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Frailty is a complex aging phenotype associated with increased vulnerability to disability 
and death. Understanding the biological antecedents of frailty may provide clues to 
healthy aging. The genome-wide association study hotspot, 9p21-23 region, is a risk 
locus for a number of age-related complex disorders associated with frailty. Hence, 
we conducted an association study to examine whether variations in 9p21-23 locus 
plays a role in the pathogenesis of frailty in 637 community-dwelling Ashkenazi Jewish 
adults aged 65 and older enrolled in the LonGenity study. The strongest association 
with frailty (adjusted for age and gender) was found with the SNP rs518054 (odds ratio: 
1.635, 95% CI = 1.241–2.154; p-value: 4.81 × 10−04) intergenic and located between 
LOC105375977 and C9orf146. The prevalence of four SNPs (rs1324192, rs7019262, 
rs518054, and rs571221) risk alleles haplotype in this region was significantly higher 
(compared with other haplotypes) in frail older adults compared with non-frail older 
adults (29.7 vs. 20.8%, p =  0.0005, respectively). Functional analyses using in  silico 
approaches placed rs518054 in the CTCF binding site as well as DNase hypersensitive 
region. Furthermore, rs518054 was found to be in an enhancer site of NFIB gene located 
downstream. NFIB is a transcription factor that promotes cell differentiation during 
development, has antiapoptotic effect, maintains stem cell populations in adult tissues, 
and also acts as epigenetic regulators. Our study found novel association of SNPs in 
the regulatory region in the 9p21-23 region with the frailty phenotype; signifying the 
importance of this locus in aging.
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inTrODUcTiOn

Frailty is a complex phenotype seen in aging, which is associated with low physiologic reserves and 
with increased vulnerability to adverse outcomes such as disability, hospitalization, and death (1, 2). 
The prevalence of frailty has been reported to range from 7 to 32% in older populations and is higher 
in women (3). Given the emergent aging pandemic worldwide (4), a major public health challenge 
is to find ways to enhance functional independence in older adults and to increase years free from 
disabilities. Hence, understanding the biological antecedents of frailty may provide insights into 
healthy aging strategies.
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Frailty is a multidimensional construct involving several 
domains—physical, cognitive, psychological, and social domains 
(5–7). Even though expression and biomarker studies have 
pointed toward the involvement of various biological pathways 
in frailty (8, 9), genetic studies have not yielded consistent results. 
Candidate gene studies of IL6, TNF and IGF1 have shown either 
no association with frailty or provided contradictory results (10). 
This might be mainly explained by the multifactorial nature of 
frailty with involvement of genetic, lifestyle, and epigenetic 
factors (11, 12). This multidimensionality and multifactorial or 
complex origin of frailty is further supported by the etiological 
overlap between frailty and various age-related complex or mul-
tifactorial disorders (13). Prevalent frailty was a strong risk factor 
for cardiovascular diseases (CVD) as well as associated mortal-
ity (14). In the Cardiovascular Health Study, a cross-sectional 
analyses showed 38% of frail individuals had prevalent heart 
disease compared with 17% in non-frail individuals (15). Frailty 
and diabetes are strongly linked (16) with a higher incidence of 
type 2 diabetes seen in individuals with frailty (17). Frailty is 
associated with postmortem Alzheimer pathology in older adults 
with and without an antemortem history of dementia (18, 19). 
All of these point toward overlapping biological mechanism 
for frailty and other complex disorders. It is also possible that 
complex disorders may alter the frailty risk conferred by specific 
biological pathways.

