr.bme.gatech.edu/), we identified the 10

most likely off-target sites for gGFRA1-5 and gGFRA1-6 (S3 and S4 Tables). Among them, the

gGFRA1-5 off-target site corresponds to 9 genes (CCDC172, LRMDA, ZNF730, THNSL2,

GABRG2, CBLB, FAM22A, EFNB2, and SLC14A2), and the gGFRA1-6 off-target site corre-

sponds to 3 genes (CCDC172, TMEM18, and NFASC). We further used qRT-PCR to detect

gene expression of the gRNA off-target sites after transfection of dcas9-TET1CD-gGFRA1-5

from TCGA (Pearson’s correlation test). G Correlation analysis between GFRA1 gene expression and methylation levels

from HXCRC cohort patient samples (Pearson’s correlation test). H Overall and disease-free survival of patients from

HXCRC cohort GFRA1 RNA expression data (log-rank (Mantel-Cox) test). Data are mean ± SD. I Overall and disease-

free survival of patients from HXCRC cohort GFRA1 protein expression data (IHC staining in TMA, log-rank (Mantel-

Cox) test). Data are mean ± SD.

https://doi.org/10.1371/journal.pgen.1009159.g001
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Fig 2. Analysis of full-length methylation modification of GFRA1 gene in CRC based on 450K methylation

microarray. A Full-length 450K methylation array data analysis of GFRA1 gene in invasive CRC tumors compared to

non-invasive CRC tumors (�p< 0.05, ��p< 0.01, ���p< 0.001, ����p< 0.0001; student t-test, Data are mean ± SEM).

B Venn diagram used to demonstrate a common list of 10 methylated sequences. Including the correlation between

the probe sequences DNA methylation level and gene expression (r< -0.3; Pearson’s correlation test, Expression), the

methylation modification of probe sequences in CRC (p < 0.05; student t-test, Sample type), significant reduction of

DNA methylation level in lymphatic invasive CRC (p< 0.05; student t-test, Lymphatic invasion)and vascular invasive

CRC (p< 0.05; student t-test, Venous invasion). marked in red (A). C-E Detailed description of three methylation

sequences upstream of GFRA1 gene TSS from (B), including correlation between gene expression and DNA

methylation (Pearson’s correlation test), variety in DNA methylation levels at different tumor stages (�p< 0.05,
��p< 0.01, ����p< 0.0001; student t-test) and differences in methylation levels between invasive and non-invasive
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and dcas9-TET1CD-gGFRA1-6 in HCT116 and SW480 cells. It was found that GFRA1-tar-

geted methylation editing plasmid did not cause significant changes in the off-target gene

expression (Fig 3E and 3F and S4C and S4D Fig). Collectively, dcas9-TET1CD-gGFRA1-5 and

dcas9-TET1CD-gGFRA1-6 could induce targeted and specific demethylation of GFRA1 in

CRC.

Targeted demethylation of GFRA1 promotes CRC metastasis

To test whether GFRA1 hypomethylation will promotes CRC metastasis, HCT116 cells after

transfection with dcas9-TET1CD-gGFRA1-5 or dcas9-TET1CD-gGFRA1-6 were injected into

the tail vein of BALB/c nude mice. One month after HCT116 cell injection, the organ metasta-

ses in nude mice were determined. As shown in Fig 4A and 4B, more lung metastasis nodules

were observed in the groups with GFRA1 hypomethylation, as compared to the control group.

Next, we evaluated the ability of GFRA1 targeted demethylation on the proliferative capacity of

HCT116 and SW480 cells using CCK8 proliferation assay and colony formation assay in vitro.

The results indicated that the proliferative capacity of HCT116 cells and SW480 cells was sig-

nificantly enhanced after removal of GFRA1 methylation (Fig 4C). Similarly, the colony forma-

tion assay suggested that the targeted demethylation of GFRA1 also significantly increased the

number of clones produced by CRC cells after two weeks (Fig 4D). Moreover, the effect of

GFRA1 hypomethylation on the motility and invasion capability of CRC cells in vitro was

detected in Transwell assay. After incubating for 48 h, the GFRA1-targeted demethylation sig-

nificantly increased the migration and invasion of HCT116 and SW480 cells (Fig 4E and 4F).

