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Few studies have considered nutrients as a mixture and their impact on Mild Cognitive Impairment 
(MCI). The generalized linear regression (GLM), weighted quantile sum (WQS) regression, and Bayesian 
kernel machine regression (BKMR) models are fitted to estimate the association between intake of a 
mixture of nutrients and MCI. Comparing the results from these three models, vitamin E and vitamin 
B6 were identified as the most important factors associated with the risk of MCI. Considering the 
characteristics of BKMR, it may be more advantageous to use BKMR to estimate the combined the 
joint effects of nutrients mixture. In the future, studies need to move from a “one nutrient at a time” 
approach to simultaneous analyses of multiple nutrients intakes in order to understand and quantify 
the joint effect of nutrients mixture on health.
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The aging of the population and the increasing prevalence of Alzheimer’s disease (AD) have caused a huge 
economic and social burden1,2. How to prevent AD has become an important public health problem. Mild 
cognitive impairment (MCI) is an intermediate state between normal cognition and AD; there is no efficient 
therapy to prevent or slow the deterioration caused by AD3. Therefore, it is important to identify potential 
protective factors to prevent patients with MCI from further deteriorating.

Previous studies have shown that a healthy lifestyle is an important approach to preventing cognitive 
decline4,5. Diet is one of the most important modifiable risk factors and has attracted more and more attention6,7. 
For example, eating more vegetables, fruits, fish, and nuts was considered a protective factor against decline 
of cognitive ability8–10. The latest meta-analysis showed that, in cross-sectional and prospective studies, close 
adherence to the Mediterranean diet pattern reduced the risk of overall cognitive decline in non-dementia 
elderly11. B vitamin supplementation may delay cognitive decline in the elderly12. Higher serum vitamin D levels 
may be associated with protection against cognitive decline13.

However, most of these studies focused on the effect of a single nutrient or a group of similar nutrients at 
one time. But in reality, the average person takes various nutrients simultaneously. This can lead to interactions 
between coadministered nutrients. Consequently, most researchers support the need to study the joint effect 
of common nutrients7,11,12. The complex diet pattern, high correlation, and complicated interactions among 
nutrients require a tailored strategy to assess the mixed effects of nutrients.
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In this present study, we collected data on dietary intake levels of fifteen nutrients in an elderly population 
in northern China who took part in Community-based Cohort Study on Nervous System Diseases (CCSNSD) 
from 2018 to 2019. Then we fitted the models of generalized linear regression (GLM), weighted quantile sum 
(WQS) regression, and Bayesian kernel machine regression (BKMR) to evaluate mixed nutrients in relation to 
MCI levels in an elderly population in northern China. In particular, we examined (1) whether the associations 
between certain nutrients and MCI levels are more pronounced than others; and (2) whether the nutrients 
interact with each other.

Materials and methods
Study population
We extracted our data from the CCSNSD, an ongoing longitudinal study established by the National Institute 
of Nutrition and Health of the Chinese Center for Disease Control and Prevention in 2018–2019, focusing on 
potential risk factors associated with epilepsy, Parkinson’s disease and AD. The program was approved by the 
Institutional Review Board of the National Institute of Nutrition and Health (No. 2017020, November 6, 2017). 
All participants received and signed informed consent before the investigation.

We recruited the study’s cohort from Hebei Province. In our analysis we included the following samples: 
(1) permanent residents over fifty-five years old; (2) subjects with AD without clinical diagnosis at baseline; 
(3) subjects free from comorbidities that could affect assessment, such as congenital or acquired intellectual 
disability, MCI, and visual/hearing abnormalities; and (4) subjects with basic abilities for daily living as 
assessed by the Activity of Daily Living Scale. We included 612 participants with complete information on 
sociodemographic characteristics, disease history, and physical activity status, and we obtained the results 
from cognitive examination, food frequency questionnaire (FFQ), psychological assessment, and physical 
measurement (Fig. 1).

Assessment of cognitive function
We used the Montreal Cognitive Assessment (MoCA) to evaluate cognitive function, and the total score was 
reflected in the overall cognitive function of participants14. The MoCA includes ten tests and fifty-two questions 
that include an alternate connection test, visual space structure (cube)/(clock), naming, repeat number width 
in proper/reverse sequence, alertness, continuous subtraction of seven, retell the sentence, word fluency, 
abstraction, and orientation. The possible scores ranged from 0 to 30 points, and thirty-two questions were 
scored. The higher score represented the better cognitive function. The criteria for MCI were a MoCA score of 
≤ 13 for illiterate individuals, ≤ 19 for individuals with primary school, or ≤ 24 for individuals with high school 
or higher15.

