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CH-1015 Lausanne, Switzerland

Edited by Joseph S. Takahashi, The University of Texas Southwestern Medical Center, Dallas, TX, and approved March 9, 2020 (received for review October
18, 2019)

Translation depends on messenger RNA (mRNA)-specific initiation,
elongation, and termination rates. While translation elongation
is well studied in bacteria and yeast, less is known in higher
eukaryotes. Here we combined ribosome and transfer RNA (tRNA)
profiling to investigate the relations between translation elonga-
tion rates, (aminoacyl-) tRNA levels, and codon usage in mammals.
We modeled codon-specific ribosome dwell times from ribosome
profiling, considering codon pair interactions between ribosome
sites. In mouse liver, the model revealed site- and codon-specific
dwell times that differed from those in yeast, as well as pairs
of adjacent codons in the P and A site that markedly slow
down or speed up elongation. While translation efficiencies vary
across diurnal time and feeding regimen, codon dwell times were
highly stable and conserved in human. Measured tRNA levels cor-
related with codon usage and several tRNAs showed reduced
aminoacylation, which was conserved in fasted mice. Finally, we
uncovered that the longest codon dwell times could be explained
by aminoacylation levels or high codon usage relative to tRNA
abundance.
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Translation dynamically controls gene expression in processes
such as development, the cell cycle, feeding/fasting cycles,

and response to stress (1). At least three steps underlie pro-
tein synthesis: translation initiation, often thought to be rate
limiting; elongation; and termination (2). Recently, however,
elongation has emerged as an important layer to fine-tune gene
expression (reviewed in ref. 3). Indeed, variations in elongation
rates may influence gene expression (4–8), and recent studies
showed that alteration of translation elongation rates in can-
cer cells influences their proliferation and invasion capabilities
(9–11).

In unicellular organisms, translation elongation rates are well
explained by transfer RNA (tRNA) gene copy number and
expression (12, 13). This is also reflected evolutionarily since
highly expressed genes are enriched for fast codons with high
concentrations of tRNAs (14). Pioneering work in Escherichia
coli showed that elongation rates are different for the codons
GAA and GAG (15), decoded by the same tRNA. This raises
the possibility not only that elongation rate is determined by the
concentration of tRNAs but that codon–anticodon interactions
as well as codon context may play important roles. While the
determinants of elongation rates are well studied in bacteria and
yeast, much less is known in high eukaryotes.

More recently, the development of ribosome profiling (RP)
shed new light on the regulation of translation (16), including in
human tissues (17). Notably, the possibility to capture the posi-
tions of translating ribosomes on messenger RNAs (mRNAs)
(18) fostered the development of quantitative models provid-
ing genome-wide insights on key features regulating translation
elongation rate (19–22). For instance, the properties of amino
acids (23), (aminoacyl-) tRNA availability (24–26), tRNA modi-
fications (27–29), secondary structures of mRNAs (30–32), fold-
ing of the nascent chain (33), pairs of codons (34, 35), and sterical

interactions with the ribosome exit tunnel (36) were shown to
influence the local density of ribosomes on transcripts. While
RP studies have brought new knowledge on translation elon-
gation, these were performed mostly in unicellular organisms
and have led to divergent results on the determinants of elon-
gation rates, as highlighted in several metaanalyses (20, 37).
One reason is that ribosome footprints are sensitive to biases
from differences in protocols (38–42), library preparations (22),
and data analysis pipelines (43). Consequently, the reported
correlations between elongation rates, tRNA abundances, and
codon usage (44) show inconsistencies. In addition, while codon
usage can be precisely estimated, it remains difficult to mea-
sure tRNA concentrations. Indeed, tRNAs exhibit a high degree
of modifications and complex secondary structures, which alter
cDNA synthesis and biases quantification by high-throughput
sequencing (45). Thus, improved methods have been proposed
to quantify tRNAs (9, 46–48), as well as tRNA aminoacylation
levels (49).
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Here, to better establish the determinants of translation elon-
gation rate in higher eukaryotes, we combined modeling of
ribosome profiling data, codon usage analysis, and (aminoacyl-)
tRNA profiling in mouse liver. In particular, we built a genome-
wide statistical model that allowed us to estimate elongation
rates, notably the contributions of single codons, as well as
pairs of codons within and near the ribosome E, P, and A
sites. In mouse liver, we found a large dynamic range of codon-
and amino acid-specific ribosome dwell times (DTs, defined as
the inverse of the elongation rates; Materials and Methods). In
addition to single-codon effects, we identified codon pairs con-
tributing synergistically to the DTs. In mouse liver, the identified
contributions of single-codon and codon pair DTs were remark-
ably stable along the feeding/fasting cycle and even under con-
ditions of prolonged fasting. Metaanalysis in mammals revealed
conserved DTs between mouse tissues and human, which were,
however, distinct from those in yeast. Finally, we extended a
recent tRNA profiling method (9) to measure (aminoacyl-)
tRNA levels in liver of ad libitum (AL) fed and fasted (FA)
mice. tRNA levels correlated with codon usage and several
tRNAs showed reduced aminoacylation, which was conserved in
fasted mice. These data, together with codon usage properties,
allowed us to explain some codon specificity in the estimated
ribosome DTs.