These results suggest that GFRA1 hypomethylation may serve as a tumor promoting factor to

induce the metastasis of CRC, as shown in previous clinical data analysis results.

Targeted demethylation of GFRA1 gene induces epithelial to mesenchymal

transition in CRC cells

To further explore the mechanism of GFRA1 targeted demethylation in promoting CRC

metastasis, we performed gene co-expression analysis by using TCGA database data. The

results demonstrated a slight positive correlation between GFRA1 mRNA expression and

EMT-activating transcription factors (ZEB1, ZEB2, SNAI2, and TCF4), EMT-markers (VIM,

N-cad), invasion-related factors (MMP2 and MMP9), and growth factors (TGFB2, IGF1,

FGF2, and VEGFC) (Fig 5A, S5A Fig). However, there was no significant correlation between

SNAI1, TWIST, CDH1 (E-cad), VEGFA, MMP7, and GFRA1 mRNA levels in patient samples

from TCGA (S5A Fig). Next, we examined whether the expression of these positively related

genes were regulated by GFRA1 methylation in CRC cells. As shown in Fig 5B and 5C, the

mRNA expression of ZEB1, ZEB2, TCF4, VIM, N-cad, TGFB2, MMP2, and MMP9 was signif-

icantly increased with the target-demethylation of GFRA1 in HCT116 and SW480 cells. In

contrast, the IGF1, FGF2, VEGFC, and SNAI2 mRNA levels did not change evidently (S5B

and S5C Fig), indicating that the expression of these genes is not regulated by GFRA1 expres-

sion. Moreover, we examined the protein expression levels of EMT markers in GFRA1 targeted

demethylated CRC cells. As shown in Fig 5D, the mesenchymal markers, VIM and N-cad

were upregulated in CRC cells with GFRA1 hypomethylation. Furthermore, immunofluores-

cence analysis also showed an increase in VIM and N-cad expression in GFRA1 targeted

tumors (�p< 0.05, ��p< 0.01; student t-test). F Comparison of the methylation levels of GFRA1 TSS upstream in CRC

tumor tissues and normal tissues from HXCRC cohort (�p< 0.05; student t-test). G Overall and disease-free survival

of patients from HXCRC cohort methylation data in (F) (log-rank (Mantel-Cox) test). Data are mean ± SD.

https://doi.org/10.1371/journal.pgen.1009159.g002
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Fig 3. Targeted demethylation of GFRA1 by dCas9-Tet1CD and verification of off-target effect in CRC cells. A Schematic representation of dCAS9-mediated

targeted demethylation plasmid and distribution of gRNA the upstream of the GFRA1 TSS. B Expression of GFRA1 after transfection of pPlatTET-gRNA plasmids

constructed from different gRNAs in HCT116 and SW480 cells was detected using western blotting. C BSP-seq determination of TSS region demethylation effect of

pPlatTET-gGFRA1-5 and pPlatTET-gGFRA1-6 in HCT116 and SW480 cells (methylation CpG sites are shown as black dots, unmethylation CpG sites are shown as

white dots). D The mRNA levels of GFRA1 in GFRA1-targeted demethylation CRC cells detected by Real-time PCR analysis (�p< 0.05, ��p< 0.01; student t-test).

E-F The relative expression of genes at gGFRA1-5 and gGFRA1-6 off-target sites in HCT116 cells (Student’s t-test). Data are mean ± SD.

https://doi.org/10.1371/journal.pgen.1009159.g003
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Fig 4. Hypomethylation of GFRA1 promotes metastasis of CRC. A-B Female BALB/c nude mice were injected in

tail vein with either HCT116 cells with targeted demethylation of GFRA1 (pPlatTET-gGFRA1-5 and pPlatTET-

gGFRA1-6) or respective control cells (pPlatTET-gRNA), n = 7 mice per group. Representative hematoxylin and

eosin-stained images presented to show tumor lesions in the lungs (scale bar, 100 μm). The scatter plots show the

number of lesions in the lungs as mean± SD (��p< 0.01; Student’s t-test). C CCR8 experiment demonstrates the effect

of GFRA1 demethylation on cell proliferation in HCT116 and SW480 cells (�p< 0.05, ��p< 0.01, ���p< 0.001;

