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We demonstrate the power of using symmetries for model selection in the
context of mechanistic modelling. We analyse two different models called
the power law model (PLM) and the immunological model (IM) describing the
increase in cancer risk with age, due to mutation accumulation or immunose-
nescence, respectively. The IM fits several cancer types better than the PLM
implying that it would be selected based on minimizing residuals. However,
recently a symmetry-based method for model selection has been developed,
which has been successfully used in an in silico setting to find the correct
model when traditional model fitting has failed. Here, we apply this
method in a real-world setting to investigate the mechanisms of carcinogen-
esis. First, we derive distinct symmetry transformations of the two models
and then we select the model which not only fits the original data but is also
invariant under transformations by its symmetry. Contrary to the initial con-
clusion, we conclude that the PLM realistically describes the mechanism
underlying the colon cancer dataset. These conclusions agreewith experimen-
tal knowledge, and this work demonstrates how a model selection criterion
based on biological properties can be implemented using symmetries.
1. Introduction
Arguably one of the biggest challenges in mathematical biology is that of model
selection. For numerous biological systems, the standard way of constructing
models of a particular biological system is to propose a set of underlying mech-
anisms which are then translated into mathematical equations. Accordingly,
each model consisting of a set of such equations encodes a number of biological
properties and thus selecting one candidate model over another entails validat-
ing an underlying mechanism of the system of interest. Given numerous
distinct candidate models describing some experimental data, the model selec-
tion problem is formulated as follows: select the model that best fits the data, and
this is often referred to as rejection based on residual analysis [1]. However, as has
been shown many contexts, e.g. modelling of cancer tumour growth [2], mul-
tiple distinct models can fit the same data equally well. To account for this
problem, the initial model selection criterion is often modified based on the
philosophical principle known as Occam’s razor initially formulated as do not
multiply entities beyond necessity [3]. This implies that this modified model
selection criterion becomes: select the simplest model that best fits the data. In the
particular context of model selection based on residual analysis, the fit of a
candidate model to experimental data is measured, while simultaneously pena-
lizing the number of parameters, using, for example, the adjusted R2 value, the
Akaike information criteria or the Bayes information criteria [1]. However, as
these criteria are not based on biological properties of the studied system,
there is no guarantee that the selected model is correct in the sense that it
encodes the underlying mechanism, or that there does not exist some other,
previously not considered, model that is in fact correct. To this end, we need
an approach for selecting models that is based on fundamental biological
principles, and here we can turn to mathematical physics for inspiration.
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Here, so-called symmetries have been used with huge success
as they encode fundamental properties in terms of, for
example, conservation laws such as energy conservation [4].

A symmetry is a transformation that leaves an object
invariant. In the context of curves in general and differential
equations in particular, a symmetry maps a (solution) curve
to the same or another (solution) curve of the same type
[5,6] meaning that symmetries preserve the structure of
these curves. For example, power laws (functions of the
form f ðxÞ ¼ Cxg) have scaling symmetries but not translation
symmetries. Although symmetries are not frequently used in
mathematical biology, they do play an important role
in many biological systems [7] and in particular they have
recently been successfully applied in a model selection
scenario in the context of enzyme kinetics [8].

In this latter article by Ohlsson et al. [8], a single enzymati-
cally catalysed reaction converting a substrate molecule to a
product molecule was considered. The rate at which the
enzyme consumes the substrate S is governed by the (dimen-
sionless) Hill equation which can be formulated as follows [8]:

dS
dt

¼ � S
1þ Sn

, ð1:1Þ

and here the so-called Hill coefficient, n, corresponds to the
numberof substratemolecules required to produce one product
molecule. In this context, an artificial model selection scenario
was considered where three candidate models corresponding
to the Hill coefficients n = 1, 2, 3 were fitted to simulated data
using the same Hill coefficients. This implies that the correct
model underlying the simulated data was known in advance;
however, the traditional approach of residual analysis was
unable to distinguish the three models. To employ the sym-
metry-based method, unique symmetries determined by the
Hill coefficient of each candidate model were calculated. The
simulated data were then transformed by each symmetry,
then each model was fitted to transformed data generated by
their respective symmetries and lastly, these fitted models
were inversely transformed back so that their fit to the original
data could be calculated (algorithm 1). Strikingly, the fit of the
modelswith a different Hill coefficient from the one used to simu-
late the data was made worse as the data were transformed by
their symmetries [8]. Better still, the fit of the correct model
having the same Hill coefficient as the one that was used to simu-
late the datawas unchanged nomatter howmuch the datawere
transformed by the corresponding symmetry [8]. Consequently,
when a known symmetry was built into the data, the fit of
the correct model to transformed data was invariant under
transformations by its symmetry.

In this article, we will implement the symmetry-based
procedure for conducting model selection in a situation
with actual experimental data. Specifically, the data consist
of three time series of incidence rates of cancer in samples
of patients as a function of their age in the case of the
cancer types myeloma, colon cancer and chronic myeloid leu-
kaemia (CML) [9,10]. Initially, we implement the standard
model selection criteria based on the fit to this experimental
data, and specifically we fit two of the models in [9] each
corresponding to plausible biological hypotheses for the
increase in cancer incidence due to ageing. Given the superior
fit of one of these models to all three datasets, we select
this model based on the standard model selection criteria.
Then, we present a heuristic argument for the alternative
and previously mentioned symmetry-based model selection
criterion. Lastly, we implement this symmetry-based model
selection criterion in [8] by deriving unique symmetries of
our two candidate models which we then use in order to
transform the data. In contrast to the standard model selec-
tion criteria based on the fit, we conclude based on the
symmetry-based model selection criterion that the selected
model realistically describes the myeloma and the CML
datasets while the rejected model realistically describes
the colon cancer dataset. Strikingly, these conclusions are
supported by experimental evidence, indicating that
symmetries in fact encode the biological mechanisms
underlying the experimental data.
2. Results
2.1. A clear-cut case of model selection: one model has

the best fit to the data of rate of cancer incidences
as a function of age

There are two plausible hypotheses for the increased risk of
developing cancer at a high age. The first one is an accumu-
lation of genetic mutations due to ageing and the second one
is a decline in the capacity of the immune system to clear
mutated cells with age. These two biological mechanisms
are the basis of the so-called power law model (PLM), originally
from [11],