Results
Modeling Codon-Specific DTs Including Single-Codon and Codon Pair
Contributions. Ribosome profiling read counts along transcripts
typically show large variations with high and low densities of
ribosomes reflecting differential elongation rates. To estimate
ribosome DTs in higher eukaryotes from those data, we explic-
itly fit ribosome profiling read counts on a genome-wide scale,
extending previous models (19, 21). Specifically, we consider
steady-state translation and additionally assume no ribosome
drop-off and low density of ribosomes per transcript. Under this
model, the probability of finding a ribosome at a specific posi-
tion on an mRNA is proportional to a position-independent gene
translation flux times a position-dependent ribosome dwell times
(19). To investigate how the codon context determines the DTs,
we further assumed that DTs depend on position through the
codons translated in the E, P, and A sites, as well as surrounding
sequences (Fig. S1A). In particular, we modeled DTs additively
in log-space using single-codon contributions as well as synergis-
tic (nonadditive) contributions from pairs of codons in the E and
P (noted E:P), P and A (P:A), or E and A (E:A) sites (Fig. S1
A and B). Note that the additive log-scale model for the DTs is
equivalent to modeling the elongation rates at any given posi-
tion with an Arrhenius-like rate equation, in which the analogue
of the activation energy has both single-codon and codon pair
contributions. An inherent property of such approaches is that
the DTs cannot be estimated in absolute units but only relative
to each other within each site (Materials and Methods). Solving
this model with appropriate noise distributions for RP count data
can be conveniently implemented as a generalized linear model
(GLM), which models the expected read counts as gene spe-
cific fluxes (gene covariates) multiplied by ribosome DTs (codon
covariates) (Materials and Methods). The GLM uses the 61 sense
codon alphabet and considered positions around the ribosome
spanning 40 codons around the E site (Fig. S1 A and B). To
normalize the fluxes per mRNA and attenuate possible techni-
cal biases affecting the ribosome DTs, the same model is also
applied on RNA-seq when available. Compared to other mod-
els predicting ribosome footprint densities (20–22, 31, 37), our
approach allows us to determine globally translation elongation
parameters, namely, single-codon and codon pair DTs together,
as well as fluxes. Moreover, the parameters are all inferred at
once from the raw read counts using a negative binomial noise
model (Fig. S1 C–E) (Materials and Methods), which provides

a quantitative interpretation of the fitted coefficients, includ-
ing in particular the identification of synergistic contributions to
ribosome DTs.

In Yeast Ribosome DTs Anticorrelate With Codon Usage and Show
Codon Pair Interactions. To validate our model, we analyzed two
published ribosome profiling datasets in Saccharomyces cere-
visiae (26, 50), one under normal (wild-type [WT]) (50) condi-
tions and one treated with 3-amino-1,2,4-triazol (3-AT), which
inhibits the histidine (His) biosynthesis pathway (26) thereby
reducing aminoacylation level of histidine tRNAs. Both datasets
used cycloheximide (CHX) only in the lysis buffer.

Our model reproduced raw RP read counts along the tran-
scripts with similar accuracy as previous methods (20–22, 31, 37)
in both WT and 3-AT conditions (Fig. S2 A and B). Interest-
ingly, the estimated dwell times (DTs) in WT exhibited a twofold
range at the three E, P, and A sites (Fig. 1 A and B, Left), with
some marked slower outliers. For instance, one codon (CCG)
for proline (Pro) was markedly slow in the A and P sites, likely
due to its wobble decoding. Note that the other three proline
codons are also slow, presumably because of slow peptide bond
formation, as shown in ref. 51. Arginine (Arg) showed long DTs
in all three sites. In fact, some Arg codons also showed slightly
longer DTs in the upstream sequence, highlighting possible inter-
actions of this positively charged amino acid with the ribosome
exit tunnel (Fig. S2C). On the other hand, codons for isoleucine
(Ile), leucine (Leu), and valine (Val) were the fastest in the A
site (Fig. 1 A and B, Left).

We found that the shortage of His in the 3-AT condition
resulted in lengthened DTs in the P and A sites for both His
codons (CAC and CAT) (Fig. 1 A and B, Right), confirming
the sensitivity of the estimated DTs. Interestingly, outside the
E, P, and A sites, DTs showed a dependency on His codons at
around 30 nucleotides (positions 11 and 12) downstream of the
P site (Fig. S2C), reflecting queued ribosomes (disomes) behind
His codons (26). Moreover, the DTs also displayed signatures of
technical biases. Notably, the high variation in DTs at position
−4, coinciding with the most 5′ nucleotide of the insert, was pre-
viously shown to reflect biases in library preparation (Fig. S2C)
(reviewed in ref. 52).

To further validate the biological relevance of our DTs, we
compared ribosome DTs in WT condition with codon usage
weighted by mRNA translation levels (i.e., normalized RP read
counts), to take into account condition-specific demands in
codons. Interestingly, we found high negative correlations (R2 =
0.565 and R2 =0.495) between the codon usage and the DTs at
the A and P sites (Fig. 1C). This observation suggests an evo-
lutionary pressure to enrich for fast codons in highly expressed
genes, and conversely.

In addition to the single-codon DTs, we probed whether pairs
of codons in the ribosome sites synergize by analyzing interac-
tion terms (E:P, P:A, and E:A) (Fig. S2D). We compared these
predicted DTs with a GFP-reporter experiment in yeast prob-
ing for pairs of codons that inhibit translation (35). Indeed, the
experimentally determined inhibitory pairs exhibited long pre-
dicted DTs at the P and A or E and P ribosome sites (Fig. 1
D–F). While for these pairs the single-codon DTs were already
long, the synergistic interaction terms clearly prolonged them
(Fig. 1 D and E). Interestingly, although the E:P and P:A inter-
actions were not correlated overall, the inhibitory pairs stood
out as showing large DT contributions in both the E:P and P:A
(Fig. 1F). Globally, the P:A interaction matrix was sparse and
not highly structured but revealed large values and spread for
the pairs involving codons for Arg or Pro (Fig. S2D). Thus,
our model of RP data is sufficiently sensitive to identify subtle
properties of ribosome DTs, such as codon-specific and codon
pairs contributions, and signatures of sequences outside of the
E, P, and A sites.
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Fig. 1. In yeast, ribosome DTs anticorrelate with codon usage and show codon pair interactions. Panels for the single-codon DTs are retrieved from the
fit with the P:A interaction. (A) DTs (log2, mean centered per site) for the 61 sense codons in the two conditions (WT [Left] and 3-AT [Right]) for the E, P,
and A sites. Codons are colored according to amino acids. DTs with p>= 0.05 are not shown. (B) Heat map representation of A. Here DTs with p>= 0.05
are set to 0. Relatively fast and slow interactions are shown in dark red and dark blue, respectively. (C) Codon usage weighted by mRNA translation levels
(normalized RP read count) correlates with the codon DTs for the E, P, and A sites. Black line shows linear fit. (D) DTs (log2) for codon pairs. Total codon pair
DTs (P + A + P:A, i.e., including the interactions P:A) versus the contributions from the single-codons (P + A). Red indicates pairs described as inhibitory in
ref. 35. (E) DTs (log2) for codon pairs. Total codon pair DTs (E + P + E:P, i.e., including the interactions E:P) versus the contributions from the single codons
(E + P). Red indicates pairs described as inhibitory in ref. 35. (F) P:A (log2) versus E:P (log2) interactions for all codon pairs.