Student’s t-test). D Effects of the loss of GFRA1 methylation on clonogenic spheroid formation in CRC cells was

detected by clonogenic spheroid formation assay (��p< 0.01; student t-test). E-F Effects of GFRA1 hypomethylation

on cell migration and invasion, as evaluated by Transwell assays in CRC cells (�p< 0.05, ��p< 0.01, ���p< 0.001;

Student’s t-test), and data are mean ± SD from at least three independent experiments. Scale bars represent 100 μm.

https://doi.org/10.1371/journal.pgen.1009159.g004
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Fig 5. GFRA1 hypomethylation activates EMT in CRC cells. A Gene co-expression analysis showing the correlation of

GFRA1 to ZEB1, ZEB2, TCF4, VIM, N-cad, TGFB2, MMP2, and MMP9 (Pearson correlation test). B-C q-PCR assays display

the effects on gene expression (A) in GFRA1 hypomethylation CRC cells (�p< 0.05, ��p< 0.01, ���p< 0.001; Student’s t-test).

D Western blot analyses showing the effects of GFRA1-targeted demethylation on the expression of EMT marker (VIM and N-

cad) proteins in CRC cells. E Immunofluorescence assays depicting localization and protein expression of EMT markers after

GFRA1 demethylation. Data are mean ± SD from at least three independent experiments. Scale bars represent 100 μm.

https://doi.org/10.1371/journal.pgen.1009159.g005
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demethylation HCT116 and SW480 cells, as compared to that in the control cells (Fig 5E).

Taken together, our data indicated that GFRA1 hypomethylation promoted metastasis through

the induction of the EMT program in CRC cells.

Hypomethylation of GFRA1 induces epithelial to mesenchymal transition

by promoting AKT phosphorylation and upregulating c-Jun expression in

CRC

To elucidate the mechanism of EMT induced by GFRA1 hypomethylation in CRC cells, we

performed GFRA1 related pathway commons network analysis by using data from the public

pathway and interactions databases (http://www.pathwaycommons.org/). The GFRA1 gene

was found to be associated with AKT phosphorylation and expression of Jun in CRC (Fig 6A).

Then, western blotting analysis showed that the protein expression levels of p-AKT, c-Jun, and

p-c-Jun were much higher in the GFRA1-hypomethylatedd cells than in their respective con-

trol cells (Fig 6B). To determine whether GFRA1 demethylation induces EMT by promoting

AKT and c-Jun phosphorylation in CRC, the AKT inhibitor MK-2206 2HCl and JNK inhibitor

SP600125 were added at a concentration of 2 μM for 48 h to the GFRA1 targeted demethyla-

tion CRC cells. The mRNA expression levels of ZEB1, ZEB2, VIM, and N-cad were decreased

after treatment of GFRA1-hypomethylation cells with MK-2206 2HCl and SP600125 at 2 μM

for 24 h (Fig 6C and 6D). Moreover, the protein expression levels of VIM and N-cad were

lower with the reduction of p-AKT and p-c-Jun proteins in GFRA1-target demethylation

HCT116 and SW480 cells, which was consistent with the mRNA expression data (Fig 6E and

6F). In addition, the proliferation and migration of SW480-GFRA1 and HCT116-GFRA1
hypomethylated cells were reduced by treatment with the inhibitors, MK-2206 2HCl and

SP600125 (Fig 6G and 6H), suggesting that the promotion of GFRA1 hypomethylation in the

CRC cell proliferation and invasion can be blocked by p-AKT and p-c-Jun inhibitors. All of

these results demonstrate that hypomethylation of GFRA1 promotes AKT phosphorylation

and upregulates c-Jun expression, thereby, activating EMT to promote tumor invasion in

CRC.

Discussion

Tumor metastasis is the main cause of poor prognosis of CRC, thus, early predictive diagnosis

of highly metastatic CRC will be helpful for the clinical treatment of patients [30, 31]. In our

study, we have demonstrated that GFRA1 hypomethylation accompanied with upregulation of

GFRA1 in invasive CRC, and correlated with poor prognosis of patients. The targeted demeth-

ylation of GFRA1 by dCas9-TET1CD and specific gRNA promoted proliferation, migration,

and metastasis of CRC cells in vitro and in vivo. Demethylation of GFRA1 induced EMT in

CRC by promoting AKT phosphorylation and increasing the AKT expression in CRC cells.