RðtÞ ¼ Atg, ð2:1Þ
and the immunological model (IM),

RðtÞ ¼ A
exp (e�aðt�tÞ)� C

, ð2:2Þ

from [9].
Here, t [years] is the age of the cancer patients and R(t) is

the unitless incidence rate of cancer at age t corresponding to
the risk of developing cancer. For the PLM in equation (2.1),
the unitless parameter γ is related to the number of driver
mutations required for cancer incidence and A [years−γ] is a
scaling parameter. More specifically, γ is one less than the
number of driver mutations where, for example, the value
γ = 0 corresponds to one driver mutation being required to
develop cancer and in that case the risk would be constant
with respect to the age of the patients. For the IM in equation
(2.2), the parameter α is the rate of decline of T-cell pro-
duction, which is fixed to α = 0.044 yr−1 [9] for all cancer
types, the parameter τ [years] is called the pivot age and A
is a unitless scaling parameter. This model assumes that
potentially cancerous cells can arise with equal probability
at any age and that the number of cancer cells undergoes sto-
chastic growth and can only progress to cancer incidence if a
decreasing immune escape threshold (IET) is crossed. The
parameter C is unitless and corresponds to shifting the IET
by a fixed amount, such that values of C less than one corre-
spond to a higher IET and more protection from cancer. For
further details on both the PLM and the IM, see Material
and methods.

Also, we note that equation (2.2) for the IM contains a
double exponential for which we have chosen the notation
‘exp (ex)’. In practice, this means that the PLM has two par-
ameters (A, γ) while the IM has three parameters (A, τ, C)
that can be estimated by fitting these models to experimental
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Figure 1. The fit of the candidate models to cancer data. The data in terms of the incidence rates of cancer as a function of age are illustrated by the black circles,
the power law model (PLM) is illustrated by the dark magenta curves and the immunological model (IM) is illustrated by the dark blue curves. The fit is measured
by the root mean square (RMS) based on orthogonal distance regression [12] in three cases. (a) Myeloma: RMS = 0.63 of the PLM and RMS = 0.36 of the IM.
(b) Colon cancer: RMS = 0.62 of the PLM and RMS = 0.55 of the IM. (c) Chronic myeloid leukaemia (CML): RMS = 0.29 of the PLM and RMS = 0.21 of the IM.

Table 1. Fitting of the candidate models to the three datasets using orthogonal distance regression. The power law model (PLM) and the immunological model
(IM) are fitted to three cancer datasets: myeloma, colon cancer and chronic myeloid leukaemia (CML). The fit is reported as the root mean square (RMS), and
for the IM the parameter α is fixed to a ¼ 0:044 yr�1 [9].

fit of models (RMS) and optimal parameters

model
dataset

myeloma colon cancer CML

PLM RMS = 0.63 RMS = 0.62 RMS = 0.29

A = 1.53 × 10−7 ± 7.65 × 10−8 A = 5.78 × 10−7 ± 1.13 × 10−7 A = 1.12 × 10−6 ± 4.63 × 10−7

γ = 4.43 ± 0.12 γ = 4.60 ± 0.047 γ = 3.63 ± 0.096

IM RMS = 0.36 RMS = 0.55 RMS = 0.21

A = 109.54 ± 11.47 A = 222.32 ± 13.18 A = 0.96 ± 0.29

τ = 76.78 ± 0.89 τ = 64.10 ± 0.57 τ = 32.55 ± 5.60

C =−0.49 ± 0.23 C = 0.94 ± 0.0028 C = 1.03 ± 0.0053
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data. The fitting of the models to the data is based on orthog-
onal distance regression (ODR) [12], and we use the summary
statistic root mean square (RMS) to evaluate the fit of a
model to the given data which is interpreted as follows: the
lower the RMS value the better the fit (for more details on
the model fitting, see Material and methods).

When fitting the two candidate models to three time
series corresponding to different cancer types, our newly
adapted model IM is the better candidate model (figure 1
and table 1). In the case of myeloma, the IM has a fit of
RMS = 0.36 compared to the PLM with a fit of RMS = 0.63.
In the case of colon cancer, the IM has a fit of RMS = 0.55
compared to the PLM with a fit of RMS = 0.62. Lastly, in
the case of CML, the IM has a fit of RMS = 0.21 versus the
PLM with a fit of RMS = 0.29. Currently, the standard way
of selecting a model is to choose the candidate model that
best fits the data. Thus, based on this, we would select the
IM as the appropriate candidate model, as well as concluding
that an age-related decline in the immune system is the
underlying mechanism for the increase in cancer incidences
due to ageing. Also, since the IM has more parameters than
the PLM, it is important to avoid overfitting to the data,
and to resolve this problem, there are numerous statistical
criteria for model selection that are ultimately based on
Occam’s razor. Accordingly, the PLM might be favoured
over the IM as it has fewer parameters which would imply
that an accumulation of harmful mutations due to ageing is
a more important factor for explaining the increase in inci-
dences as a function of age. However, there are many ways
of assessing goodness of fit which penalize for extra par-
ameters in different ways and it is currently unclear which
method to choose. Furthermore, the fits of both models are
both so close that the differences are not even statistically sig-
nificant for myeloma and CML using Vuong’s theory [13]
(p-value > 0.05 for myeloma and CML and p-value = 0.001
for colon cancer).