Single-Codon and Codon Pair DTs in Mouse Liver Cluster by Amino
Acids. Determinants of translation elongation are less studied
in mammals. We and others have previously shown that feed-
ing/fasting cycles can regulate translation initiation in mouse
liver via well-described mechanisms, notably through mTOR and
GCN2 related nutrient sensor pathways (53, 54). Here we aimed
to extend this analysis to the level of DTs, in particular to assess
whether perturbed amino acid pools during low nutrient avail-
ability can alter DTs. Therefore, we applied the above model
to our previous 84 ribosome profiling samples harvested in WT
and circadian clock deficient mice (Bmal1 KO) every 2 to 4 h

around the 24-h d, including four biological replicates (53). As
for yeast, our model faithfully captured raw RP read counts along
transcripts, as reflected by a previously used correlation metric
(Fig. S3 A and B). Remarkably, DTs were very stable across all
samples, showing high biological reproducibility and no time or
circadian clock-dependent changes (Fig. S3 C–E), as opposed
to rhythmic gene-specific translation efficiencies (53). Therefore,
for the following analyses of DTs, we averaged them over all of
the 84 samples.

DTs for the E, P, and A sites showed biologically significant
codon and amino acid specificity (Fig. 2 A and B). DTs were
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Fig. 2. Single-codon and codon pair DTs in mouse liver cluster by amino acid. Single-codon DTs are retrieved from the fit with the P:A interaction. (A) DTs
(log2, mean centered per site) for the E, P, and A sites averaged over the 84 samples in mouse liver. Codons are colored according to amino acids. DTs with
p>= 0.05 are set to 0. (B) Heat map representation of A. DTs with p>= 0.05 are set to 0. Fast and slow DTs (relative to the mean) are shown in dark red and
dark blue, respectively. (C) Interaction matrix for the pairs P:A (log2). Codons are colored according to amino acids. Codons in both sites are hierarchically
clustered (euclidean distance matrix, complete linkage algorithm). Fast and slow interactions are shown in dark red and dark blue, respectively. (D) DTs
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depicted. (E) Codon usage weighted by mRNA translation levels (normalized RP read count) does not correlate with codon DTs for the E, P, and A sites. Black
line indicates linear fit.
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strikingly different from those in yeast and exhibited a larger
dynamic range (Fig. 2 A and B). In particular, the P and A sites
revealed nearly 10-fold range in DTs between the fastest and
slowest codons, while DTs in the E site were more tightly dis-
tributed (Fig. 2 A and B), presumably reflecting that the DTs are
primarily sensitive to aminoacyl-tRNA availability (A site) and
peptide bond formation (P-A sites). While DTs in the P and A
site were overall more strongly correlated to each other than with
the E site, DTs also showed clear site specificity (Fig. 2 A and B).
For instance, the four codons for Glycine (Gly) had long DTs in
the P site; however, the Gly GGT codon was among the fastest
in the E and A sites, while the GGA codon was markedly slow in
the A site. Strikingly, all three Ile codons had long DTs in the A
site but very short DTs in the P site (Fig. 2 A and B). For the neg-
atively charged glutamate (Glu) and aspartate (Asp), all of their
codons showed long DTs in the P and A sites (Fig. 2 A and B).
Considering a larger window around the ribosome revealed that
P and A sites, followed by the E site, showed the largest contribu-
tions to DTs (Fig. S4A). The detected signals at the −4 and +6
positions reflect known ligation biases during the library prepara-
tion (52). Upstream and downstream sequences outside the (−4,
+6) interval slightly contribute (Fig. S4A), while codons in the
vicinity of the ribosome (−3, −2, −1 and +3, +4, +5) exhibited
considerable variations in DTs and were correlated between both
sides.

We found that codon pair DTs have a significant influence
on translation elongation in mouse liver, with P:A interactions
showing the widest dynamic range, followed by E:P and E:A
(Fig. S4B). The estimated interaction matrices are not symmet-
ric, showing codons or amino acid specificity at the respective
ribosome sites (Fig. 2C and Fig. S4C). Intriguingly, the P:A
matrix highlighted a striking clustering by amino acid for the
A site (Fig. 2C), while E:P interactions clustered by amino
acid in the P site (Fig. S4C). This suggests that P:A codon
pair DTs are determined by amino acids through their influ-
ence on the peptide bond formation. The clustering by amino
acid was corroborated by a model selection analysis on the 84
samples, where the alphabet for the DT regression coefficients
was taken as either the 20 natural amino acids or the 61 sense
codons (Fig. S4D). While the preferred alphabet was overall
that of the codons, the model with amino acid coefficients at
the A site for the P:A interaction was preferred to all of the
other models (Fig. S4D). In the case of the E:P interaction, the
amino acid alphabet in the P site was considered as the best
model (Fig. S4D). Overall, models including the site interactions
were preferred to the reduced models, emphasizing the impor-
tance of codon pair interactions in determining ribosome DTs
in mouse liver. The P:A matrix revealed strong positive interac-
tions (lengthening the DTs) for pairs of bulky (Pro, tryptophan
[Trp], and phenylalanine [Phe]) or achiral (Gly) (Fig. 2 C and
D) amino acids. Surprisingly, the known stalling pair Pro–Pro
showed the largest negative interaction (Fig. 2 C and D), possibly
related to eIF5A activity which is known to facilitate otherwise
slow peptide bond formation for such pairs (55). Overall, these
interactions contributed to the total codon pair DTs for the P
and A site by a factor larger than 2 for about 100 pairs (Fig. 2D).
Summing the single-codon and codon pair contributions showed
that the amino acid pair glycine–isoleucine was represented by
multiple combinations of codons in the top 10 overall slowest
pairs (Fig. 2D). Similarly, the leucine–leucine pair was frequent
among the fastest codon pairs (Fig. 2D). The E:P matrix showed
that pairs involving the amino acids Gly, Asp, Asparagine (Asn),
and Pro in the P site lengthened the total codon pair DTs
(Fig. S4C).