Collectively, our findings indicate that GFRA1 demethylation promotes CRC invasion via
inducing EMT, and GFRA1 methylation can be used a biomarker for early diagnosis of highly

metastatic CRC.

DNA methylation, one of the most important factors driving tumorigenesis, are recognized

as diagnosis biomarker of various cancers [6, 32, 33]. Previous studies have demonstrated the

GFRA1 methylation level was significantly decreased in gastric carcinoma with lymph/distant

metastasis. Compared with patients with GFRA1 high methylation, those with GFRA1 low

methylation had a poor relapse-free survival [5, 34]. These results indicated that GFRA1 pro-

motes the metastasis in gastric carcinoma. In contrast, in hepatocellular carcinoma, the higher

expression of GFRA1 was significantly correlated with good prognosis of patients [35]. In the

present study, we revealed that GFRA1 has lower methylation modification and higher
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Fig 6. Hypomethylation of GFRA1 leads to EMT being blocked by p-AKT and p-C-Jun inhibitors. A Pathway

Common network conducted by GFRA1 related genes. The nodes represent genes, edges display an interaction

between query genes (Green line: control expression; Blue line: control Phosphorylation; Red line: in complex). B

Western blot analyses display the effects of GFRA1 hypomethylation on the protein expression of AKT, p-AKT, c-Jun,

and p-c-Jun in HCT116 and SW480 cells. C-D The mRNA expression levels of ZEB1, ZEB2, VIM, and N-cad in

GFRA1 hypomethylation CRC cells treated with MK-2206 2HCl and SP600125 or DMSO, were detected by q-PCR

(�p< 0.05, ��p< 0.01, ����p< 0.0001; Student’s t-test). E-F Western blot analyses showing the protein expression of

AKT, p-AKT, c-Jun, and p-c-Jun in HCT116-gGFRA1-5 and SW480-gGFRA1-5 cells treated with MK-2206 2HCl (E)

and SP600125(F) or DMSO. G CCK8 experiment demonstrates the effect of treatment with MK-2206 2HCl and

SP600125 on cell proliferation in GFRA1 targeted demethylation cells (��p< 0.01, ���p< 0.001; Student’s t-test). H

Effects of MK-2206 2HCl and SP600125 treatment on cell migration in GFRA1 hypomethylation CRC cells, as

evaluated by Transwell assays. (�p< 0.05, ��p< 0.01; Student’s t-test), and the data are mean ± SD from at least three

independent experiments. Scale bars represent 100 μm.

https://doi.org/10.1371/journal.pgen.1009159.g006
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expression in CRC invasive tumors as compared to non-invasive tumors. It also had been

found that GFRA1 mRNA expression can be modulated by GFRA1 methylation. Moreover,

we noted CRC patients with GFRA1 high expression had poor overall survival and disease-free

survival. Collectively, our results indicating that GFRA1 methylation may have diagnostic

potential for high metastatic CRC.

The accurate detection of DNA methylation location is essential for the understanding of

regulating function of DNA methylation on the gene expression and cancer biological behav-

iors. [36–38]. The GFRA1 methylation was significantly lower in CRC primary tumors with

invasion, indicated that GFRA1 gene regions has the potential as a methylation biomarker for

diagnosis and prediction of highly metastatic CRC. However, identification of a sequence that

would be suitable as a methylation biomarker in GFRA1 gene remains unclear. For this reason,

we further perform a functional analysis of the GFRA1 gene all-long using 450k methylation

array data from TCGA. Results show that ten sequences in GFRA1 gene TSS region has lower

methylation modifications in tumors with invasion compared to tumors without invasion.

Among them, compared to tumors without invasion, the methylation level of the sequences

downstream TSS is more obvious than of the sequences upstream of TSS in tumors with inva-

sion. This phenomenon may be caused by different function of methylation modification [39].

Besides, ROC curve analysis suggests that these sequences have diagnostic value for CRC

metastasis risk assessment and prediction; it is pretty helpful for metastatic CRC risk-tailored

early diagnostic and primary treatment strategies. These sequences can also be combined with

multiple indicators to improve the accuracy of diagnosis in clinical applications.