Complex or multifactorial diseases are caused by a com-
bination of genetic, lifestyle, and other environment factors. 
Genome wide association studies (GWASs) have identified 
a large number of genetic variants associated with complex 
disorders (20, 21). In particular, 9p21-23 has been shown to 
be a risk-associated locus with many complex disorders. For 
example, 9p21 has been reported to be associated with CVD 
(22, 23), abdominal aortic aneurysm (24), arterial stiffness (25), 
peripheral artery disease (26), intracranial aneurysm (27), vari-
ous types of cancers (28, 29), amyotrophic lateral sclerosis (30), 
primary open-angle glaucoma (29), vascular dementia, and 
Alzheimer’s disease (31). The 9p23 region was associated with 
restless legs syndrome (32) and obsessive-compulsive disorder 
(33). Distinct haplotype blocks at the 9p21-23 region were asso-
ciated with CVD and type 1 diabetes (34). This locus harbors 
several genes including ANRIL, a long non-coding RNA gene 
implicated in the pathogenesis CVD and strokes, three can-
didate tumor suppressor genes; CDKN2A (cyclin-dependent 
kinase inhibitor 2A) encoding p16 protein, CDKN2B encoding 
p15 protein, and p14/ARF encoding p14ARF protein (35). 
C9ORF72 gene was found to be associated with amyotrophic 
lateral sclerosis-frontotemporal dementia (36). Furthermore, 
protein tyrosine phosphatase receptor type delta (PTPRD) at 
9p23 region was associated with restless legs syndrome (32) as 
well as cancers (37). While there is substantial overlap in the 
diseases-associated with frailty and the 9p21-23 locus, to the 
best of our knowledge, the association of this locus with frailty 
has not been specifically examined.

Discovering new biological pathways that prevent or delay 
frailty would increase current therapeutic options for clini-
cians and increase health span for individuals. Interestingly, 
rs2811712 located in ANRIL gene in the 9p21 locus is associated 

with physical function in older people with the minor allele 
being associated with reduced physical impairment (38). 
Furthermore, rs71321217 in PTPRD in the 9p23 locus is associ-
ated with gait rhythm (39). Based on these observations, we 
hypothesized that genetic variants in the chromosome 9p21-23 
locus will increase the risk of developing frailty in older adults. 
To elucidate the role of the 9p21-23 locus in the pathogenesis 
of frailty, we conducted a preliminary cross-sectional study in 
637 community-residing Ashkenazi Jewish (AJ) older adults 
participating in the LonGenity Study (40, 41). This population 
is homogenous genetically and socioeconomically (42) and 
allows for greater power for genetic analysis with fewer number 
of participants. Establishing the genetic underpinnings of frailty 
may provide new insights into preventive strategies to delay the 
occurrence of frailty and other related comorbidities as well as 
to promote healthy aging.

MaTerials anD MeThODs

longenity cohort
The LonGenity study, established in 2007, recruited a cohort of 
AJ adults age 65 and older, who were defined as either Offspring 
of Parents with Exceptional Longevity (OPEL) (having at least 
one parent who lived to age 95 or older) or Offspring of Parents 
with Usual Survival (OPUS) (neither parent survived to age 
95). The goal of the LonGenity study is to identify genotypes 
associated with longevity and their association with successful 
aging. Study participants were recruited through contacts at 
synagogues, community organizations and advertisements 
in Jewish newspapers in the New York City area. Potential 
participants were contacted by telephone to assess interest and 
eligibility. They were invited to our research center for further 
evaluation. Exclusion criterion included diagnosis of dementia 
[previous physician diagnosed dementia or telephone Memory 
Impairment Screen scores in the dementia range (43)] as well 
as presence of severe visual or hearing impairments that would 
interfere with study assessments. Participants received detailed 
medical history evaluation and cognitive testing at baseline as 
well as at annual follow-up visits. All participants signed written 
informed consents for clinical assessments and genetic testing 
before enrollment. The Einstein institutional review board 
approved the study protocol.

A total of 965 older individuals were enrolled in the LonGenity 
study between October 2008 and August 2017. We excluded 64 
individuals who did not complete frailty assessments as well as 
264 who did not complete genetic testing. Hence, the eligible 
sample for this analysis included 637 participants, who had been 
genotyped and completed frailty assessments.

Frailty syndrome
The two common approaches to defining frailty clinically are as 
a clinical syndrome (5) or as a cumulative deficit score (44–46). 
The syndromic definition of frailty (see below) is widely adopted 
in research and clinical practice (5). While the cumulative deficit 
score approach has advantages in research settings, it is less intui-
tive in clinical settings in the community (47). Frailty diagnosis, 
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Table 1 | Clinical characteristics of cohort.