Unlike in yeast (Fig. 1C), ribosome DTs did not correlate
with codon usage in mouse liver (Fig. 2E), arguing for different
evolutionary pressure on translation efficiency.

Ribosome DT Patterns in Liver Are Stable Under Prolonged Fasting.
The above analysis showed highly robust DTs between liver sam-
ples collected during the normal feeding (night)/fasting (day)
cycle (Fig. S3 C–E). To probe whether translation elongation
rates are sensitive to longer periods of fasting, we performed
ribosome profiling experiments in mice fed either ad libitum
(AL) or fasted (FA) for up to 30 h (Fig. 3A). Since the enrich-
ment in ribosome footprints can be sensitive to RP protocols
(56), we here used a small RNA-Seq protocol with random
adapters (UMI) to reduce possible ligation biases and to con-
trol for PCR duplicates. Moreover, as ribosome dynamics and
DTs are affected in ribosome profiling experiments with cyclo-
heximide (CHX) in yeast (40, 57), we tested conditions without
CHX in the lysis buffer.

First, we validated the effect of prolonged fasting by analyz-
ing polysome profiles and differential ribosome profiling signals
between AL and FA (Fig. 3 B and C). Polysome profiles of
mouse liver after 30 h of fasting showed a massive shutdown
of global protein synthesis. Indeed, fractions corresponding to
monosomes and free ribosomal subunits were largely increased,
while polysome fractions were reduced (Fig. 3B). In the RP
analysis, genes related to the Peroxisome Proliferator-Activated
Receptor α (PPARα) pathway and to fatty acids oxidation were
upregulated in FA, presumably to provide the energy needs
(Fig. 3C). On the contrary, genes related to lipid biosynthesis
were downregulated in FA (Fig. 3C), suggesting that animals
switched from glucose to fatty acid metabolism in FA, as already
described (58). Moreover, Mat1a, Asl, and Got1 related to amino
acid biosynthesis were upregulated in FA (Fig. 3C), presumably
in response to perturbed amino acid homeostasis. We probed
whether the perturbed metabolic state in FA might lead to differ-
ential codon usage (25). Strikingly, when considering the codon
usage bias in WT and FA animals, we found that most of the
codons with a G or C nucleotide at the third position (GC3) were
enriched in up-regulated transcripts in FA, while codons with an
A or T nucleotide were underrepresented (Fig. S5A).

The ribosome profiling data in the new conditions showed
a typical trirepeat nucleotide pattern (Fig. 3D), confirming the
presence of bona fide translating ribosomes in the FA samples,
as well as in samples without CHX (NOCHX). In addition, the
modified library preparation improved the goodness of the fits.
Indeed, correlation coefficients introduced above (Fig. S3 A and
B) were now higher (Fig. S5 B and C). While the FA samples
showed a reduced dynamic range in the DTs, presumably due
to increased signal to noise related to the global decrease in
translation levels (Fig. 3B), single-codon DTs in the AL and FA
conditions showed no relative differences (Fig. 3E and Fig. S5
D and E). The fact that the dwell times are unaffected after
30 h of fasting shows a strong resilience of the tissue to amino
acid deprivation and suggests compensatory mechanisms, such
as a global decrease of translation initiation, to maintain the
aminoacyl-tRNA pool (24). Note that the dwell times are not
changed between the CHX or NOCHX conditions (Fig. S5D),
indicating that use of CHX in the lysis buffer does not distort
translation dynamics. Codon pair DTs were also very similar
across conditions (Fig. S5E).

Metaanalysis Reveals Conserved Ribosome DTs in Mammals. To
further compare the estimated ribosome DTs, we analyzed pub-
lished ribosome profiling datasets in mouse liver (H, Howard et
al.) (59), mouse kidney (CS, Castelo-Szekely et al.) (60), and the
human liver cell line Huh7 (L, Lintner et al.) (61). Despite differ-
ences in library preparation protocols (Materials and Methods),
single-codon DTs at the A site were highly correlated between
the mammalian datasets (0.48< r < 0.96), including in different
tissues (kidney) and human cells (Fig. S6 A and B). However,
the mammalian DTs were markedly different from those in yeast
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Fig. 3. Ribosome DTs are not affected in fasted mice and without cycloheximide. Single-codon DTs are retrieved from the fit with the P:A interaction. (A)
Livers from mice fed AL or FA were harvested at ZT4, ZT12, and ZT18 (fasting of 16, 24, and 30 h, respectively). Ribosome profiling was performed without
cycloheximide (CHX) in the lysis buffer. (B) Polysome traces (absorbance at 254 nm) for liver samples at ZT18 in AL and FA conditions. The relative positions
of the ribosome subunits, monosomes, and polysomes are indicated. (C) Differential expression of ribosome profiling signals between AL and FA (Materials
and Methods). Benjamini–Hochberg adjusted P values (−log10) are plotted against averaged log2 fold change between FA and AL. Genes with P values
of 0.01 and absolute log2 fold change > 1 are annotated and colored. Blue indicates genes in the KEGG PPARα signal pathway, green indicates KEGG and
GO term lipid biosynthesis, orange indicates KEGG amino acid biosynthesis, and brown indicates genes related to more than one GO term. (D) Normalized
fractions of reads of length 32 around the start and stop codons in a window of 100 nucleotides, genome-wide. Dark blue indicates AL/NOCHX; dark red
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acid. Fast and slow DTs (relative to the mean) are shown in dark red and dark blue, respectively.
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(20). Note that the relative contribution to the DTs from the
E, P, and A sites vs. that from surrounding sites, in particular
at positions −4 and +6, differed depending on the protocols
(Fig. S6 C and D). Similar potential biases have been reported
previously (56). Here we found that protocols without cDNA
circularization showed highest signals in the P and A sites, pre-
sumably reproducing ribosome dynamics more faithfully (Fig. S6
C and D). Moreover, this was also reflected in the codon pair
DTs (P:A), which were more consistent across experiments with
that protocol (Fig. S6E).