Figure 1. Selection process of subjects.
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Assessment of dietary intake
A previously validated semiquantitative FFQ was used to assess diet16. The participants were asked about the 
frequency and intake of 81 food items/food groups in the past 12 months. For each item, participants were 
asked to specify how often they consumed food or beverages on average in the previous year. The frequency of 
consumption response was divided into never, < 1 time/month, 1–3 times/month, 1 time/week, 2–4 times/week, 
5–6 times/week, 1 time/day, 2–3 times/day, 4–5 times/day, and ≥ 6 times/day17. Intake was the raw weight of the 
edible portion of the food consumed each time. In this study, the average daily intake of various foods obtained 
through FFQ survey. Energy and nutrient intake were calculated by multiplying the frequency of consumption 
per unit of food by the energy and nutrient content of a specified serving. The content of a certain nutrient in 
each food can be known through the Chinese food content database, then we can calculate the amount of a 
certain nutrient consumed from various foods. The total daily intake of a nutrient can be obtained by adding the 
nutrient intake from various foods together. In this study, the data with incomplete dietary information were 
excluded. Finally, the intake of 15 nutrients were calculated.

Assessment of covariates
Interviewers were required to have an undergraduate degree in medicine or public health and to have been 
trained by national experts and professionals. Those who passed a qualification test were appointed to collect 
information by questionnaires on sociodemographic and health-related factors, including age, education level 
(illiterate, primary school, or secondary school and above), resident area (rural or urban), current employment 
(yes or no), smoking (never or ever/current), alcohol intake (never or ever/current), daily energy intake (kcal), 
physical activity (yes or no), diabetes (yes or no), hypertension (yes or no), and BMI (< 18.5  kg/m2, 18.50–
23.9 kg/m2, 24–28 kg/m2, and ≥ 28 kg/m2).

Statistical analysis
We expressed data as mean (SD) and n (%) for continuous variables and categorical variables, respectively. We 
used T-test and χ2 test to compare the differences between groups.

We selected three methods for the present study: (1) the generalized linear regression (GLM) (2) the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression and (3) BKMR. These methods were selected 
because they were suitable for use in this dateset, given that the variables are correlated (shows Fig. 2)10,12,13.

Generalized linear regression
First, we assessed the association between individual nutrient and the risk of MCI by comparing the second, third, 
and fourth quartiles to the first quartile of a nutrient’s level, using multivariate logistic regression as adjusted for 
age, gender, resident area, education level, employment status, tobacco smoking, drinking status, daily energy 
intake, LTPA, BMI, hypertension, and diabetes mellitus. We further fitted a logistic regression model for each 
micronutrient, adjusting additionally for the level of other nutrients.

Weighted quantile sum (WQS) regression
We used LASSO to select variables, then put these selected variables into WQS model to evaluate the relationship 
between mixed nutrients and MCI.

Least absolute shrinkage and selection operator regression Considering the multicollinearity of the multiple 
nutrients, LASSO regression with a logit link and the Gaussian family was used to select nutrients highly asso-
ciated with MCI. The LASSO model is a shrinkage method that can actively select from a large and potentially 
multicollinear set of variables in the regression, leading to a more relevant and interpretable set of predictors18. 
This method uses the L1 penalty to reduce the coefficient to zero. The penalty parameter λ, also known as the 
tuning constant, controls the intensity of the penalty. In this study, the optimal LASSO solution was selected 
based on 5-fold cross-validation to minimize Root Mean Square Error, and in order to reduce biased estimates 
as much as possible and include as many variables as possible to reduce information loss, the cutoff value of 
lambda.min was selected.

Weighted quantile sum (WQS) regression The WQS regression model is a method that combines the quantile 
weighted score of independent variables with linear (continuous results) or logical (binary results) regression19. 
First, the value of each variable in the mixture was coded according to quantile, such as 1st, 2nd, 3rd, 4th, and 
the quantiles were coded as q i = 1, 2, 3, 4, respectively. By assigning a weight w i to each component of the mix-
ture and calculating the regression coefficient β i of the weighted quantile sum index (WQS index), to assess the 
overall effect of variables. This method included all selected nutrients and assumed that the association between 
nutrients in the model and MCI had the same positive direction. By dividing different nutrients into ordered 
variables (quartiles), we obtained a weighted linear index representing the overall load of all nutrients through 
weighted calculation. The weight of each nutrient indicated the contribution of that nutrient to the overall effect. 
In this analysis, the function of WQS is expressed as follows:

 
g (µ ) = β 0 + β 1

(∑
5
i=0ω iqi

)
+ z′Φ

Where g (µ ) represents any monotonic link function, µ is the predictable variable, ω  is the weight of the ith 
components to be estimated, qi represents the quartile of nutrient intake level ( qi =1, 2, 3, 4 represented the 1st, 
2nd, 3rd, or 4th quartile, respectively), and (

∑
5
i=0ω iqi) represents the weighted quantile sum of the set of five 

components of interest. Furthermore, β 1 denotes the regression coefficient for the weighted quantile sum, β 0 
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is the intercept, z' refers to the covariates, including risk factors and confounders, and Φ  is the coefficient for 
the covariates. We estimated the weights at between 0 and 1 and added them up to 1. We divided the data into 
the training set (40%) and the validation set (60%); We also set β 1 to be negative. We bootstrapped the training 
set 10,000 times and got the estimated weights, which maximized the likelihood of the nonlinear model. In this 
study, we fitted two WQS models, one is an empty model and the other is adjusted for age, gender, resident area, 
education level, employment status, tobacco smoking, drinking status, LTPA, BMI, hypertension, and diabetes.