In terms of functionality, GFRA1 gene is involved in neurodevelopment [20, 21, 40] and

spermatogenic stem cells differentiation [23, 41]. Meanwhile, ablation of GFRA1 may cause a

Hirschsprung’s disease phenotype [42, 43]. In cancer promotion function, GFRA1 gene can

encode GFRA1 protein to promote tumor progression by activating RET and downstream

pathways in breast cancer and pancreatic cancer [26, 27, 44]. Furthermore, GFRA1 gene can

also guide the generation of circRNA to regulate microRNA as an oncogene in breast cancer

and ovarian cancer [45, 46]. These results explain that GFRA1 can perform multiple functions

in a tumor. According to the hypermethylation of GFRA1 in CRC, we chose to endogenously

upregulate gene expression by targeted demethylation of GFRA1, instead of introducing an

overexpression plasmid, which would better represent the function of targeted genes in cells

[29, 47, 48]. Owing to the undesirable effects caused by the global demethylation process, DAC

and AZA faced the serious challenges in experimental applications [49, 50]. In our study,

GFRA1 methylation editing capability to efficiently address the causal-effect relationships of

GFRA1 methylcytosine epigenetic in CRC invasion. Moreover, these results for off-target pre-

dictions also confirmed the specificity of dcas9-TET1CD-gGFRA1-5 and dcas9-TET1CD-

gGFRA1-6 on demethylation of the GFRA1 promoter. In vitro experiments indicated that the

migration and invasion of CRC cells were promoted by targeted demethylation of GFRA1.

Meanwhile, more lung metastasis nodes were observed in the groups with GFRA1 hypomethy-

lation. However, we failed performing GFRA1 knockdown experiments due to no CRC cell

line was identified with high endogenous GFRA1 expression. Importantly, our results indi-

cated that GFRA1 demethylation induced EMT in CRC cells and GFRA1 mRNA expression

are highly correlated with expression of EMT-related factors in CRC tissues. These results sug-

gested that GFRA1 promote invasion and metastasis through inducing EMT in CRC cells,

which would expand the understanding of GFRA1 function.

Based on the inducing role of GFRA1 on EMT, Pathway Commons analysis was employed

to determine the potential downstream targets of GFRA1. We found that GFRA1 is associated

with AKT phosphorylation and c-Jun expression, which induce EMT in several cancers [51,

52]. Further results suggested that GFRA1 demethylation promotes AKT phosphorylation and
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upregulates p-c-Jun and c-Jun expression. Furthermore, treatment of CRC cells with specific

inhibitors targeting AKT or JNK could efficiently attenuate EMT mediated by demethylation

of GFRA1 in CRC cells. These findings suggested that GFRA1 induces EMT via AKT and c-

Jun pathway. Meanwhile, AKT and JNK inhibitors would be an efficient therapy strategy for

the CRC patients with GFRA1 hypomethylation.

In summary, our findings indicate that GFRA1 functions as a tumor promoting factor to

promote CRC invasion through inducing EMT. Methylation of GFRA1 in CRC tissues can be

a biomarker for diagnosis of highly metastatic CRC.

Materials and methods

Ethics statement

The CRC patient samples were obtained from the West China Hospital (Chengdu, P.R. China)

with written informed consent, and the study was approved by West China Hospital of Sich-

uan University Biomedical Research Ethics Committee (S1 Text, Number: 2018(280)). Data

including clinical information was acquired from the medical records. All mouse experimental

procedures were approved by the Institutional Animal Care and Use Committees of Stake Key

Laboratory of Biotherapy, Sichuan University (S2 Text, Number: 20181107004).

Bioinformatic analysis

Expression profiles of mRNA, Illumina Human Methylation 450 K array data (β-value), and

clinical information of CRC patients were downloaded from The Cancer Genome Atlas

(TCGA v19.0; http://cancergenome.nih.gov/) database. β-value was used to measure the per-

centage of methylation [53–55]. β-value is defined as:

b ¼
maxðmethylated; 0Þ

maxðmethylated; 0Þ þmaxðunmethylated; 0Þ þ a

Methylated and unmethylated are the intensity value from methylated and unmethylated

probes and α is a constant offset (by default, α = 100). β-values range from 0 (completely

unmethylated) to 1 (completely methylated).