Together, this metaanalysis highlighted how different library
preparations lead to damped RP signals in the A and P sites
for some protocols and showed that the codon DT patterns are
conserved between mouse tissues and mammalian species and
different from yeast.

(Aminoacyl-) tRNA Profiles Are Conserved in Fed and Fasted Mice.
We next asked whether the estimated DTs can be linked with
tRNA abundances or loading levels, which is poorly studied
in higher eukaryotes (44). The chemical modifications and sec-
ondary structure of tRNAs render them difficult to quantify. A
recent hybridization method combined with sequencing, which
controls specificity using left/right probes and a stringent splint
ligation step, allows us to bypass the cDNA synthesis to quan-
tify tRNA levels (9). To measure tRNA abundances and assess
possible links with ribosome DTs in mouse liver, we first adapted
and optimized this method to target all annotated mouse tRNAs
(Fig. S7A). Moreover, we quantified (aminoacyl-) tRNAs using
NaCl or sodium periodate (62) to separate total and charged
tRNAs by selective biotinylation of 3′-ends (Fig. S7A). This way,
we aimed to quantify the tRNA pools available for elongation in
the ribosome A site.

tRNA molecules are encoded by a large number of genes.
Therefore, we designed 303 DNA probe pairs (left and right)
to target all mouse tRNA sequences in the GtRNAdb database
(63) (Fig. S7A). Our modified protocol yielded a high propor-
tion of correct ligations between left and right probes, showing
target specificity for tRNAs (Fig. S7B) and validating the speci-
ficity and the efficiency of DNA ligases in our protocol (Fig. S7 C
and D). Indeed, mapping of the sequencing reads to all possible
combinations (3032) of left and right probes showed that more
than 75% of ligated products belonged to tRNA genes of the
same codon (Fig. S7B), and even 95% were from probe pairs that
could be assigned to one codon with high confidence (Fig. S7B
and Materials and Methods).

We measured relative tRNA abundance on mouse livers from
the same samples as those used for the ribosome profiling
(Fig. 3A). Specifically, we quantified the total tRNA (control,
NaCl) and the (aminoacyl-) tRNA (sodium periodate, NaIO4)
relative abundances from the same pieces of liver in two repli-
cates in the AL and FA conditions, at three different times
during the day (ZT04, ZT12, and ZT18) (Fig. 4A and Materi-
als and Methods). tRNA abundances were highly reproducible
(Fig. S7E), exhibited a large dynamic range (Fig. 4B), and were
positively correlated with PolIII ChIP-Seq data in mouse liver
(64) (Fig. S7F). tRNA levels for amino acids encoded by four
synonymous codons (four-codon box) were represented by one
dominant highly expressed isoacceptor with a U at the wob-
ble position 34 (e.g., UGC/Ala, UGG/Pro, UCC/Gly, UAC/Val,
and UGT/Thr) (Fig. S8A). The tRNA levels showed only small
variations over the biological conditions, except for mitochon-
drial tRNAs (Fig. S8B). Principal component analysis (PCA) on
the four conditions (i.e., NaCl/AL, NaCl/FA, NaIO4/AL, and
NaIO4/FA) showed a clear separation between the control (total
tRNA) and periodate conditions (aa-tRNA) (Fig. 4C), indicat-
ing differential loading of the tRNAs. Similarly to the stable
DTs (Fig. 3E), the AL and FA samples were indistinguishable

at the total tRNA and (aminoacyl-) tRNA levels (Fig. 4 C and
D), indicating no imbalance of tRNA charging in prolonged fast-
ing. This observation suggests compensatory mechanisms to keep
translation elongation rates unchanged, such as decreased total
translation which limits aminoacyl-tRNA depletion, or activation
of autophagy to replenish the amino acid pool (24).

Finally, we found that some codons for Asn, Asp, and Ile
were lowly aminoacylated, independently of the feeding state
(Fig. 4D and Fig. S8C). Strikingly, these same codons were found
to exhibit the slowest DTs in the A site (Fig. 2).

Relationship Between (Aminoacyl-) tRNA Levels, Codon Usage, and
Dwell Times. We next investigated whether variations of single-
codon DTs and codon usage could be explained by the available
tRNA pools. We found a positive correlation (R2 =0.22, p=
1.2e − 4) between codon usage and our measured tRNA levels in
mouse liver (Fig. 5A). This modest but statistically significant cor-
relation is in the range of previously reported values (65–67) and
indicates that other factors drive codon bias in higher eukary-
otes (67).

Our analysis also highlighted codons with high or low demand
(codon usage) compared to the supply (tRNA levels), as quan-
tified by the codon balance (68) (Fig. 5A). Notably, Glu codons
are in high demand, showing the most negative balance.

DTs in the A site did not exhibit a simple correlation
with tRNA abundances (Fig. 5B), nor with the codon balance
(Fig. 5C). However, several codons with the slowest DTs in the
A site stood out as having either negative codon balance or low
aminoacylation levels. For instance, the slow DTs for Glu codons
(Fig. 5C) may well result from their high codon demand and
low tRNA levels, hence limiting tRNA availability at the A site.
Overall, DTs in the A site were not clearly correlated with tRNA
aminoacylation levels (Fig. 5D). However, codons for Asp, Asn,
and Ile, which have particularly lowly charged tRNAs, coincided
with some of the slowest DTs in the A site (Fig. 5D). We there-
fore included several of those effects in a linear model, which
uncovered that a linear combination of tRNA aminoacylation
levels and codon balance captures a significant portion of vari-
ation in the A site DTs, particularly the long DTs for Glu, Asp,
Asn, and Ile codons (Fig. 5E).