Bayesian Kernel Machine Regression (BKMR)
Kernel machine regression is a popular tool in machine learning, which flexibly simulates the relationship 
between a large number of variables to a specific result, by mapping or projecting one data sequence to another 
in a one-to-one manner. The BKMR model utilizes a non-parametric approach to flexibly model the association 
between exposures and healthy outcomes, including the nonlinear and interactions in the exposure-outcome 
association20. The model used in this study is below:

Figure 2. Pairwise Pearson correlations among intake of 15 nutrients (N = 612). All the correlations were 
statistically significant (P < 0.05), except those of folic acid and vitamin B12. Blank: P > 0.05.

 

Scientific Reports |        (2024) 14:27307 4| https://doi.org/10.1038/s41598-024-75010-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Where Y is the health outcome, i refers to the individual (i = 1, 2, 3…n), the function 𝒽() is a kernel exposure-
response function that accommodates interactions among the nutrients and potential nonlinear relationships 
between nutrients and MCI, zi is the intake of nutrients, Xi is the potential confounders, and β represents the 
effect of the covariates. The residual is ei21.

Based on Pearson correlation coefficient values (r> 0.8, shows Fig. 2) and their classification of nutrients, we 
grouped Magnesium, iron, and zinc into group 1, vitamin A, vitamin C, vitamin B2, vitamin B3, folic acid, and β 
carotene into group 2, vitamin B1 into group 3, vitamin B6 × 100 into group 4, vitamin B12 into group 5, vitamin 
E into group 6, selenium into group 7, and Diet fiber into group 8.

Because the nutrients in our analysis were highly correlated, we conducted a hierarchical variable selection 
method with 10,000 iterations by a Markov chain Monte Carlo algorithm. In the hierarchical variable selection 
analyses of the BKMR, firstly, we calculated the group posterior inclusion probability (group PIP), which 
represents the importance of the mixed group for the outcome. A PIP threshold of 0.5 is usually used to 
determine whether it is important22. In other words, the mixed group(group PIP > 0.5) could be included in 
the model. Based on group PIP, we calculated the conditional posterior inclusion probability (cond PIP), which 
represented the probability that a particular chemical within the group was included in the model. In a mixed 
group, the nutrient with the largest cond PIP was included in the model (shows Table 5). Finally, the nutrients 
included in the model were iron(group 1), vitamin C(group 2), vitamin B6(group 4), vitamin E(group 6), diet 
fiber(group 8). The model of the hierarchical variable selection analyses is below:

All statistical analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and R software (version 
4.1.1; R Core Team). The WQS and BKMR models were implemented with R packages “gWQS” and “BKMR” 
respectively. Bilateral P < 0.05 was considered statistically significant.

Approval for human experiments
Confirms that all experiments were performed in accordance with relevant named guidelines and regulations.

Results
Population characteristics
A total of 612 participants were included in this study; 253 (41.3%) were diagnosed with MCI. The characteristics 
of participants are shown in Table 1. The average age of the participants was 66.84 ± 7.39 years, including 260 
males (42.5%) and 352 females (57.5%). Compared with non-MCI people, those with MCI were more likely to 
be men, living in rural areas, smokers, and doing physical exercise.

Intake of nutrients and their correlation
Fifteen nutrients were calculable in the study population. There was no statistical difference in the intake of the 
15 nutrients between those at risk for MCI and those without MCI (Table 2). We found significant correlations 
(P < 0.05) among 13 chemicals (Fig. 2), except for the correlation between folic acid and vitamin B12. There were 
positive correlation between other compounds, except for a nearly no correlation of vitamin C with vitamin B12 
(r = − 0.07), vitamin A with vitamin B6 (r = − 0.03), vitamin A with vitamin B12 (r = − 0.07), β carotene with 
vitamin B6 (r = − 0.04), and β carotene with vitamin B12 (r = − 0.10).

Generalized linear regression model to assess the association between levels of fifteen 
nutrients and MCI
In the multivariable logistic models, including all the 15 nutrients, after adjusting for all the covariates, the 
folic acid, vitamin E, vitamin B6, magnesium, diet fiber, and iron were found to have a significant association 
with the risk of MCI (fourth vs. first quartile, Model 1). Meanwhile, there were significant associations only 
between Vitamin B6 and MCI after additional adjustment for other levels of fifteen nutrients (OR (95% CI): 
0.514(0.283,0.933)), (fourth vs. first quartile, Model 2), (Table 3).