The TCGA-CRC dataset contained a total of 521 CRC samples included 41 cases of para-

cancerous tissues and 480 cases of tumor tissues. The age of the samples is from 31 to 90 with

the median age of 68. Numbers of female and male patients is 225 and 255, respectively. Differ-

ential expression and methylation level analysis was performed on the TCGA-CRC dataset

using Limma package in R (version 3.5.1) software (https://www.r-project.org/). Wilcoxon

rank-sum test was used to compare the difference of the expression of RNA-seq and methyla-

tion data between tumor tissues and adjacent tissue. A false discovery rate (FDR) <0.05 and

|log2 fold change (FC)| >1 was set as the criteria for screening differentially expressed and

methylation genes. Comparisons between tumor invasion (lymphatic and venous invasion)

and no invasion were tested by two-tailed Student’s t-test, p< 0.05 was considered statistically

significant.

GFRA1 gene CpG sites methylation level in CRC cell lines were downloaded from Cancer

Cell Line Encyclopedia (CCLE 2019; https://portals.broadinstitute.org/ccle). GFRA1 related

pathway commons network data were downloaded from the Public Pathway and Interactions

Database [56] (2019 update; http://www.pathwaycommons.org/). Cytoscape software (version

3.7.0) was used to analyze functional pathways.
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DNA methylation analyses

The DNA extraction was performed using Tissue & Cell Genomic DNA Purification Kit

(GeneMark #DP201). DNA and methylation quality analyses identified 75 CRC samples and

17 paracancerous samples suitable for the methylation study. To verify the results of methyla-

tion analysis of GFRA1 gene based on TCGA data, sequence (including parts of cg25617725

and cg12087643 sequence) upstream of the GFRA1 gene TSS was selected for time-of-flight

mass spectrometry to determine methylation modification levels.

Cell culture and plasmid transfection

Human colorectal cancer cells, HCT116, SW480, HT29, and RKO were maintained in Dulbec-

co’s modified Eagle’s medium (Gibco) supplemented with 10% fetal bovine serum (Gibco,

MA, USA). All cell lines were maintained at 37˚C with 5% CO2. The empty plasmid pPlat-

TET1-gRNA (Addgene plasmid: 82559) and GFRA1-targeted demethylation plasmid from

pPlatTET1-gRNA1 to pPlatTET1-gRNA8 (the sequences of gRNA are displayed in Table S3)

were transfected into HCT116 and SW480 cells using Lipofectamine 3000 reagent (Invitrogen

#2024201, MA, USA), according to the manufacturer’s instructions. Successful transfection

was verified as green fluorescence under fluorescence microscope. G418 (Sigma-aldrich

#A1720, MA, USA) with a concentration of 2 g/L for 48 h was added for screening. After that,

the HCT116 and SW480 cells transfected with the plasmid were used in subsequent

experiments.

Murine experimental lung metastasis experiments

Female BALB/c nude mice at 6 weeks of age were purchased from HFK Bioscience (Beijing, P.

R. China). All mice were bred in the Animal Experimentation Unit (Sichuan University,

Chengdu, China). Twenty one mice were randomly divided into three groups. Then,

HCT116-pPlatTET-gRNA cells (control cells), HCT116-pPlatTET-gGFRA1-5 cells, and

HCT116-pPlatTET-gGFRA1-6 cells (5×105 cells/ mouse) were injected into the tail vein of

each mouse. Mice were anaesthetised by intraperitoneal injection of 1% sodium pentobarbital

(100μl/ mouse). All mice were sacrificed after one month and the lung tissues were removed

for histological examination. After that, the mice lungs were fixed in 4% PFA for 48 h and

embedded in paraffin, 5 μm sections were cut, and stained with hematoxylin and eosin (H&E).

Reverse transcription and quantitative PCR (qRT-PCR)

CRC cells and CRC patient samples were harvested using Trizol (Ambin #15596026, CA,

USA), according to manufacturer’s instructions. RNA was converted to cDNA using Prime-

Script RT reagent Kit with gDNA Eraser (Perfect Real Time) (Takara #RR047B, Tokoyo,

Japan). Quantitative PCR reactions were prepared with TB green Premix EX TaqII (Takara

#RR820A, Tokoyo, Japan), and performed in Light Cycler 96 System (Roche, Switzerland).

Primer sequence information for RT-qPCR is listed in S5 Table.