Discussion
We extensively modeled RP datasets and uncovered single-
codon and codon pair DTs determining translation elongation
rates in mammals. These DTs were highly stable across all condi-
tions tested. In parallel, we quantified (aminoacyl-) tRNA levels
in mouse liver and identified features regulating elongation, such
as aminoacylation levels and the balance between tRNA levels
and codon usage.

The validations in yeast showed that our model was sensi-
tive at detecting changes in codon-specific DTs and highlighted
mainly Arg and Pro as slow in the A and P sites. These amino
acids are known for their slow peptide formation or sterical
interactions with the ribosome (69, 70). A significant negative
correlation was observed between DTs and codon usage, reflect-
ing natural selection for fast codons in highly translated genes.
While this relationship has been described (37, 71), the found
correlation is, to our knowledge, the highest reported. More-
over, our analysis confirmed recently identified inhibitory pairs
(35) and deciphered their synergistic effect in addition to the
site-specific contributions. We showed that the inhibitory pairs
lengthened DTs both in the E:P and P:A positions, highlight-
ing potentially slow translocation of the pair due to a particular
mRNA conformation, as described recently (72).

In mouse liver, DTs differed from yeast, showing a larger
spread and higher complexity. Remarkably, DTs were very
similar between different tissues, species, and RP protocols.
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Moreover, the DTs were consistent with a peptide motif
enriched in stalled ribosome sites in mouse embryonic stem cells
(mESCs) (73).

We found that the smallest and achiral amino acid Gly exhib-
ited very long DTs (in the A and P site) with different magnitudes
between the isoacceptors and tissues (i.e., liver vs. kidney).
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Interestingly, in bacteria, Gly codons are slow, although this
effect is still difficult to separate from Shine–Dalgarno (SD)
dependent stalling (74) or protocol artifacts (75). As mammals
do not use an SD mechanism, our results support an alterna-
tive mechanism, such as slow codon–anticodon pairing (76) or
slow peptide bond formation. Pioneering work in E. coli sug-
gested that Gly-tRNAs adopt a particular conformation due to
the U nucleotide in position 32 and that unmodified U34 on
tRNAGly

UCC could decode the four Gly codons [a pairing known
as superwobbling (77)] but with low efficiency (reviewed in ref.
76). While this mechanism was shown in unicellular organisms,
our tRNA profiling found tRNAGly

UCC as the major Gly isoac-
ceptors and one of the most abundant tRNAs in mouse liver.
Further work may indicate whether superwobbling can occur in
the liver.

The DTs for the acidic amino acids (Asp and Glu) were
among the slowest. Glu showed a particularly low balance of
tRNA levels/codon usage, and Asp tRNA was lowly charged.
This could lead to a shortage of tRNA availability and ribo-
some stalling (24). As their codons share the same first two
bases, competition with near-cognate tRNAs (28) or pairing inef-
ficiency due to the wobble mechanism could also explain the long
DTs. Indeed, slower elongation would allow higher precision in
codon–anticodon discrimination (78).

Isoleucine codon DTs were slow in the A site while fast in the P
site. Remarkably, the isomeric Leu codons were the fastest in the
P and A sites, suggesting a structure-independent mechanism.
Indeed, we showed that Ile-tRNAs were lowly aminoacylated,
reducing Ile availability on the A site, but other explanations
are possible. For instance, since Ile is decoded by three different
codons, a suitable pairing mechanism such as inosine or U34
modifications could be used to avoid pairing of the fourth
near-cognate codon (Met) and therefore increase the DTs (79).

One of our main findings concerned the contributions of
codon pair interactions toward DTs, mainly at the P and A
sites. At these positions, the ribosome catalyzes the peptide bond
formation between (aminoacyl-) tRNA in the A site and peptide-
tRNA bound to the P site. Our analysis revealed that the identity
of the amino acid in the A site (acceptor), and not the codon, was
the best descriptor of those codon pair interactions. Pairs includ-
ing bulky amino acids or Gly in the A site were slow, highlighting
their potential inefficiency in peptide bond formation. Interest-
ingly, the DT for Pro–Pro pairs, known to slowly form peptide
bonds (51), was markedly reduced by the interaction. This obser-
vation probably shows the role of eIF5A in resolving this stalling
motif. On the other hand, Gly, Asp, and Glu, which were slow
in our analysis, were shown to require eIF5A for their efficient
translation (80, 81).

Other features not included in the model, and which are
independent of the codon identity, might regulate translation
elongation. A high number of liver proteins are secreted and
thereby translated by ribosomes bound to the endoplasmic retic-
ulum via the interaction of signal recognition particles with the
nascent peptide chain. These interactions are known to stall
the ribosomes; however, as these appear to be codon indepen-
dent, we did not detect them in our analysis (31). In addi-
tion, chaperone proteins interacting with the nascent peptide
can influence cotranslational folding and subsequent ribosome
density on mRNAs (82). The model could also be further
extended by including RNA secondary structure and modifica-
tions, pseudoknots acting as ribosome roadblocks, and slippery
sequences inducing frame shifting (21, 31, 83, 84). Recent stud-
ies have described ribosome collisions and their relationships
with recruitment of ribosome quality control and degradation
pathways (85, 86). While these events could happen frequently
in liver, and thereby bias position-dependent estimation of DTs
from standard ribosome profiling, a recent study probing the
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determinants of collided ribosomes in mouse liver showed sim-
ilar codon dependencies at pausing sites, compared to our
DTs (87).

While we found a striking correlation between DTs and codon
usage in yeast, the same did not hold in mammals. This suggests
that biased codon usage in mammals reflects more complex evo-
lutionary forces, such as mutation driven GC bias (67). Neverthe-
less, the measured tRNA abundances in liver showed signatures
of adaptation since tRNA levels correlated with the codon usage.
These correlations extended previous results at the transcription
level or in highly expressed genes (65, 67).