WQS model to assess the association between levels of nutrients and MCI
LASSO regression model to assess the association between levels fifteen nutrients and MCI
Fifteen nutrients were included in LASSO regression(Fig.  3A). As shown in Fig.  3B, 0.01934 was chosen as 
the optimal value of λ with the minimum MSE, at which folic acid, vitamin E, vitamin B6, dietary fiber and 
magnesium were identified as the optimal subset of variables that can explain the relationship between 15 
nutrients and MCI.
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WQS model to assess the association between levels of nutrients and MCI
We used the WQS model to further explore the relationship between the overall effect of five nutrients(selected 
by LASSO) and MCI. The results showed that the overall mixing effect of the five nutrients was significantly 
negatively associated with MCI, regardless of whether the covariates were adjusted, Model 1: OR = 0.788, 95% 
CI: (0.628, 0.989), Model 2: OR = 0.756 95% CI: (00.541, 0.976) (Table 4). Regardless of whether the covariates 
were adjusted, the results showed that vitamin E, magnesium, and vitamin B6 had a greater influence on MCI 
in both models, although the order of their weights had changed (Fig. 4A and B). In addition, we found that the 
weights of folic acid and dietary fiber were relatively small.

BKMR model to assess the association between levels of fifteen nutrients and MCI
Show the Supplementary material for details.

The hierarchical variable selection analyses of the BKMR
In the hierarchical variable selection analyses, the group-PIP for eight groups were 0.58, 0.56, 0.627, 0.45, 0.5, 
0.36, 0.57, 0.47, and 0.73 respectively, providing evidence that one of the nutrients within each group should be 
included according to the criteria of overall posterior probability ≥ 0.5. The conditional-PIP further indicated 
that iron (PIP = 0.39), vitamin C (PIP = 0.38), vitamin B6 (PIP = 1.00), vitamin E (PIP = 1.00), and Diet fiber 
(PIP = 1.00) had the highest PIPs within each group and were then selected as significant nutrients associated 
with MCI (Table 5).

Joint effect (95% CI) of the five nutrients on MCI in the hierarchical variable selection analyses of the BKMR
The five variables selected by the hierarchical variable selection analyses were included in the BKMR model for 
analysis. The overall effect between the five nutrients and MCI is shown in Fig. 5. Although credible intervals 
were wide, however, We can see that the risk of MCI decreases with the level of nutrients intake, when all 
metabolites are at or above their sixtieth percentile, compared to when all metabolites are at their median value.

Characteristics

Total Group Non-MCI MCI

P value(n = 612) (n = 359) (n = 253)

Age (years) 66.84 ± 7.39 67.14 ± 7.39 66.41 ± 7.39 0.898

Gender; n(%) 0.048

Male 260(42.5) 142(39.6) 118(46.6)

Female 352(57.5) 217(60.4) 135(53.4)

Daily energy intake(kcal) 1369.42 ± 344.67 1384.65 ± 335.10 1347.81 ± 357.36 0.193

Resident area; n(%) <0.001

Urban 166(21.7) 124(34.5) 42(16.6)

Rural 466(72.9) 235(65.5) 211(83.4)

Education level; n(%)

Illiteracy 172(28.1) 113(31.5) 59(23.3) 0.081

Primary school 193(31.5) 106(29.5) 87(34.4)

Junior high school/above 247(40.4) 140(39.0) 107(42.3)

Employment n(%) 0.39

No 533(87.1) 311(86.6) 222(87.7)

Yes 79(12.9) 48(13.4) 31(12.3)

Tobacco Smoking; n(%) <0.001

No 506(82.7) 314(87.5) 192(75.9)

Yes 106(17.3) 45(12.5) 61(24.1)

Alcohol Drinking; n(%) 0.115

No 561(91.7) 333(92.8) 228(90.1)

Yes 51(8.3) 26(7.2) 25(9.9)

LTPA; n(%) 0.012

No 408(63.0) 226(71.9) 182(66.7)

Yes 204(37.0) 133(28.1) 71(33.3)

BMI; (kg/m2) 24.91 ± 3.75 25.28 ± 3.75 24.37 ± 3.68 0.06

Hypertension; n(%) 0.07

No 245(40.0) 153(36.4) 92(42.6)

Yes 367(60.0) 206(63.6) 161(57.3)

Diabetes; n(%) 0.061

No 517(84.5) 296(82.5) 221(87.4)

Yes 95(15.5) 63(17.5) 32(12.6)

Table 1. Characteristics of the participants. Note: LTPA, leisure-time physical activity.
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Elements Total Group n = 612

Whether MCI

P valueNO(n = 359) YES(n = 253)