To this end, we need a better guiding principle for model
selection which is based on the biological properties of the
models at hand, which we propose can be achieved with a
model selection framework based on symmetries.

2.2. A heuristic argument for the use of symmetries in
model selection

When two or more models can fit data equally well, applying
symmetries can provide extra information which ultimately
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can be used to distinguish between the models. This was
demonstrated in the context of simulated data of enzymes
described by theHill function [8] and here the correct candidate
model could be identified based on symmetries.We believe this
may be the case in real-world data as well and to this end we
present the following non-rigorous, heuristic argument.

Let R(t) be a model, e.g. the PLM in equation (2.1), and let
Ge be a transformation parameterized by a parameter ϵ. We
say Ge is a symmetry if it maps a solution curve (t, R(t)) to
another solution curve ð̂tðeÞ, R̂ðt, eÞÞ. In fact, we will restrict
ourselves to symmetries that are C1-diffeomorphisms, as
these symmetries possess certain regularity properties. For a
given model, the set G of such symmetry transformations
together with a multiplication operation × constitute a one-
parameter Lie group of transformations. This Lie group (G, × )
satisfies three conditions:

1. Multiplication: For two transformation parameters
e, d [ R, multiplication of symmetries (meaning that
we first transform with δ and then by ϵ) is defined by:
Ge � Gd ¼ Geþd.

2. Identity element: The trivial symmetry G0 ¼ Ge¼0 acts
trivially on curves: G0ðt, RðtÞÞ ¼ ðt, RðtÞÞ.

3. Inverse element: The inverse symmetry is defined by
G�1
e ¼ G�e.

Given these properties of the Lie group (G, × ), it is straight-
forward to show that the following equation holds:

G�e � Geðt, RðtÞÞ ¼ ðt, RðtÞÞ, ð2:3Þ

and this fundamental property is the basis for the symmetry-
based framework for model selection. In particular, the
interpretation of equation (2.3) is that if we initially transform
a solution curve (t, R(t)) with a symmetry Ge and then trans-
form the transformed solution curve with G�e, we come back
to the original solution curve.

Moreover, suppose we have a time series with m data
points denoted by ð~ti, ~RiÞ for an index i = 1,…, m. Then,
assuming an additive error model for simplicity, these data
can be thought of as arising from a true model, R(t), along
with small contributions, ei, for the response variable as
well as δi for the explanatory variable, coming from either
experimental noise or other mechanisms that contribute
little to the dynamics:

~Ri ¼ RðtiÞ þ ei, jeij ,, jRðtiÞj
~ti ¼ ti þ di, jdij ,, jtij

�
8i ¼ 1, . . . , m: ð2:4Þ

Now, given the symmetry Ge, we can transform the data
which we argue results in one of two different scenarios. In
the first scenario, Ge is a symmetry of the true underlying
model, meaning that Ge takes (t, R(t)) to another solution
curve ð̂tðeÞ, R̂ðt, eÞÞ. For small error terms, ei and δi, the trans-
formed data will be fitted by a model close to the transformed
model ð̂tðeÞ, R̂ðt, eÞÞ, which will transform back to a model
close to the original model under the inverse transform G�e.
In this scenario, the symmetry is manifest in the data.

In the second scenario, the symmetry is not manifest in
the data which means that transformations by the symmetry
will distort the time series. More precisely, transformations of
the true underlying model (t, R(t)) by an inappropriate sym-
metry Ge will result in another class of systematic error terms,
in addition to those arising from ei and δi. Having two
sources of potential error terms rather than one suggests
that this will lead to a poor fit of the transformed data,
which will then give a poor fit to the original data after the
inverse transform G�e is applied.

Therefore, heuristically, if a dataset continues to be fitted
well by a model after applying a transformation which is a
symmetry of the model, then that can be considered evidence
that the model is indeed underlying the dynamics. To the
contrary, if systematic errors are introduced when the candi-
date model is fitted to data that are transformed by its
symmetry, then the model does not underlie the dynamics.
The steps of the symmetry-based procedure for model selec-
tion are summarized in algorithm 1. Here, we want to
emphasize that this argument is in fact supported by a pre-
vious model selection scenario using simulated data where
a symmetry of a known model was built in to the data, and
in this case, the fit of the correct model to transformed data
was invariant under transformation by its symmetry [8].
Importantly, each candidate model must have unique sym-
metries with respect to one another in order to be able to
distinguish between the models, and thus we cannot
implement a symmetry that is shared between candidate
models. Provided this symmetry-based criterion for model
selection, we will next present unique symmetries of our
two candidate models.
2.3. Unique symmetries render the two candidate
models distinguishable

To distinguish between the two candidates, we calculated two
unique and comparable symmetries of eachmodel. These sym-
metries are comparable in the sense that they are both
unidirectional, or more precisely t-directional as they only
transform the t-coordinate in any point (t, R(t)) they act on.
Starting with the PLM, it has a scaling symmetry GPLM

e given by

GPLM
e : ðt, RðtÞÞ 7! ðtee, RðtÞÞ: ð2:5Þ

To clarify the action of this symmetry, we can formulate an
equation for any transformed curve obtained by this symmetry
as follows:

R̂ðt, eÞ ¼ AðeÞtg and AðeÞ ¼ A e�ge: ð2:6Þ

Here, it is clear that this symmetry transforms solution curves
by altering the scaling parameter A of the PLM in equation
(2.1), and thus the symmetry preserves the number of driver
mutations for a specific cancer type given by γ. Similarly, the
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Figure 2. Unique symmetries render the two candidate models distinguishable. The actions of the t-directional symmetries of the two candidate models are
illustrated when the symmetries transform a solution curve twice with a fixed transformation parameter ϵ. The two symmetries are: (a) the scaling symmetry
G PLM
e of the PLM where the original solution is defined by the parameters (A, γ) = (1.53 × 10−7, 4.43) with a transformation parameter of

e ¼ ePLMscale=2 ¼ lnð2Þ=2 � 0:35 in accordance with equation (2.11) and (b) the symmetry G IM
e of the IM where the original solution is defined by the

parameters (A, τ, C, α) = (109.54, 76.78,− 0.49, 0.044) with a transformation parameter of e ¼ e IM
scale=2 � 0:38 in accordance with equation (2.12).
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IM has a symmetry GIM
e given by

GIM
e : ðt, RðtÞÞ 7! t� ln ( ln ( exp (e�aðt�tÞ)� a eate))

a
, RðtÞ

� �
:

ð2:7Þ
Although the symmetry GIM

e looks complicated at first, its
action also corresponds to perturbations of a single parameter
which is clear by formulating the corresponding equation for
any transformed curve obtained by this symmetry given by

R̂ðt, eÞ ¼ A
exp (e�aðt�tÞ)� CðeÞ , CðeÞ ¼ C� a eate: ð2:8Þ

Here, it is the parameter C of the IM in equation (2.2) that
is altered by the symmetry G IM

e . Also, the symmetry G IM
e

preserves the decline rate of the immune system α as
well as the pivot age τ of the specific cancer type.
Consequently, transformations by the symmetries of the
respective models, i.e. G PLM

e and G IM
e , produce remarkably

different solution curves (figure 2) and this fact enables us
to distinguish between these two seemingly similar
candidate models. Another, aspect that distinguishes the two
symmetries is that GPLM

e is parameter independent in the sense
that it is independent of the parameters (A, γ) of the PLM in
equation (2.1) while G IM

e is parameter dependent as it depends
on the parameters (α, τ) of the IM in equation (2.2). This differ-
ence affects the scale of the transformation parameter ϵ
determining the extent to which the curves and the data are
transformed.

To be able to compare the effect of the symmetries of
our candidate models, we introduce the notion of a trans-
formation scale denoted by ϵscale for our two models and
three datasets. Since both symmetries are t-directional, they
move the original t-coordinate of t years to a transformed t-
coordinate of t̂ðeÞ years where t̂ðeÞ . t for ϵ > 0. Thus, if we
want to transform the data so that a specific age of t years
is, say, doubled, we want to find the transformation par-
ameter ϵscale so that t̂ðescaleÞ ¼ nt for a factor n = 2. To this
end, we ask ourselves the following question: which trans-
formation parameters ϵscale of the two models will move
the data point (t, R(t)) to the data point (nt, R(t)) for a
given age of t years and some factor n > 1? In the case of
the PLM, this transformation scale is a simple function of
the factor n given by

ePLMscale ¼ lnðnÞ: ð2:9Þ

In the case of the IM, this transformation scale is given by the
following equation:

e IM
scale ¼

exp (e�aðt�tÞ)� exp (e�aðnt�tÞ)
aeat

, ð2:10Þ

and hence this scale is dependent on the parameters (α, τ) and
the age t in addition to the factor n. To get a grasp of the order
of magnitude of these scales, consider the transformation
scales corresponding to a doubling of the maximum age of
t = 85 years in the time series, i.e. so that t̂ðescaleÞ ¼ 170 years.
In particular, these transformation scales are calculated by plug-
ging in the values (t, n) = (85, 2) in equation (2.9) and equation
(2.10) respectively. In the case of the PLM, the transformation
scale for all three datasets is given by

ePLMscale ¼ lnð2Þ � 0:69, ð2:11Þ
according to equation (2.9). In the case of the IM, the transform-
ation scales for the three datasets are obtained by plugging in
the optimal values for the parameter τ in table 1, the value
α = 0.044 yr−1 in addition to the values (t, n) = (85, 2) in equation
(2.10). These resulting transformation scales are the following:

myeloma : e IM
scale ¼ 0:77,

colon cancer : e IM
scale ¼ 0:65

and CML : e IM
scale ¼ 0:55:

9>>=
>>; ð2:12Þ

In summary, the transformation scale for the PLM is indepen-
dent of the parameters of the model while the transformation
scale of the IM is dependent on the parameters α and τ of the
model. All details behind the calculations of these symmetries
as well as the derivation of their properties can be found in
the electronic supplementary material. Provided these unique
symmetries of our two candidate models, we will next
implement them in the symmetry-based model selection
procedure in algorithm 1.
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Figure 3. The detailed steps of the symmetry-based framework for model selection. The four steps of the symmetry-based framework for model selections are
illustrated for the PLM in the top row and the IM in the bottom row. In all cases, the symmetry-based framework is implemented with the optimal parameters of
both models obtained from the initial model fitting to the colon cancer data (table 1). The framework is illustrated for the transformation parameters
e ¼ ePLMscale ¼ lnð2Þ � 0:69 in the case of the PLM in the top row in accordance with equation (2.11) and e ¼ eIM�III