Surprisingly, tRNA loading and DTs were largely unaffected
by prolonged fasting. While several studies in cell lines showed
that decreasing amino acids in culture media leads to decreased
(aminoacyl-) tRNA availability and therefore increases ribo-
some stalling (24, 62), these studies also showed that upon
specific amino acid depletion, a global decrease of translation
can be triggered, resulting in unchanged tRNA loading and
translation elongation. Similarly, our combined RP, tRNA, and
polysome data suggest that after more than 30 h of fasting,
mice can compensate the lack of amino acids by a large global
decrease of translation initiation (Fig. 3B), possibly through
mTORC1/GCN2 (88), making tRNA availability nonlimiting for
translation elongation. However, since ribosome profiling sig-
nals, and tRNAs, were measured in relative and not absolute
amounts, we cannot fully exclude a total decrease of trans-
lation elongation rate, aminoacylation, or tRNA levels. Glob-
ally, we showed that at steady state, aminoacyl-tRNA patterns
and codon usage balance predict ribosome dwell times for
some codons.

Codon optimality was shown, in cell culture, to contribute
to differential mRNA translation in response to amino acid-
depleted media (25). In fasted mice we did not observe a
similar effect, probably due to compensation in the in vivo state.
However, GC3 bias (i.e., GC bias at position N3 in codons)
was different between genes translated in AL and FA mice
(Fig. S5A). Genes with high GC3 content were shown to provide
more targets for DNA methylation than those with low GC3 and
to be enriched in stress responsive genes (89). Oxidative stress
occurs during fasting/day in mouse and correlates with GC3 con-
tent. Nevertheless, the reason for the higher GC3 level in FA
compared to AL still needs to be identified.

In conclusion, ribosome DTs, codon usage, tRNA levels, and
translation elongation in mammals obey complex relationships.
Although a global understanding is still missing, we were able to
link both tRNA/codon usage balance and aminoacylation levels
with anomalously slow DTs in the P and A site of the ribosome.
Probing different ribosome states (e.g., free A site) using RP
combined with different drugs (90) or improving the quantifi-
cation of (aminoacyl-) tRNA through nucleotide modification
removal (46) will lead to better understanding of the deter-
minants of translation elongation and consequences on gene
expression levels (91).

Materials and Methods
Animal Experiments. Animal studies were approved by the Service
Vétérinaire Cantonal (Lausanne, Switzerland) under license VD3613. The
8-wk-old male C57BL6/J mice (Charles River Laboratory) are kept under diur-
nal lighting conditions (12-h light, 12-h dark) at a temperature of 21 ◦C ±
2 ◦C. After a complete night of fasting, the mice were kept without access
to food for an additional period for a total of 30 h. During this time period
animals were killed every 8 h starting at ZT4. Control animals were kept on
ad libitum feeding regimen.

Ribosome Profiling. Samples preparation for RP was performed as described
in ref. 53 except for the conditions without cycloheximide (CHX) in which
fresh livers were directly lysed in ice-cold lysis buffer without CHX and
directly flash-frozen in liquid nitrogen. To limit possible bias due to foot-
print size selection related to different conformations of the ribosome (39,

74), a larger band was cut on the TBE-gel. Libraries were generated using
NEXTflex Small RNA Sequencing Kit v3 (PerkinElmer) following the manu-
facturer’s protocol. Samples were pooled based on the Illumina indices used.
Denaturated pools were spiked with 5% PhiX and clustered (loading equiv-
alent to three samples per lane) onto a rapid single-end v2 flow cell at a
concentration of 8pM. Libraries were sequenced on a HiSeq 2500 (Illumina)
for 50 cycles.

Polysome Profiling. Using the Gradient Master 108 programmable gradi-
ent pourer (Biocomp), 17.5 to 50% sucrose gradients were generated in
gradient buffer (20 mM Tris-HCl, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT,
and 100 µg/mL Cycloheximide). Liver lysates from AL ZT18 and FA ZT18
containing same amount of RNA were then loaded onto sucrose gradi-
ents and centrifuged for 3.5 h at 28,000 rpm in an SW40Ti rotor in a
Beckman L7 ultracentrifuge (Beckman Coulter). After centrifugation, gra-
dients were fractionated and measured for RNA content (absorbance at
254 nm) using a Piston Gradient Fractionator (Biocomp) connected to a UV
monitor (Bio-Rad).

(Aminoacyl-) tRNA Profiling. The tRNA profiling protocol was adapted and
modified from ref. 9. We tested the initial protocol on mouse liver samples,
but the results showed a high proportion of unspecific ligations between
the left and right probes from distinct tRNAs. We solved this issue by
inverting the order of two steps in the protocol: we performed the pull-
down and cleaning on magnetic beads before the splint ligation between
the two DNA probes on the tRNA (Fig. S7A). Oxidation of 3′-tRNA by
periodate was adapted from ref. 62. All of the steps were performed under
cold and acidic conditions to avoid deacylation of the tRNAs before sodium
periodate oxidation. For further details, see SI Appendix.

Inference of Dwell Times and Translation Fluxes.
Preprocessing of ribosome profiling data. RP datasets from yeast,
mouse, and human were mapped on the sacCer3, mm10, and hg38
genomes, respectively, using STAR software (92) with parameters
–seedSearchStartLmax 15. Genome indexes were built using Ensembl tran-
scripts annotations. Adapters were retrieved for the different datasets and
input as parameters for STAR. In the case of NEXTFlex library, fastqs files
were parsed and duplicated sequences (UMI and insert) were removed.
Sequences were trimmed for adapters using fastx clipper with parameters
-Q33 -a TGGAATTCTCGGGTGCCAAGG -l 11 and UMIs were removed (four
nucleotides on both sides). Then, the fastq files were mapped using STAR
with options –seedSearchStartLmax 15. The subsequent BAM files were
sorted and indexed.
Read counting on the coding sequences. For each protein coding transcript
with a CDS larger than 120 nucleotides, reads with 0 mismatches, unique
mapping (nM:i:0 and NH:i:1), and a length between 25 and 40 nucleotides
were retrieved using samtools view in the respective region. E site position
was defined, for each read size, in function of the frame on the CDS and
pileup plots at the start codon. A sliding window of 120 nucleotides mov-
ing 3 by 3 on the CDS of protein coding genes were computed, and the
respective sequences were reported (Fig. S1D). This set of sequences is used
as a reference, and their respective number of counts is set to 0. Every time
a read occurs at one of these sequences, we incremented the count by 1
(Fig. S1D). Sequences with a window spanning the start or stop codon were
removed.
Data filtering. Genes with less than 5% of positions covered or fewer than
five positions observed were discarded. Genes with fewer than 100 counts
were removed. Sequences containing a stop codon (TAG, TGA, or TAA) or
that were nonunique in the coding genome were discarded. This filtering
typically kept about 5,000 genes in mammals, depending on the sample
coverage.
Generalized linear model for ribosome profiling count data.