Variables longenity Frailty normal

Participants 637 206 431
Age, mean ± SD, years 75.41 ± 6.55 77.72 ± 6.75 74.29 ± 6.16
Women, % 52.9% 55.3 51.6
Education, mean, years 17.47 ± 2.70 17.33 ± 2.73 17.55 ± 2.68
Gait speed, mean ± SD, cm/s 110 ± 20.1 100.9 ± 21.4 114 ± 17.6
Offspring of Parents with 
Exceptional Longevity/Offspring of 
Parents with Usual Survival (%)

43.6/56.4 40.7/59.3 44.8/55.2

Medical illnesses
Cardiovascular disease, % 9.1 12.30 7.50
Stroke, % 3.6 6.90 2.10
Diabetes, % 9.2 11.80 8.20
Parkinson disease, % 1.4 2.50 0.90
Arthritis, % 40.9 56.90 34.10
Hypertension, % 43.6 62.00 40.80

slow gait cuts, cm/s
Men <75 years 88.55
Men ≥75 years 76.44
Women <75 years 87.4
Women ≥75 years 71.28

low grip strength cuts, kg
Men <75 years 32.05
Men ≥75 years 24.21
Women <75 years 17.67
Women ≥75 years 14.27
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hence, was operationalized using the widely used Cardiovascular 
Health Study criteria (48) for this study. Frailty was operationally 
defined as meeting three or more of the following five attributes: 
unintentional weight loss (≥10 lb in past year), muscle weakness 
(objectively measured grip strength or self-report; described 
below), exhaustion [negative response to the question “do you 
feel full of energy?” on the Geriatric Depression Scale (49)], 
self-reported low physical activity levels [positive response to the 
question “Have you been less active physically?” on the Health 
Self-Assessment Questionnaire (5)] and slow gait (Table  1). A 
Jamar handgrip dynamometer was used to objectively measure 
dominant hand grip strength at baseline. Weakness was defined 
using a cut score of 1 SD or more below age and sex mean values 
(Table  1). Similar to previous reports (50–52), subjective grip 
strength (“do you feel as though your grip is weak?”) was used on 
follow-up waves as a frailty criterion, since objective grip strength 
measures were not available for all our participants on follow-up. 
A previous study in this same cohort showed substantial agree-
ment between the objective and subjective grip strength rating 
methods (53). Gait speed (cm/s) was measured using an 8.5 m 
long computerized walkway with embedded pressure sensors 
(GAITRite; CIR Systems, PA). The GAITRite system is widely 
used in clinical and research settings, and excellent reliability 
has been reported in our and other centers (54, 55). Participants 
were asked to walk on the walkway at their normal pace in a 
quiet well-lit room wearing comfortable footwear and without 
any attached monitors. Slow gait was defined as 1.5 or more SD 
below age and sex-appropriate mean values. In total, we had 206 
individuals who were diagnosed with frailty; 118 prevalent cases 
and 88 incident cases of frailty.

selection of gene Variants and 
genotyping
We targeted 9p21-23 region spanning from chr9: 8743598 to 
32586822 (NCBI build 37) for this analysis based on its func-
tional significance and reported associations with major com-
plex disorders (24, 30, 31, 34, 35). Genotyping was performed 
at the Center for Inherited Disease Research using Illumina 
HumanOmniExpress array (Illumina, San Diego, CA, USA), and 
the procedures have been described previously (40, 41).

Since the focus of our research was to explore complex 
disorder-associated alleles in this locus in regards to frailty; the 
few SNPs missing in the genotyping array were made available 
from imputation analysis. Imputation of un-genotyped autoso-
mal SNPs were based on the 1000 Genomes data (worldwide 
reference panel of all 1,092 samples from the phase I integrated 
variant set) (v3, released March 2012) (56) using IMPUTE2, 
version 2.3.0. Poorly imputed SNPs with low imputation quality 
(info_metric  <  0.3) were excluded from the analysis. For this 
study, we selected SNPs with minor allele frequencies of >0.10.

statistical analysis
Baseline characteristics of participants were compared using 
descriptive statistics (Table 1). The preliminary objective of this 
study was to identify the association of variants in the 9p21-23 
region with frailty using logistic regression analysis. Prevalent 
and incident cases of frailty were examined together in this 
analysis to maximize sample size. In participants who did not 
have frailty at baseline or develop incident frailty, the wave at 
which the first non-frail status was diagnosed was used as base-
line for comparing clinical characteristics. As previous studies 
have shown frailty to increase with age and in women (57), all 
analyses were adjusted for age and gender (Model 1). All SNP 
based association analyses were conducted using Plink v1.90.1 
All other statistical analyses were carried out using SPSS software 
(version 24; IBM Corporation). Presence or absence of diabetes, 
heart failure (including myocardial infarction, angina, or conges-
tive heart failure), hypertension, strokes, Parkinson’s disease, and 
arthritis was used to calculate a global health score (range 0–6) 
as previously described (58). To account for the LonGenity study 
design described above (40, 41) and health status, we conducted 
sensitivity analyses further adjusting the models for OPUS/OPEL 
status and global health score (Model 2).