Iron(Fe) 16.29 ± 4.64 16.60 ± 4.57 15.85 ± 4.72 0.897

Zinc(Zn) 7.37 ± 2.00 7.48 ± 1.98 7.21 ± 2.02 0.774

Magnesium(Mg) 222.25 ± 69.35 228.47 ± 69.91 213.41 ± 67.11 0.397

Folic acid 123.50 ± 48.83 127.04 ± 49.38 118.47 ± 47.68 0.632

vitamin A 508.67 ± 293.26 512.80 ± 286.75 502.82 ± 302.74 0.227

vitamin C 61.20 ± 41.31 62.50 ± 40.00 59.37 ± 43.13 0.21

vitamin B2 0.70 ± 0.23 0.70 ± 0.23 0.69 ± 0.23 0.483

vitamin B3 9.17 ± 2.82 9.33 ± 2.78 8.93 ± 2.86 0.776

β carotene 1965.06 ± 1543.10 2005.16 ± 1496.13 1908.18 ± 1608.68 0.152

vitamin B1 0.76 ± 0.23 0.77 ± 0.23 0.74 ± 0.23 0.591

vitamin B6 × 100 7.47 ± 3.21 7.76 ± 3.28 7.05 ± 3.06 0.215

vitamin B12 0.25 ± 0.15 0.25 ± 0.15 0.25 ± 0.15 0.966

Vitamin E 12.17 ± 4.91 12.57 ± 11.59 11.59 ± 4.85 0.957

Selenium(Se) 41.42 ± 11.73 42.16 ± 12.37 40.38 ± 10.69 0.065

Diet fiber 9.44 ± 3.51 9.73 ± 3.44 9.02 ± 3.57 0.582

Table 2. Intake of nutrients in the study population.

 

The trends of intake-response functions of the five nutrients in the hierarchical variable selection analyses of the 
BKMR
When all the other nutrients were at their median levels vitamin E, vitamin B6, and dietary fiber showed 
decreasing associations with MCI, whereas vitamin C showed a inverse relationship and iron showed a U-shaped 
relationship with MCI (Fig. 6).

Joint effects of bivariate on MCI in the hierarchical variable selection analyses of the BKMR
In the hierarchical variable selection analyses of the BKMR, The pairwise interactions among the significant 
nutrients (iron, vitamin C, vitamin B6, vitamin E, and diet fiber), which visualized how one micronutrient 
modifies the effect of the other on MCI were shown in Fig. 7. A potential interaction between diet fiber and iron 
was detected, with the associations between diet fiber and MCI being weaker at higher levels of iron (cell: row 2, 
column 1). The associations between diet fiber and MCI were stronger at lower levels of vitamin C (cell: row 4, 
column 1). The U-shaped relationship between iron and MCI being more visible at higher levels of vitamin B6, 
vitamin E(cell: row 3, column2 / cell: row 5, column2), however, vitamin C is the opposite (cell: row 4, column 2). 
The protective effect of vitamin B6 on MCI and the impact of vitamin C on MCI was enhanced when iron intake 
was fixed at 50% (cell: row 2, column3 / cell: row 2, column4). The intake-response curves for some other pairs 
(e.g., dietary fiber–vitamin B6, dietary fiber–vitamin E, iron–dietary fiber, vitamin C–dietary fiber) were not 
perfectly parallel, but showed less empirical evidence of interaction. For other pairs (e.g., vitamin B6–vitamin 
C, vitamin B6–vitamin E, vitamin C–vitamin E), the curves were parallel, suggesting no evidence of interaction 
(Fig. 7).

Discussion
We divide our statistical analysis of the health effects of mixtures into three aspects: dimension reduction, 
variable selection, and smooth curve fitting. We first fitted a traditional generalized linear regression model, 
then we further used the WQS and BKMR models, which have been recently developed to analyze the effects of 
mixtures on health.

The results of GLM showed that without considering the interaction between nutrients, the intake level of 
folic acid, vitamin E, vitamin B6, magnesium, dietary fiber, and iron were significantly negatively correlated with 
MCI, which was consistent with previous reports12,23,24. However, after adjusting other nutrients, we found that 
only vitamin B6 was significantly correlated with MCI, which may due to the collinearity or interactions between 
the nutrients.

In the LASSO regression analysis using 5-fold cross-validation, folic acid, vitamin E, vitamin B6, dietary fiber 
and magnesium were identified as the optimal subset of variables that can explain the relationship between 15 
nutrients and MCI. The WQS regression model empirically obtains the the distribution of nutrients’ weights 
based on the bootstrap resampling process to evaluate their effects on the body25, which can well explain the 
complex effect of multiple nutrients on the body. In this study, both models showed that vitamin E, vitamin 
B6, and magnesium had larger weightings to MCI. However, after covariates adjustment, we found that the 
ranking of their weights had changed greatly. A possible reason may be that the WQS model assumes that there 
is no interaction between the included chemicals. Another reason may be that WQS cannot simultaneously 
evaluate the combined effects of chemicals with different action directions19. In the WQS model, we defined the 
effects of five nutrients on MCI as same protective effects, but In the previously published literature, the effects 
of vitamin E and magnesium on MCI are inconsistent26–31. In addition, we found that, contrary to previously 
reported results, folic acid had little effect on MCI in the WQS model, possibly due to a strong interaction15. The 
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Elements Quartile1

Quartile 2 Quartile3 Quartile4

OR(95%CI) P value OR(95%CI) P value OR(95%CI) P value

Folic acid

Model 1 Ref 0.676(0.414,1.102) 0.117 0.607(0.368,1.001) 0.05 0.578(0.350,0.953) 0.032

Model 2 Ref 0.798(0.471,1.352) 0.402 0.838(0.445,1.579) 0.584 0.881(0.406,1.916) 0.75

Vitamin E

Model 1 Ref 0.951(0.588,1.538) 0.836 0.418(0.247,0.707) 0.001 0.487(0.286,0.827) 0.008