Western blotting

CRC cells and patient samples were lysed using RIPA lysis buffer containing proteinase inhibi-

tor (1:100, Invitrogen #87785), and was subjected to immunoblot analysis. Mouse anti-GFRA1

(1:1000, Santacruz #sc-271546, MA, USA), rabbit anti-VIM (1:1000, Cell Signaling #5741, CA,

USA), rabbit anti-N-cad (CDH2) (1:1000, ServiceBio #GB11135, Wuhan, China), rabbit anti-

AKT (1:1000, Cell Signaling #4691, CA, USA), rabbit anti-p-AKT (1:1000, Cell Signaling

#4060, CA, USA), rabbit anti C-Jun (1:1000, Cell Signaling #6195, CA, USA), and rabbit anti
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p-C-Jun (1:1000, Cell Signaling #3270, CA, USA) antibodies were used. Decitabine (DAC),

MK-2206 2HCl and SP600125 was purchased from Selleck.

Immunohistochemistry and immunofluorescence

For immunohistochemistry (IHC), patient tissues were fixed in 4% Paraformaldehyde, embed-

ded in paraffin, and then cut into 5 μm thick sections for IHC staining. The slides were blocked

with non-immune goat serum and incubated with anti-mouse GFRA1 antibody (1:200 Santa-

cruz #sc-271546) for 24 h at 4˚C. Then follow the instructions (ZSGB-BIO #SP-9002, Beijing,

China).

For immunofluorescence, the transfected HCT116 cells and SW480 cells grown on the

cover glass in 24 well plates were fixed with 4% paraformaldehyde (PFA) for 20 min and per-

meabilized with 0.2% Triton X-100 for 15 min at room temperature (22–25˚C). Then, the cells

were incubated with the desired primary antibodies in PBS for 24 h at 4˚C, washed with PBS 3

times, and then incubated with fluorescent secondary antibodies away from light at room tem-

perature (22–25˚C). After that, the nuclei were stained with DAPI. The fluorescence intensity

and absorbance were measured at 555 nm (Invitrogen #A21428, MA, USA) and 488 nm (Invi-

trogen #A11001, MA, USA), respectively.

Bisulfite sequencing PCR

Bisulfite Sequencing (BSP-seq) of all bisulfite converted genomic DNA samples was performed

with DNA Bisulfite Conversion Kit (TIANGEN # DP215-02), according to the manufacturer’s

instructions. The primer sequences that were used are as follows:

GFRA1-F1 5´-GTTTTAGGAGAGAGGTAGAGATTG-3´

GFRA1-R1 5´-AATACTACCAAACACACACACTCT-3´

GFRA1-F2 5´-GCGTATTTTAGGATCGTCG-3´

GFRA1-R2 5´-CAAAACACGCAATATTCTACA-3´

PCR reactions were done using EpiTaq HS (TaKaRa #R110Q, Tokoyo, Japan). After purify-

ing the PCR product by GEL Extraction Kit (OMEGA # D2500-01), this DNA fragment was

subsequently cloned into pClone007 Simple Vector (TSINGKE #TSV-007S, Beijing, China)

for sequencing. Methylation levels of CpG site in GFRA1 gene fragments were analyzed by

QUMA (http://quma.cdb.riken.jp/).

Cell proliferation and clonogenic assay

For CCK8 cell proliferation assay, HCT116 (5000 cells/ per well) and SW480 (10000 cells/ per

well) cells were plated in four 96 well plates with three repeated wells assigned for each group.

Absorption values were measured 2 h after adding CCK8 reagent (DOJINDO #CK04), every

24 h. The optical density (OD) was measured at 450 nm.

For cell clonogenic assay, the transfected HCT116 cells (1000 cells/ well) and SW480 cells

(5000 cells/ well) were replated in the 6 well plates, and cultured in complete medium for 2

weeks. Then, the cells were stained with crystal violet and the individual colonies were

counted.