A total of 5,556 variants were available for analysis in the 
selected region (chr9: 8743598 to 32586822) after removing 
SNPs that had minor allele frequencies < 0.10 (n = 1,856) and 
failed the Hardy–Weinberg exact test (p ≥ 0.01) (n = 79). Linkage 
disequilibrium (LD) plots were generated using Haploview 4.2 
(59). Haplotype blocks were defined based on the Gabriel criteria 
(60). Haplotype analyses were performed using SNPStats soft-
ware (61). Functional prediction of the associated variants was 
carried out using various in silico approaches. Genotype-Tissue 
Expression portal (GTEx)2 was used to determine the significant 
expression quantitative trait loci (eQTL) for SNPs associated 

1 https://www.cog-genomics.org/plink2.
2 http://www.gtexportal.org/home/.
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Table 2 | Logistic regression analysis of 9p21-23 locus with Frailty with genotyped SNPs adjusted for age and gender (Model 1).

chr snP Position allele Frail normal sTaT Odds ratio (95% ci) p

9 rs518054 13689066 G 0.314 0.214 3.491 1.635 (1.241–2.154) 4.81 × 10−04

9 rs10511667 18989696 G 0.164 0.106 3.411 1.855 (1.301–2.645) 6.48 × 10−04

9 rs1855850 10480030 T 0.329 0.419 −3.401 0.635 (0.489–0.825) 6.73 × 10−04

9 rs571221 13690235 C 0.314 0.219 3.341 1.597 (1.213–2.101) 8.35 × 10−04

9 rs7019262 13614384 G 0.510 0.400 3.330 1.517 (1.187–1.938) 8.68 × 10−04

9 rs7034231 28119512 G 0.186 0.115 3.254 1.780 (1.258–2.519) 1.14 × 10−03

9 rs1324192 13612345 A 0.483 0.383 3.176 1.488 (1.164–1.902) 1.50 × 10−03

9 rs7038172 16708269 C 0.147 0.087 3.125 1.802 (1.245–2.607) 1.78 × 10−03

SNPs with p-value < 0.002 is shown in this table.
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with frailty (62). Regulome DB3 based on Encyclopedia of DNA 
Elements (ENCODE) project (63) was used to identify func-
tional effects of the identified SNPs in the association and eQTL 
analyses. rVarBase,4 updated database for regulatory features 
of variants was also used to find the effect of SNP of chromatin 
states, interacting regulatory elements and target genes (64). 
Functional Single Nucleotide Polymorphism; a web-based tool 
that integrates 16 databases and bioinformatic tools to uncover 
the functional effect of the SNPs (65) and FuncPred5 were used to 
predict the functional effects of associated variants.

resUlTs

study Population
Of the 637 eligible individuals with phenotype and genotype data 
in the LonGenity cohort, 356 were OPUS and 281 were OPEL. Of 
the eligible sample, 206 individuals (32.5%) received a diagnosis 
of frailty at baseline (n = 118) or at various time points over the 
study follow-up (n = 88), and 430 individuals (67.5%) remained 
non-frail throughout the study follow-up. The overall median 
follow-up time was 3.7  years (range 0–9  years). Demographic 
and clinical characteristics are summarized in Table 1. The mean 
age of the participants was 75.41 ± 6.55 years, and 52.9% were 
women. The mean years of education was 17.47  ±  2.70  years. 
A higher percentage of OPUS individuals met frailty diagnosis 
(34%) compared with OPEL (30.4%). All major medical illnesses 
were more prevalent in individuals who had frailty compared 
with normal individuals (Table 1).

association and In Silico Functional 
analyses
The strongest association with frailty was found with the G allele 
of rs518054 [odds ratio (OR): 1.635, 95% CI  =  1.241–2.154; 
p-value: 4.81  ×  10−04] (Table  2; Figure  1) (Model 1). None of 
the SNPs studied survive Bonferroni correction for threshold 
for statistical significance. The associations remained similar 
after adjusting for longevity status (OPEL vs. OPUS) and global 
health score for all of these four SNPs (Table S1 in Supplementary 
Material) (Model 2). We also observed modest associations of 