Model. We used a GLM for the observed RP read counts at the differ-
ent positions on the gene CDS. Here the read counts Yigs at a specific
codon position i corresponding to the ribosome E site on the CDS of a
gene g in sample s were modeled as a negative binomial (NB) [i.e., com-
monly used for overdispersed count data (93)] with mean µigs and dispersion
parameter θs.

Yigs∼NB
(
µigs, θs

)
E[Yigs] =µigs

Var
(
Yigs
)
=µigs +

µ2
igs

θs

[1]
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The mean is further modeled as follows (omitting the sample index for
simplicity):

h(µi,g) = fg︸︷︷︸
gene flux

+


20∑

k=−20

τ
(1)
k,c(i+k)︸ ︷︷ ︸

single DTs

+ τ
(2)
c(i+s1),c(i+s2)︸ ︷︷ ︸

pairs DTs

+offsets(library size and/or RNA− Seq)

with(s1, s2)∈


(0, 1) for the E : P fit

(0, 2) for the E : A fit

(1, 2) for the P : A fit

[2]

Here c(i)∈{AAA, AAC, AAG, . . . , TTT}. h(x) = log(x) is the so-called link
function that allows us to express the product of gene flux and DTs (equal to
the expected RP density) as a sum in log-space. τ (1)

k,c(i+k) denotes the contri-
butions of single-codon DTs (in log scale) for the 61 sense codons at position
k relative to the ribosome E site. τ (2)

c(i+s1),c(i+s2) denotes the contributions of

codon pair DTs (again in log scale) for the 612 pairs of sense codons at posi-
tions (s1, s2) relative to the ribosome E site. These codon pair matrices are
modeled for the sites E:A, E:P, and P:A one by one. fg is the gene-specific
translation flux (in log scale). Note that since this problem does not have
full rank, we must fix some constraints. To best compare DTs across samples,
we chose to express the DTs relative to the mean for each site. Specifically,
we apply the convention

∑
c τ

(1)
k,c = 0 for all k,

∑
c τ

(2)
c,c′ = 0 for all c′, and∑

c′ τ
(2)
c,c′ = 0 for all c and shifted the gene fluxes accordingly. The fit was

performed using the glm4() function from the R package MatrixModels with
the noise family negative.binomial(θs) from the MASS package and with
sparse design matrix option. The offsets make the gene fluxes normalized
by library size. In addition, when specified in the text, we normalized gene
translation fluxes by mRNA abundance by fitting the same model to RNA-
seq data (since RNA coverage is uniform the DTs then represent sequencing-
dependent biases). From the RNA model we predicted the expected gene-
and position-specific read counts and used them as an offset term (details
in code).

In all figures showing DTs, point estimates as returned by glm4 and
relatively expressed in log are plotted. The reproducibility of those point
estimates across biological samples is shown in Fig. S3C. Note that despite
the assumptions made, the single-codon DT model, owing to the win-
dow of explanatory codons considered, can capture signatures of collided

ribosomes in the fitted dwell times, when this resulting stalling has a
codon-specific cause, as in the 3-AT condition S2C.

Negative Binomial Noise Model. θs was taken as a sample specific param-
eter and was empirically estimated from the variance-mean relationship
expected for a negative binomial (NB) distribution. Specifically, for each
gene we used pairs of adjacent codons occurring more than once, the ratio-
nale being that according to our steady-state model, the counts observed
on multiple positions behave as replicates (i.e., the counts are sampled from
the same NB). For those pairs of codons, we computed the respective mean
and variance of counts, and since we assumed that θs only depends on the
sample, we then estimated θs globally (from all pairs on all genes) by linear
regression using Eq. 1 (Fig. S1E).

Differential Expression in Ad Libitum Fed vs. Fasted Mice. Two outlier sam-
ples (ZT12/FA/CHX and ZT04/FA/NOCHX) were excluded for the differential
expression analysis and DT modeling. Statistics were computed using EdgeR
(94) comparing a model including factors for time, feeding, and drug
conditions against a model without the feeding term.

Data Availability and Specificity. Sequencing data of this study have been
submitted to the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO), http://www.ncbi.nlm.nih.gov/geo/ (acces-
sion no. GSE126384). Datasets and GEO references of publicly available
datasets used are: mouse liver tissues (GSE73553, n = 84) (53); mouse liver tis-
sues (GSE46038, runs: SRR826795, SRR826796, SRR826797, n = 3) (59); Huh7
cells (GSE94454, runs: SRR5227294, SRR5227295, SRR5227296, SRR5227303,
SRR5227304, SRR5227305, n = 6) (61); Saccharomyces cerevisiae (GSE61012,
runs: SRR1562907, SRR1562909, SRR1562911, SRR1562913, n = 4) (50);
mouse kidney tissues (GSE81283, n = 24) (60); and Saccharomyces cerevisiae
dom34 KO/3-AT (GSE52968, runs: SRR1042865, SRR1042866, SRR1042867,
n = 1) (26).

Code Availability. Codes to model DTs and flux from ribosome profiling are
available on GitHub: https://github.com/cgob/codonDT snakemake.
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