scale � 0:65 in the case of the IM in
the bottom row in accordance with equation (2.12).
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Figure 4. The symmetry-based framework for model selection reveals the underlying mechanisms for each cancer type. The fit RMS(ϵ) to transformed data is
plotted against the transformation parameter ϵ in two cases. (a) The PLM fitted to all three datasets on a transformation scale of e [ ½0, 2 ePLMscale� where
the upper bound is given by equation (2.11). (b) The IM fitted to all three datasets on three different transformation scales given by e [ ½0, e IM

scale� where
the upper bounds are given by equation (2.12). In all cases, the symmetry-based framework is implemented with the optimal parameters of both models obtained
from the initial model fitting (table 1). Based on the criteria stating that a model is selected if it fits the original data and if its fit to transformed data is invariant
under transformations by its symmetry, the IM is a realistic model of the myeloma and CML datasets while the PLM is a realistic model of the colon cancer dataset.
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2.4. The symmetry-based methodology reveals the
biological mechanism underlying the data

Starting from the optimal parameters obtained from the
initial model fitting (table 1), we implemented the sym-
metry-based framework for model selection (figure 3).
Here, the criterion for model selection is the following:
select a model which fits the original data and whose fit to trans-
formed data is invariant under transformations by its
symmetries. Based on this, we analysed the fit of the candidate
models to transformed data using algorithm 1.
We find that all datasets are preserved by the model
symmetries except for two: the myeloma dataset under
the PLM symmetry (figure 4a) and the colon cancer dataset
under the IM symmetry (figure 4b). From this, we
conclude that the symmetry-based framework favours the
PLM for colon cancer, the IM for myeloma and does not
distinguish between models for CML. We would then
update our initial findings that the IM fits better than the
PLM for each cancer type, to instead conclude that the
PLM explains colon cancer while the IM explains myeloma
and CML. Biologically, this would suggest that the primary
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mechanism behind the rise in cancer risk with age is
mutation accumulation for colon cancer and immune
system decline for myeloma and CML.

Strikingly, these conclusions tie in with what is already
known about the mechanisms of carcinogenesis for these
cancer types. People with germline mutations in POLE/
POLD or DNA mismatch repair genes accumulate mutations
at a faster rate, which would disproportionately increase
cancer risk in cancer types with a higher number of driver
mutations. In fact, this only leads to a small increase in
cancer risk, except for colorectal and endometrial cancers,
suggesting that those are the cancer types for which mutation
accumulation plays the biggest role [14]. Furthermore, analysis
of shared mutations in tumour samples has been used to esti-
mate the number of driver mutations in each cancer type and
once again colorectal and endometrial cancers are the top
two cancer types [15]. The ratio of risk of colon cancer, in
those without and with an inherited driver mutation in the
gene APC, rises linearly with age [16], supporting the PLM
for colon cancer. On the other extreme, CML is characterized
by just one driver mutation, the mitogenic fusion protein BCR-
ABL, also referred to as the Philadelphia chromosome [15,17].
With just one driver mutation, there would be no increase in
risk with age due to mutation accumulation and the increase
in risk would be entirely explained by immune system decline.
In fact, CML is very well fitted by just a pure exponential, with
risk doubling every 16 years [9]. This makes CML risk inversely
proportional to T-cell production, suggesting that immune
system decline is indeed the only factor behind the increase in
riskwith age. Furthermore, several infectious diseases including
COVID-19 [18] also double in risk forevery 16 years of age, poss-
ibly indicating a shared mechanism of disease progression due
to immune system decline [9].
3. Discussion
In this work, we have implemented a symmetry-based cri-
terion for model selection using experimental data in the
context of the effect of ageing on cancer incidence. Given
three time series of the rate of incidences of myeloma, colon
cancer and CML in samples of patients in the age span 0–85
years, as well as two plausible mechanistic models called the
PLM and the IM, we select the latter of these models based
on the standard model selection criteria as it fits the data
better than the former model. Then, we present a heuristic
argument for using symmetries in model selection, where a
model should be selected if it can fit data that are transformed
by its symmetries as this implies that the symmetries of the
model are also manifest in the data. Thereafter, we derive
two unique symmetries of the PLM and the IM, which are
given by GPLM

e in equation (2.5) and G IM
e in equation (2.7)

respectively, which, in turn, renders the two models dis-
tinguishable. Lastly, we implement these symmetries in the
symmetry-based procedure for model selection where the fol-
lowing four steps are repeated for multiple transformation
parameters ϵ. Firstly, the data are transformed by the sym-
metries of the candidate models, secondly, the candidate
models are fitted to the transformed data, thirdly, these fitted
models are inversely transformed back and fourthly, the fit of
inversely transformedmodels to the original data is calculated.
These steps are described in detail in algorithm 1 and shown
graphically in figure 3.
In the case of the IM, the fits to the transformed myeloma
and CML datasets are invariant and similarly the fits of the
PLM to the transformed colon cancer and CML datasets are
invariant. Provided these results, we update our initial con-
clusions and select the IM for myeloma as well as CML
risk and the PLM for colon cancer risk. These conclusions
are supported by experimental evidence where colon cancer
is thought to be one of the top two cancer types (along
with endometrial cancer) for which mutation accumulation
plays the biggest role (highest number of driver mutations).
On the other extreme, CML is characterized by just one
driver mutation and risk rises with age almost exactly inver-
sely proportional to T-cell production. This risk behaviour is
shared with several infectious diseases, suggesting a similar,
immunological mechanism for the increase in risk with age.