3 http://regulomedb.org/.
4 http://rv.psych.ac.cn/.
5 https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html.

three other SNPs (rs7019262, rs571221 and rs1324192) in this 
region with frailty (Table 2; Figure 2). LD plot of associated SNPs 
showed presence of SNPs in two LD blocks (rs518054–rs571221 
and rs1324192–rs7019262) in frail and single LD block in normal 
individuals (Figure S1 in Supplementary Material). Haplotype 
analysis to investigate the combined effect of associated SNPs 
found significant association (p-value < 0.0005) with haplotype 
involving risk alleles (AGGC) at four loci combination (29.7 vs. 
20.8%) (Table 3).

All four SNPs associated with frailty in this region were 
intergenic and located between LOC105375977 and C9orf146 
(LINC00583) (Figure 2). The nearest well-characterized gene was 
NFIB coding for nuclear factor 1B (Figure 2). We assessed the 
functional significance of the associated SNPs in our study. The 
lead SNP rs518054 is located in the DNase 1 hypersensitive site. 
ENCODE data showed a Regulome DB score of 2b for rs518054, 
which predicted its role as likely to affect gene expression level, 
and the evidence includes transcription factor binding, any motif 
change, DNase footprint, and DNase peak (Table  4). The data 
show this region to be a binding site for CTCF, a transcriptional 
regulator. rVarBase data further suggest this SNP to be located in 
the chromatin interactive region with predominantly enhancer 
function in most tissues including muscle in both male and 
female. The available ENCODE data further showed this region 
harboring rs518054 interacted with the NFIB gene located 
downstream (Table  4). The associated SNP rs518054 located 
in the DNase hypersensitive site might play a role in the tran-
scriptional regulation of NFIB gene through an enhancer effect. 
Furthermore, considering that these SNPs were located in the 
regulatory regions (e.g., enhancers), we used an in silico approach 
to determine whether they were local eQTL. Using GTEx portal, 
we could not find any significant eQTLs for SNP rs518054 in 
studied tissues.

Though none of the SNPs survived multiple corrections in 
this study, rs518054 emerged to be lead SNP with functional rel-
evance in all models studied (Table 2; Table S1 in Supplementary 
Material). The unadjusted association analysis results are shown 
in Table S3 in Supplementary Material.

sensitivity analyses
The next objective of our study was to find out the risk con-
ferred by specific complex disorder-associated SNPs in this 
region with frailty. A number of CVD-associated SNPs were 
observed in the 9p21-23 locus followed by SNPs for cancers 
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FigUre 1 | LocusZoom plot of the region studied with frailty on chromosome 9p21-23. Genes and ESTs within the region are shown in the lower panel, and the 
unbroken blue line indicates the recombination rate within the region. Each filled circle represents the p-value for one SNP, with the top SNP rs518054 shown in 
purple and SNPs in the region colored depending on their degree of correlation (r2) with rs518054 [as estimated internally by LocusZoom on the basis of CEU (Utah 
residents of Northern and Western European ancestry) HapMap haplotypes].
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and many other complex disorders. Our analysis showed lack of 
association of these disease-associated SNPs with frailty (Table 
S2 in Supplementary Material). Interestingly, there was an 
increased prevalence of CVD-associated risk alleles [rs10757278 
(p = 0.116), rs1333040 (p = 0.133), and rs1333049 (p = 0.116)] in 
frail individuals compared with non-frail individuals (Table S2 
in Supplementary Material). SNPs associated with gait rhythm 
(rs71321217; p-value = 0.384) and physical activity (rs2811712; 
p-value = 0.205) in previous studies (38, 39) were not associated 
with frailty in our cohort (Table S2 in Supplementary Material).

Even though genetic studies have been carried out combining 
prevalent and incident cases (66–68), to check the possibility of 
survival bias arising from the possible systematic differences 
in allele frequencies between the prevalent and incident cases, 
we carried out case only analysis comparing allele frequency 
in incident and prevalent cases. There was slight difference in 
the allele frequency of rs518054 in incident and prevalent cases 
of frailty (p-value = 0.014) with associated G allele found to be 

0.36 in prevalent cases and 0.25 in incident cases. The frequency 
of G allele in controls was 0.21. The overall association was 
mainly driven by cases of prevalent frailty (OR: 1.980, 95% 
CI  =  1.426–2.749; p-value: 4.50  ×  10−05) than incident frailty 
(OR: 1.198, 95% CI =  0.808–1.776; p-value: 0.368) when each 
of them were compared independently to controls adjusting for 
age and gender.