Model 2 Ref 1.026(0.590,1.784) 0.928 0.470(0.240,0.920) 0.028 0.550(0.240,1.261) 0.158

Vitamin B6

Model 1 Ref 0.883(0.541,1.439) 0.617 0.588(0.353,0.980) 0.041 0.487(0.280,0.848) 0.011

Model 2 Ref 0.862(0.525,1.415) 0.556 0.606(0.360,1.020) 0.06 0.514(0.283,0.933) 0.029

Magnesium

Model 1 Ref 0.770(0.473,1.255) 0.295 0.515(0.301,0.882) 0.016 0.411(0.231,0.734) 0.003

Model 2 Ref 0.880(0.495,1.564) 0.662 0.681(0.309,1.501) 0.34 0.618(0.219,1.746) 0.364

Diet fiber

Model 1 Ref 0.647(0.391,1.070) 0.09 0.475(0.279,0.809) 0.006 0.473(0.247,0.816) 0.007

Model 2 Ref 0.306(0.426,1.307) 0.747 0.645(0.316,1.317) 0.645 0.713(0.291,1.746) 0.731

Iron(Fe)

Model 1 Ref 0.647(0.388,1.079) 0.095 0.664(0.388,1.135) 0.134 0.415(0.227,0.758) 0.004

Model 2 Ref 0.667(0.3,1.482) 0.32 0.765(0.27,2.162) 0.613 0.546(0.146,0.146) 0.369

Zinc(Zn)

Model 1 Ref 0.907(0.552,1.49) 0.7 0.915(0.535,1.563) 0.744 0.6(0.331,1.087) 0.092

Model 2 Ref 1.773(0.716,4.391) 0.216 2.502(0.707,8.858) 0.155 2.135(0.45,10.139) 0.34

Selenium(Se)

Model 1 Ref 0.91(0.554,1.497) 0.711 0.896(0.531,1.512) 0.681 0.716(0.411,1.246) 0.237

Model 2 Ref 0.867(0.471,1.595) 0.646 0.94(0.469,1.884) 0.862 0.883(0.382,2.044) 0.772

Vitamin A

Model 1 Ref 0.949(0.583,1.543) 0.831 0.74(0.453,1.21) 0.23 0.955(0.587,1.554) 0.853

Model 2 Ref 1.646(0.731,3.707) 0.229 2.402(0.721,8.004) 0.154 2.609(0.585,11.642) 0.209

Vitamin C

Model 1 Ref 0.9(0.553,1.464) 0.672 0.63(0.382,1.039) 0.07 0.785(0.479,1.286) 0.336

Model 2 Ref 1.185(0.552,2.544) 0.664 1.252(0.458,3.422) 0.662 1.594(0.487,5.218) 0.441

Vitamin B1

Model 1 Ref 0.949(0.572,1.576) 0.841 0.788(0.464,1.341) 0.38 0.569(0.313,1.035) 0.065

Model 2 Ref 1.204(0.592,2.447) 0.608 1.02(0.421,2.474) 0.965 0.742(0.242,2.281) 0.603

Vitamin B2

Model 1 Ref 0.853(0.52,1.398) 0.527 0.763(0.459,1.268) 0.297 0.92(0.553,1.53) 0.747

Model 2 Ref 1.19(0.565,2.509) 0.647 1.375(0.515,3.667) 0.525 2.041(0.666,6.256) 0.212

Vitamin B12

Model 1 Ref 1.096(0.681,1.765) 0.705 1.043(0.63,1.727) 0.869 1.212(0.728,2.016) 0.46

Model 2 Ref 1.323(0.752,2.327) 0.331 1.421(0.782,2.581) 0.249 1.443(0.735,2.832) 0.287

Vitamin B3

Model 1 Ref 0.616(0.371,1.022) 0.061 0.89(0.526,1.506) 0.665 0.579(0.324,1.034) 0.065

Model 2 Ref 0.591(0.27,1.294) 0.188 0.99(0.369,2.657) 0.984 0.875(0.267,2.861) 0.825

β carotene

Model 1 Ref 0.904(0.559,) 0.68 0.533(0.324,0.879) 0.014 0.807(0.498,1.307) 0.383

Model 2 Ref 0.918(0.442,1.904) 0.817 0.46(0.153,1.384) 0.167 0.518(0.127,2.117) 0.36

Table 3. Adjusted odds ratios [95% CI] for MCI according to the quartiles of fifteen nutrient intakes. Model 
1 was adjusted for age, gender, resident area, education level, employment status, tobacco smoking, drinking 
status, LTPA, BMI, daily energy intake, hypertension, and diabetes mellitus. Model 2 was additionally adjusted 
for intake of other nutrients.
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Figure 4. A shows the weights of five nutrients in the WQS model analysis in the empty model. B shows the 
weights of five nutrients in the WQS model analysis in the adjusted model.

 

WQS OR 95% CI P value

Model 1 0.788 (0.628,0.989) 0.04

Model 2 0.756 (0.541,0.976) 0.034

Table 4. Association between the WQS index and MCI. Model 1: Empty model. Model 2 was adjusted for 
age, gender, resident area, education level, employment status, tobacco smoking, drinking status, LTPA, BMI, 
hypertension, and diabetes.