An advantage with the symmetry-based model selection
procedure is that it can indicate if all candidate models in the
context of model selection are incorrect. Under the classical
model selection criterion that is based on the fits of the candi-
date models, an implicit assumption of the modeller is that
one model is correct, i.e. the one with the best fit, whereas
the other candidates are incorrect. However, as most models
are constructed using numerous assumptionswhichmodellers
are forced to make due to, for example, a lack of knowledge
about the studied system, it is highly plausible that all candidate
models are incorrect. Thus, by framing it as a model selection
problem forcing the modeller to pick one of the candidate
models, an incorrect model might be selected resulting in a
poor capacity to extrapolate from the observed data as well
as a poor predictive capacity of the selected model. On the
other hand, the symmetry-based model selection criterion
can reveal if none of the candidate models capture themechan-
ism underlying the data. In particular, this would correspond
to a situation where the RMS of all candidate models are
increasing functions of the transformation parameter ϵ, such
as the RMS of the PLM fitted to the myeloma dataset (figure
4a) and the RMS of the IM fitted to the colon cancer dataset
(figure 4b). If all models are rejected this provides important
negative information indicating that the modeller should con-
struct new candidate models. In addition, as demonstrated in
this work in the case of the colon cancer data, we would
select an incorrect model, namely the IM, based on the fit to
the original data, while the symmetries of the candidate
model in fact reveal that the rejected model, i.e. the PLM, in
fact captures the underlying mechanism. Moreover, in this
work, we have implemented the symmetry-based framework
for two minimal models, and it is only reasonable to ask
whether or not the same methodology can be implemented
on larger models.

The difficulty of finding the symmetries of the candidate
models increases with the number of explanatory and
response variables. In the case of the most general model for-
mulated as a coupled system of nonlinear PDEs with x
explanatory variables and p response variables, the corre-
sponding so-called linearized symmetry conditions, equation
(4.16), that must be solved to find the symmetries constitute
another coupled system of nonlinear PDEs of p equations in
p + x variables. In this work, where we have one explanatory
variable t and one response variable R(t), we can calculate the
symmetries by hand as we need to solve a single nonlinear
PDE in two variables, but this is of course not possible to
do in the general case. Therefore, it is not surprising that
the symmetry-based analysis thus far is restricted to low-
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dimensional models, which is a potential problem in math-
ematical biology as numerous models are high dimensional.
One potential solution to this problem is to implement auto-
mated and computer assisted algorithms for solving the
linearized symmetry conditions stemming from high-dimen-
sional models [19,20]. On the other hand, an arguably more
interesting approach to this problem that symmetries offer
is to re-formulate the problem from a model selection problem to
a model construction problem. By definition, a model selection
problem starts from a set of candidate models, where
the number of candidate models is restricted by the knowl-
edge about the studied system as well as the imagination of
the modeller, and given this starting point the modeller is
forced to calculate the symmetries of these potentially high-
dimensional models. On the other hand, symmetries allow
modellers to construct models starting from the symmetries by
using the so-called differential invariants of these symmetries
[19]. Thus, if we can interpret biological properties in terms
of a set of symmetries, we can build-in these properties into
the very structure of the constructed models by constructing
the models from the differential invariants of the symmetries.

Given the broad range of applications for symmetry
methods, we believe that they constitute a powerful tool in
mathematical biology. Currently, these methods have been
used as a tool for performing identifiability analysis [20–23]
in the context of biological data and first-order ODEs, and
other recent works demonstrate that symmetries play a role
in model construction [19]. Moreover, symmetries recently
played a pivotal role in a remarkable result obtained from
deep-learning models, where spatial symmetries were incor-
porated in the input data as statistical priors which resulted
in the discovery of protein structures beginning with only
an amino acid sequence [24,25]. Hence, researchers in math-
ematical modelling of biological systems are beginning to
take advantage of these powerful symmetry methods, and
this work constitutes another stepping stone for elucidating
mechanisms of biological systems using symmetries.
4. Material and methods
All the details about the mathematical theory of symmetry
methods, the derivation of the symmetries as well as the vali-
dation of these symmetries can be found in the electronic
supplementary material.

4.1. The candidate models
The PLM for carcinogenesis was formulated by Armitage &
Doll [11] and is based on the concept of cancer risk rising
with age due to accumulating genetic mutations. Assuming
independent Poisson processes occurring at the same rate,
the probability of accumulating n mutations in a cell by age t
is of the form (1− e−λt)n, for some rate λ. The risk of developing
cancer at age t is then given by the derivative and, after taking a
rare-event (small λ) approximation, we arrive at the PLM

RðtÞ ¼ Atg, ð4:1Þ
where the unitless parameter γ = n− 1 and A is a scaling
parameter given by A = nλn.

Another plausible mechanism for the increase in cancer
risk with age is that the ability to control nascent neoantigens
is impaired as the immune system declines. In particular, can-
cerous neoantigens are recognized by T-cells, which develop
in the thymus. The volume of the thymus and the production
of T-cell clones decrease exponentially with age, halving
every 16 years, starting from puberty. The IM of [9] assumes
that potentially cancerous cells can originate with equal prob-
ability at any age, at a rate r, and that the number of such cells
undergoes a random walk, with a birth rate b and a death rate
d. The absorbing states are at zero cells, corresponding to
tumour eradication, and K cells, where K is an IET. The IET
is further assumed to decrease exponentially at the same
rate as the decrease in T-cell production. That is,

K ¼ K0 e�at þ K1, a ¼ 0:044 yr�1, ð4:2Þ

for some constants K0 and K1.
Under stochastic growth, the probability of reaching the

IET, K, is given by

bK�1 d� b
dK � bK

: ð4:3Þ

Putting this together gives the risk at age t as

RðtÞ ¼ A0

exp (B0 e�at þ B1)� 1
, ð4:4Þ

where A0 = r(d− b)/b, B0 =K0ln(d/b) and B1 =K1ln(d/b).
Finally, restricting to the parameter space where d > b, as is
the case when fitting to our three cancer datasets, and
defining τ = ln(B0)/α, we arrive at the IM

RðtÞ ¼ A
exp (B e�aðt�tÞ)� C

, ð4:5Þ

where A =A0exp(−K1ln(d/b)) and C = exp(−K1ln(d/b)).
When K1 > 0, corresponding to a higher IET, we get values
of C < 1 and a reduction in cancer risk, especially at late ages.