DiscUssiOn

This study attempted to delineate the role of the 9p21-23 region 
with frailty in a well-characterized AJ cohort as a strategy to 
understand healthy aging. We uncovered a novel association of 
SNPs at the 9p21-23 region with frailty, not implicated previously 
with any of the complex disorders associated with this locus. Using 
functional analyses, we found the lead variant to be located in the 
enhancer region and involved in the transcriptional regulation of 
the NFIB gene. The study further observed increased frequency of 
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Table 4 | Details of putative regulatory functions of associated lead SNPs.

Variant ref alt eUr 
freq

Promoter 
histone 
marks

enhancer 
histone marks

Dnase Proteins 
bound

Motifs 
changed

chromatin 
state

Variant 
interacting 

gene

Frailty- 
associated cell 
line/tissue

regulome 
Db score

rs518054 T g 0.20 – 10 tissues 10 tissues cTcF aire, 
hoxb9

enhancer nFib skeletal muscle 2b

rs7019262 G A 0.63 – ESDR, LNG MUS P300 Pax-4, YY1 Enhancer – Skeletal muscle 4
rs571221 T C 0.20 – MUS MUS, VAS – – – – Skeletal muscle 5
rs10511667 A G 0.89 – Skin/lung – – – Enhancer – – 5
rs7034231 T G 0.83 – Neuron cells – – – Enhancer – – 5
rs7038172 T C 0.94 – Multiple tissues – GATA3

POLR2A
– Enhancer BNC2 – 6

rs1855850 C T 0.67 – – – – – – – – –
rs1324192 A G 0.66 – – – – – – – – –

MUS, skeletal muscle, male; VAS, HUVEC umbilical vein endothelial primary cells; ESDR, H1 BMP4-derived trophoblast cultured cells; LNG, lung.
Data are derived from HaploReg v4.1 (http://www.broadinstitute.org/mammals/haploreg/haploreg.php), RegulomeDB (http://www.regulomedb.org/), and rVarBase (http://rv.psych.
ac.cn/).
Lead SNP rs518054 is marked in bold.

Table 3 | Haplotype analysis of the associated SNPs in the 9p21-23 region.

sl. no. rs1324192 rs7019262 rs518054 rs571221 Frailty normal Odds ratio (95% ci) p-Value

1 G A T T 0.487 0.597 1
2 a g g c 0.297 0.208 1.695 (1.266–2.273) 5 × 10−04

3 A G T T 0.184 0.173 1.300 (0.934–1.818) 0.12
4 G G T T 0.012 0.011 1.010 (0.312–3.226) 0.99

Significant difference in the haplotype (2) involving the risk alleles of associated SNPs was observed with 29.7% in individuals with frailty compared with 20.8% in normal.
Haplotype analysis was adjusted for age and gender.

FigUre 2 | (a) Genome wide association study hotspot locus of 9p21-23 region screened in this study. Frailty-associated SNPs are marked in rsIDs, and lower 
dots indicate disease-associated SNPs in this region and level of significance. (b) Localized view of associated SNPs showing its location between LOC105375977 
and LINC00583 (C9orf146). NFIB is the nearest well-characterized gene to SNP rs518054. Genomic region data adapted from NCBI dbSNP database.
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CVD-associated alleles in individuals with frailty though failed to 
reach statistical significance with frailty phenotype.

The 9p21-23 region has emerged as a genetic hotspot for 
complex disorder associations in recent studies. With regard to 
the frailty-associated SNPs discovered in our study, the nearest 
well-characterized gene was NFIB, coding for the transcription 

factor Nuclear Factor IB, which plays a key role in the transcrip-
tional regulation of a large number of genes in which our lead 
SNP rs518054 was found to be located in the enhancer region of 
this gene. NFIB has various functions ranging from promoting 
cell differentiation during development to maintaining stem cell 
populations in adult tissues and also possess antiapoptotic effect 

http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.regulomedb.org/
http://rv.psych.ac.cn/
http://rv.psych.ac.cn/
https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive


7

Sathyan et al. 9p21-23 and Frailty

Frontiers in Medicine | www.frontiersin.org May 2018 | Volume 5 | Article 105

(69–72). In vivo studies have shown a multi-potency restriction 
of adult hippocampal neuronal stem cells by Drosha–NFIB inter-
actions (73). It plays an important role in lung maturation and 
brain development (74), mediates repression of the epigenetic 
factor ezh2 which regulates cortical development (75), and also 
has an important role in chromatin remodeling (76). NFIB alters 
and globally maintains hyper accessible chromatin state and an 
increase of chromatin accessibility at distal regulatory elements 
enacts a program of gene expression (76). Thus the association 
we observed in the enhancer region of NFIB gene seems clinically 
and functionally relevant. The wide spread binding of NFIB in 
open chromatin sites has been linked to its regulatory action in 
adipocyte differentiation (77) and cancer metastasis (76). NFIB 
is also associated with osteosarcoma (78) and sciatica (79) in 
GWAS. All these findings point toward possible tissue-specific as 
well as genome-wide effects mediated through NFIB.

There is a paucity of studies examining the role of epigenetic 
mechanisms in frailty (12, 80). Epigenetic mechanisms including 
chromatin remodeling plays a pivotal role in the aging process 
(81, 82). Genes in the 9p21-23 locus have an important role 
in chromatin remodeling (76, 83). For instance, non-coding 
RNA ANRIL, specifically binds two polycomb proteins: CBX7 
(PRC1) and SUZ12 (PRC2) to regulate histone modification in 
the CDKN2A/B locus. Overexpression of this gene also causes 
the down regulation of several genes involved in important 
chromatin architecture and remodeling mechanisms in other 
chromosomal regions (83). These results point toward a possible 
role of this locus in mediating environmental factors influenced 
epigenetic mechanisms. This might explain why this locus is 
linked with various age and environmental risk-associated 
diseases such as CVD, strokes and diabetes (24, 27, 34). Our 
finding thus supports a possible role of epigenetic mechanisms 
in frailty pathogenesis. Though there was higher prevalence of 
CVDs-associated risk allele with frailty, the association was not 
statistically significant. This might be mainly due to the smaller 
sample size as well as multifactorial origin of these diseases and 
frailty. Larger studies need to validate the initial observations in 
this study. Furthermore, since dementia was an exclusion crite-
rion for the cohort, the association of some dementia related risk 
alleles with frailty might have minimized.

The strengths of our study include the systematic clinical and 
frailty assessments as well as the well-characterized population 
(40, 41). Limitation of this study is inclusion of incident frailty 
for increasing statistical power. The allele frequency of associated 
rs518054 “G” allele was observed to be more in prevalent and 
incident cases of frailty when independently compared with 
individuals free from frailty during course of this study. But 
the association was mainly driven by the prevalent frailty. The 
inclusion of incident frailty in the model provides us healthy 
controls free from frailty throughout the course of study. The 
lack of significant association with incident frailty might be 
mainly due to smaller sample size as well as objective-subjective 
definition of frailty used in this study. Limitations also include the 
absence of functional studies to validate the effect of associated 
genotypes with gene expression and chromatin interaction as 
well as the relatively small sample size. We noted the lack of con-
sensus regarding frailty definitions, and chose a widely used and 

clinically relevant syndromic definition of frailty. Further studies 
need to be carried out to find the relevance of these observations 
in case of other frailty definitions. Our findings were based in 
a relatively genetically homogenous AJ population with high 
levels of education, which was used successfully for other genetic 
discoveries (40–42, 84–86) that have then been cross validated in 
other heterogeneous cohorts. However, our findings need to be 
validated in other more diverse populations.

In conclusion, we found novel association of variants in the 
9p21-23 locus with frailty with lead SNP located in the enhancer 
region of the NFIB gene. Further investigation of this region is 
required to gain insights into potential interventions to address 
biological derangements in these pathways to extend health span 
and to maintain functional independence in older adults. The 
dynamics of healthy aging are complex and maintaining func-
tional ability in older age is multifactorial. Frailty is one of the 
most significant geriatric syndrome observed in elderly popula-
tion. Studies have shown that complex disorders increases with 
age but whether aging is the cause or consequence of these dis-
eases is controversial. Our study supports a role for the complex 
disorder GWAS-associated 9p21-23 locus in frailty and provides 
insights into healthy aging.
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