 

Figure 3. A. LASSO coefficient distribution of fifteen nutrients. Generate coefficient distribution map for log 
(lambda) sequence. B. Optimization parameters of LASSO model (lambda). By cross-validation selection, 
the mean square error is plotted relative to log (lambda), and a vertical line is drawn at the value selected by 
cross-validation. The black dotted and its error bars represent the cross-validation curve at different values of λ. 
The red dotted line represented the optimal value of λ, at which the minimum mean squared error (MSE) was 
identified. In order to reduce biased estimates as much as possible and include as many variables as possible to 
reduce information loss, the cutoff value of lambda.min was selected, λ = 0.01934.
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WQS model may result in a lower weight if a large number of variables were included, or if there were complex 
interactions. Two likely important variables would have smaller weights if one of them was highly correlated 
with another one that was assigned a low weight.

Compared with the GLM and WQS models, BKMR can identify nonlinear effects and explore the interactions 
between nutrients32. In the BKMR model, the risk of MCI decreases with the level of nutrients intake, when all 
metabolites are at or above their sixtieth percentile, compared to when all nutrients are at their median value (S. 
Figure 1). In the hierarchical variable selection analyses, the group-PIP and conditional-PIP indicated that iron, 
vitamin C, vitamin B6, vitamin E, and diet fiber had the highest PIPs within each group and were selected as 
significant nutrients associated with MCI. The results showed that vitamin E, vitamin B6, and dietary fiber may 
play an important protective role in MCI, whereas vitamin C showed a inverse relationship and iron showed a 
U-shaped relationship with MCI.

Group nutrients groupPIP condPIP

Group1
(metal, r > 0.8)

Iron(Fe) 0.58 0.39

Zinc(Zn) 0.58 0.28

Magnesium(Mg) 0.58 0.33

Group2
(vitamin, r > 0.8)

Folic acid 0.56 0.12

vitamin A 0.56 0.1

vitamin C 0.56 0.38

vitamin B2 0.56 0.29

vitamin B3 0.56 0.05

β carotene 0.56 0.07

Group3 vitamin B1 0.45 1.00

Group4 vitamin B6 × 100 0.50 1.00

Group5 vitamin B12 0.36 1.00

Group6 vitamin E 0.57 1.00

Group7 Selenium(Se) 0.47 1.00

Group8 Diet fiber 0.73 1.00

Table 5. Posterior inclusion probabilities (PIPs) for group inclusion and conditional inclusion into BKMR 
model.

 

Figure 5. Joint effect (95% CI) of five nutrients on MCI when all the nutrients at particular percentiles were 
compared to all the chemicals at their fiftieth percentile. The results were assessed by the BKMR model, 
adjusted for age, gender, resident area, education level, employment status, tobacco smoking, drinking status, 
LTPA, BMI, daily energy intake, hypertension, and diabetes.
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These results of B vitamins are similar to previous relevant reports. The protective effects of B vitamins on 
MCI and AD have been reported in population and basic research12,13,33. A prospective study involving 2,533 
Chinese middle-aged and elderly people with normal initial cognitive ability showed that vitamin B6 were 
related to better reserves of cognitive function34. Folic acid, along with vitamins B12 and B6, is essential in one-
carbon metabolism, a network of reactions involving the transfer of one-carbon units12. Deficiencies in any of 
these B vitamins can perturb this complex regulatory network, resulting in hyperhomocysteinemia, which has 
been demonstrated to be a causal contributor to cognitive decline, MCI, and AD by extensive epidemiological 
studies in healthy older adults and patient populations.

Magnesium showed a protective effect on MCI in the Lasso models in this study, which was consistent with 
the existing reports26–28. In the results of those three models in this study, dietary fiber had a protective effect 
on MCI, which may due to dietary fiber’s ability to be metabolized into short-chain fatty acids by intestinal flora 
β-amyloid, which play a protective role in Alzheimer’s disease in the neuropathological mechanism35.

In the hierarchical variable selection analyses, the result shows that the iron s represented a U-shaped 
relationship with MCI. Either too high or too low iron intake is a risk factor for MCI. Alzheimer’s disease has 
a long preclinical phase. One of the early events in the development of the disease is thought to be oxidative 
stress36, due crucially to the actions of redox-active iron37–39. Iron deficiency hinders hippocampus-dependent 
learning processes and impairs cognitive performance. Hippocampal neurons require iron to generate RyR-
mediated calcium signals after N-methyl-d-aspartate receptor stimulation, which in turn promotes ERK1/2 
activation, an essential step of sustained hippocampal basal synaptic transmission and long-term potentiation40. 
There were reports regarding a higher brain iron concentration with accelerated cognitive decline in iron-loaded 
mice41 and the brain iron accumulation in Alzheimer’s patients42 .In a previous study, serum iron parameters 
were determined in 818 older individuals who participated in a 3-year randomized, placebo-controlled double 
blind trial; cross-sectional linear regression analyses indicated that higher serum ferritin levels were significantly 
associated with decreased cognitive function, such as complex speed, and information-processing speed43. 
House et al. compared brain R2 values with serum iron indices, and the results suggested that iron levels in 
specific gray matter brain regions are influenced by systemic iron status in elderly men44.