The IM above contains two sub-models. Setting C = 1
gives a two-parameter model,

RðtÞ ¼ A
exp (e�aðt�tÞ)� 1

, ð4:6Þ

and further restricting to d = b (for an unbiased random walk)
gives a one-parameter model,

RðtÞ ¼ A eat: ð4:7Þ
These are referred to, in [9], as IM-II and IM-I, respectively. In
fact, these are the only models in [9] and we have generalized
to C≠ 1 because the method for deriving symmetries treats
the IM and IM-II the same and the resulting symmetries
are symmetries of the more general IM. See electronic
supplementary material for the full derivation.

The symmetry G IM
e used in this article is a symmetry of

the IM, but not IM-I or IM-II. Similarly, there is a symmetry
of the IM and IM-II, but not IM-I, given by

GIM�II
e :ðt,RðtÞÞ 7! t� ln(ln(exp(e�aðt�tÞ þe)þ1�ee))

a
,RðtÞ

� �
,

ð4:8Þ
and a symmetry of all three models, IM, IM-II and IM-I, given
by

GIM�I
e : ðt, RðtÞÞ 7! ðtþ e, RðtÞÞ: ð4:9Þ

This latter symmetry is just a time translation symmetry,
which is apparent from the appearance of t in exponentials
in each model.
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For all three cancer datasets, applying algorithm 1 using
either the symmetry G IM�II or G IM�I results in good fitting
for all ϵ up to ϵscale (data not shown). Therefore, these
symmetries are manifest in the data for all three cancer
types and our overall conclusions are not affected by
considering these additional symmetries.

4.2. Calculating the symmetries of each model
A symmetry is an operator which maps a solution curve
of an ordinary differential equation (ODE) to another solution
curve [6]. Let γ = (t, R(t)) be a solution curve to the single
first-order ODE given by

dR
dt

¼ vðt, RÞ, ð4:10Þ

where the function ω corresponds to the reaction term. Then a
(point-wise) symmetry of this ODE is an operator of the type

Ge : ðt, RÞ 7! ð̂tðeÞ, R̂ðeÞÞ,
which maps a solution curve γ = (t, R(t)) to another solution
curve ĝ ¼ ð̂tðeÞ, R̂ðeÞÞ. A restriction of this work is to focus
on so-called C1-diffeomorphisms parameterized by a single
transformation parameter ϵ which implies that the target func-
tions t̂ðeÞ and R̂ðeÞ are continuous functions of ϵ. Using this
latter fact, it is possible to write the target functions as
Taylor expansions locally around ϵ≈ 0 as follows:

t̂ðeÞ ¼ tþ jðt, RÞeþO(e2) ð4:11Þ
and

R̂ðeÞ ¼ Rþ hðt, RÞeþO(e2): ð4:12Þ
The so-called tangents ξ and η define the following vector field:

X ¼ jðt, RÞ@t þ hðt, RÞ@R, ð4:13Þ
which is referred to as the infinitesimal generator of the Lie group
[6]. Using this local description of the action of the symmetry
Ge, it is possible to retrieve the global behaviour through the
exponential map which is defined as follows:

eeX ¼
X1
j¼0

ej

j!
Xj: ð4:14Þ

More precisely, it is possible to generate a symmetryGe using its
infinitesimal generator X according to the following equation:

Ge : ðt, RÞ 7! (eeXt, eeXR): ð4:15Þ
Thus, it is sufficient to calculate the infinitesimal generator X
since the corresponding symmetry Ge is obtained by the expo-
nential map according to the above equation. The tangents ξ
and η in the infinitesimal generator of the Lie group X are
found by solving the so-called linearized symmetry condition
[6] defined as follows:

@h

@t
þ @h

@R
� @j

@t

� �
vðt, RÞ � @j

@R
vðt, RÞ2

¼ j
@v

@t
þ h

@v

@R
: ð4:16Þ

Furthermore, a symmetry can be characterized as either trivial
or non-trivial by using the reduced characteristic [6] denoted by
Q. For a first-order ODE, it is defined as follows:

QðXÞ ¼ Qðt, RÞjj,h defined by X

¼ hðt, RÞ � vðt, RÞjðt, RÞ: ð4:17Þ
If QðXÞ ; 0 then the symmetry is trivial implying that it
does not move any data points otherwise the symmetry is
non-trivial. In the symmetry-based methodology for model
selection, only non-trivial symmetries are implemented.