Migration and invasion assays

Cell culture insert transparent PET Membrane, 24 Well, 8.0 um pore size (Falcon #353097)

were used for the migration and invasion assays. A total of 600 μl of culture medium contain-

ing 20% FBS (Gibco, MA, USA) was added to the lower chamber. In the migration assay,

1×105 GFRA1-hypomethylation HCT116 or SW480 cells and their respective control cells in
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100 μl serum-free medium were plated on the uncoated insets, and were incubated for 48 h. In

the invasion assay, the insets were coated with 60 μl of 1:10-diluted matrigel (BD Biosciences,

MA, USA), and 1.5 × 105 cells in 100 μl serum-free medium were plated on the insets for an

incubation period of 48 h. After that, the cells attached to the membrane were fixed with 4%

PFA for 20 min, stained with 5% crystal violet (Beyotime #C0121, Beijing, China) 10 min, and

counted at 100x magnification.

Statistical analysis

Statistical analysis was performed using GraphPad software (version 8.00) and p< 0.05 was

considered statistically significant. Comparisons between the two groups were analyzed by

two-tailed Student’s t-test. Receiver operating characteristic (ROC) curve analysis was used to

test the effectiveness of the methylation level of the GFRA1 DNA probe for the diagnosis of

invasive CRC tumors. Correlation analysis was evaluated by Pearson’s correlation test. Survival

was determined by log-rank (Mantel-Cox) test. Measurement data are mean ± SD from at

least three independent experiments.

Supporting information

S1 Fig. Methylation of GFRA1 can regulate gene expression. A Venn diagram showing the

number of genes with methylation modification and significantly reduced expression levels

from TCGA CRC RNA-seq data and methylation data (FDR< 0.05, Wilcoxon rank-sum test).

B Heat map showing associated with the expression profile of 65 genes in normal and tumor

tissues from S1A Fig, gene expression levels are represented by the color of the heat map (red

means high expression, green means low expression). C Q-PCR analysis showing the expres-

sion level of GFRA1 in HCT116 and SW480 cells after treatment gradient concentration DAC

for 48h. (��p< 0.01, ���p< 0.01, ����p< 0.0001 student t-test). D Western blot analyses dis-

play the effects of DAC on the protein expression of GFRA1 in HCT116, SW480, HT29 and

RKO. E Immunofluorescence assays display localization and expression of GFRA1 in HCT116

and SW480 cells treated with DAC. Scale bars, 100 μm. F Immunohistochemical analysis of

GFRA1 expression in primary tumor tissue from HXCRC cohort TMA. Scale bars, 100 μm.

(TIF)

S2 Fig. Methylation levels are significantly associated with gene expression and tumor

invasion in the downstream sequences of GFRA1 TSS. A-G Detailed description of seven

methylation sequences upstream of GFRA1 gene TSS from (Fig 2C), including correlation

between gene expression and DNA methylation, Variety in DNA methylation levels at differ-

ent tumor stages and Differences in methylation levels between invasive and non-invasive

tumors (�p< 0.05,��p< 0.01, ���p< 0.01, ����p< 0.0001 student t-test).

(TIF)

S3 Fig. ROC curves for the diagnosis of CRC Lymphatic invasion by GFRA1 TSS

sequences. A ROC curves for cg13320291. B ROC curves for cg24792682. C ROC curves for

cg06298519. D ROC curves for cg19485539. E ROC curves for cg17256532. F ROC curves for

cg19236679. G ROC curves for cg03503087. H ROC curves for cg25617725.

(TIF)

S4 Fig. GFRA1 TSS CpG methylation level in CRC cell lines. A Heatmap visualization of

GFRA1 gene CpG sites methylation level in CRC cells form CCLE database. (Those sites with

no data in CRC cell lines were colored in grey). B BSP-seq showing the methylation level in

HCT116 and SW480 cells (methylation CpG sites are shown as black dots, unmethylation

CpG sites are shown as white dots). C-D The relative expression of genes at gGFRA1-5 and
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gGFRA1-6 off-target sites in SW480 cells (Student’s t-test). Data are mean ± SD.

(TIF)

S5 Fig. Genes that do not show a correlation at the expression level with targeted removal

of GFRA1 methylation in CRC cells. A Gene co-expression analysis display the correlation

between of GFRA1 and IGF1, FGF2, VEGFC, VEGFA, MMP7, CDH1, TWIST1, SNAI1,

SNAI2 (Pearson correlation test). B-C Q-PCR showing the effects of IGF1, FGF2, VEGFC,

SNAI2 expression in GFRA1 demethylation HCT116 and SW480 cells (student t-test).

(TIF)
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