In theory, antioxidant nutrients, including vitamin E, vitamin C, and carotene, counteract these processes by 
inhibiting lipid peroxidation, the generation of reactive oxygen species, apoptosis, mitochondrial dysfunction, 
cytotoxic damage to cell membranes, and oxidative damage to proteins and DNA29. In a multicenter, randomized, 
double-blind, placebo-controlled, parallel-group study, the result had showed that Vitamin E had no benefit in 
patients with mild cognitive impairment30. Another double-blind, randomized, placebo-controlled trial showed 
that supplementation with two antioxidants, vitamin C and vitamin A, did not enhance cognitive performance31. 

Figure 6. Intake-response function relationship between single nutrient and MCI when all other nutrient 
intakes were at the median level. The model was adjusted for age, gender, resident area, education level, 
employment status, tobacco smoking, drinking status, LTPA, BMI, daily energy intake, hypertension, and 
diabetes.

 

Scientific Reports |        (2024) 14:27307 11| https://doi.org/10.1038/s41598-024-75010-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In the present study, as shown in the S. Figure 2, there was little change in the risk of MCI as vitamin a and 
vitamin c varied, which is similar to the results reported above.

The GLM model can provide a simple relationship between single chemicals and outcomes. The LASSO 
regression analysis is an advanced variable selection algorithm for data with multi-collinear and/or high-
dimensional characteristics, furthermore, the WQS model can explore the effect that a mixed exposure burden 
has on the outcomes in one direction per occasion. The BKMR model can explore the exposure-response 
function of each chemical while controlling other chemicals at certain levels, in addition, explore interactions 
between any two of the chemicals. The potential complicated two-way interactions was found using bivariate 
exposure-response functions. In the hierarchical variable selection analysis of BKMR, the results of the jointed 
effects of bivariable on MCI showed a complex interaction between vitamins and minerals.These results provide 
new insights into the effects of nutrients mixed intake on MCI. Future large populations based epidemiological 
studies and well-designed intervention studies are warranted to validate the current findings and elucidate the 
biological mechanisms. Thus, these three models evaluate different aspects, and a joint interpretation will reveal 
their strengths, limitations, and eventual complementation.

Our study has several limitations. First, because the data in this study were collected at a single point in 
time, there are limitations in inferring a causal relationship between nutrient intake and MCI. Second, the food 
frequency questionnaire was used to collect dietary survey data, which cannot well represent the real intake of 
individuals. Third, the number of people included in this study was relatively small, a larger sample size would 
make the results more stable and reliable. Fourth, It is very unfortunate that the use of nutritional supplements 
was not taken into account in the study. Fifth, if there is a group of variables that are highly collinear, LASSO will 
somewhat arbitrarily select one of these variables for inclusion. While this makes interpretation easier in a sense 
(fewer variables will have non-zero coefficients), it also makes interpretation more difficult due to the arbitrary 
nature in which some variables are chosen over others. Finally, there is no previous study have applied BKMR 
model to examine the association between mixed intake of nutrients and health outcomes, The accuracy and 
stability of the BKMR model in this scenario need to be further confirmed.

Figure 7. Association between nutrient 1 with MCI, while fixing nutrient 2 at the tenth, fiftieth, and ninetieth 
quantiles (and holding the remnant predictors to their median level) in the hierarchical variable selection 
analyses of the BKMR. The model was adjusted for age, gender, resident area, education level, employment 
status, tobacco smoking, drinking status, LTPA, BMI, daily energy intake, hypertension, and diabetes.
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Conclusions
Comparing the three statistical models, we found evidence of higher dietary fiber, vitamin E, and vitamin B6 
levels associated with lower MCI, with a potential complicated two-way interactions, whereas vitamin C had the 
opposite effect. The intake of iron should be moderate. Using these nutrients as a mixture to study their effect 
on reducing the risk of MCI provides important evidence for study designers to design intervention strategies to 
reduce the risk of MCI. Future studies need to move from a “one nutrient at a time” approach to simultaneous 
analyses of multiple nutrients intakes in order to understand and quantify the joint effect of nutrients mixture 
on human health. Applying multiple methods appropriately for the study questions and data structures may 
help obtain a more comprehensive picture of the intake-response relationships, as well as ensure the robustness 
of the findings.

Statistical analyses
We expressed data as mean (SD) and n (%) for continuous variables and categorical variables, respectively. We 
used T-test and χ2 test to compare the differences between groups.

We selected three methods for the present study: (1) the generalized linear regression (GLM) (2) the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression and (3) BKMR. These methods were selected 
because they were suitable for use in this dataset, given that the elements were correlated and had opposing 
directions.

Data availability
The datasets generated during and/or analysed during the current study are not publiclyavailable due to protect 
study participant privacy but are available from the correspondingauthor on reasonable request.
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