Since the candidate models are formulated as curves, their
symmetries are found by firstly re-formulating these curves as
ODEs and secondly the linearized symmetry condition is
solved using the ODE in each case (for all the details involving
the calculations of the symmetries as well as their validation,
see the electronic supplementary material).
4.3. Fitting of the candidate models
The time-series data of the increase in incidences of cancer
due to ageing have been collected from [9,10]. Specifically,
we focused on three time series based on a sample of
patients in the age span from zero to 85 years, and these cor-
responded to three different cancer types: myeloma, colon
cancer and CML. Moreover, we excluded data points corre-
sponding to zero incidences of cancer implying that we
removed datapoints corresponding to young patients. More
precisely, in the case of myeloma, we removed patients
under the age of 25 years, in the case of the colon cancer
patients, we removed patients under the age of 12 years
and in the case of CML, we removed patients under the
age of 10 years. As we described previously, we assumed
that there are noise terms contributing to random errors in
both the incidence rate of cancer and the biological age of
the patients, so next we will describe the underlying statistical
assumption of the model fitting.

To evaluate the fit of the transformed data to a trans-
formed solution curve, we use ODR which is encoded in
the RMS value [12]. For the sake of notation, assume that
we have m data points ð~ti, ~RiÞ for an index i = 1,…, m in a
time series. Moreover, assume that we have an equation for
any transformed solution curve of the model of interest
such as equation (2.6) of the PLM or equation (2.8) of the
IM, and denote this transformed solution curve by R̂ðt, eÞ.
Then, the RMS value as a function of the transformation
parameter ϵ is defined as follows:

RMSðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
SSðeÞ
m

r
,

SSðeÞ ¼
Xm
i¼1

(~ti � ti)
2 þ (~Ri � G�eR̂ðti, eÞ)2:

ð4:18Þ

In equation 4.18), the coordinates ti for i = 1,…, m are chosen
so that the distances between the data points ð~ti, ~RiÞ and the
points on the inversely transformed curves ðti, G�eR̂ðti, eÞÞ
are minimized. In fact, we can write down an explicit
expression for these coordinates, as they are chosen based
on orthogonality. More precisely, the vector

v1 ¼ Ge
~ti � ti

Ge
~Ri � G�eR̂ðti, eÞ

� �
ð4:19Þ

should be orthogonal to the tangent vector at the point (ti,
R(ti)) given by

v2 ¼
1

dR
dt

��
t¼ti

� �
: ð4:20Þ

By using the standard Euclidean dot product between two
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vectors in R2 as follows:

hv1, v2i ¼ vT1v2 ¼ ~ti � ti ~Ri � G�eR̂ðti, eÞ
� � 1

dR
dt

��
t¼ti

 !

¼ ð~ti � tiÞ þ dR
dt

����
t¼ti

ð~Ri � G�eR̂ðti, eÞÞ

ð4:21Þ
we have that the two vectors are orthogonal if 〈v1, v2〉 = 0.
Hence, we choose the coordinates ti on the transformed
curves R̂ðt, eÞ so that they solve the following equations:

ð~ti � tiÞ þ dR
dt

����
t¼ti

ð~Ri � G�eR̂ðti, eÞÞ ¼ 0,

i ¼ 1, . . . , m:

ð4:22Þ

In our implementation, we do not solve equation (4.22) but
instead we use the built-in function fmin_cobyla in SciPy
[28] to find the points ðti, G�eR̂ðti, eÞÞ on the inversely trans-
formed solution curves, and this function conducts a local
minimization in the sense that it finds the local minimum
that is closest to a provided start guess in terms of the
points ðti, G�eR̂ðti, eÞÞ.

Also, we use equation (4.18) to calculate the RMS value of
the data points in the original times series (ti, Ri) and the
orthogonal points on the original solution curves R(t), i.e.
equation (2.1) for the PLM and equation (2.2) for the IM.
This RMS value is calculated by plugging in ϵ = 0 in equation
(4.18) or, in other words, this value corresponds to RMS(0) in
equation (4.18).

Moreover, in step 2 of algorithm 1 when the two models
are fitted to the transformed data, we only fit a single par-
ameter in both cases. In the case of the PLM, it is only the
parameter A that it is fitted to the transformed data since
this is the only parameter that the symmetry GPLM

e alters
according equation (2.6). In this step, we used a single start
guess for the parameter A given by

~A e�~ge, ð4:23Þ
where ð~A, ~gÞ correspond to the optimal parameters obtained
by fitting the PLM to the original data and ϵ is the transform-
ation parameter with which the original data were
transformed. Also, we kept the parameter γ fixed to the opti-
mal value obtained by fitting the PLM to the original time
series. Similarly, in the case of the IM, it is only the parameter
C that is fitted to the transformed data since this is the only
parameter that the symmetry GIM�III
e alters according to

equation (2.8). In this step, we used 10 linearly spaced start
guesses in the following interval:

C [ ½�5, 1�: ð4:24Þ
Again, we kept the parameters (A, τ) fixed to the optimal
values obtained by fitting the IM to the original time series,
and the parameter αwas fixed to the value a ¼ 0:044 yr�1 [9].

Furthermore, in step 3 of algorithm 1 when the fitted
models are inversely transformed using G�1

e , the explicit
equations for the transformed solution curves are used.
More precisely, to obtain the inversely transformed solution
curve of the PLM, the parameter A is calculated using the
equation for A(−ϵ) in equation (2.6). Similarly, the inversely
transformed solution curve of the IM is given by the equation
for C(−ϵ) in equation (2.8).

Also, we conducted the Vuong test for non-nested models
[29] in R [30] using the packages drc [31] and nonnest2 [32].
This test was implemented to see whether there was a signifi-
cant difference in terms of the fit of the two models to the
three datasets. The implementation of this script can be accessed
at the GitHub repository associated with this article [26].
Data accessibility. All the csv files with the experimental data as well as
all the Python scripts required for generating the results presented in
this work are accessible at the public GitHub repository associated
with this work [26]. This code can be easily modified to analyse
other cancer types.

The data are provided in electronic supplementary material [27].
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