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In the fifteen minutes it takes to read this short commentary, more than 400 babies will
have been born too early, another 300 expecting mothers will develop preeclampsia, and
75 unborn third trimester fetuses will have died in utero (stillbirth). Given the lack of
meaningful progress in understanding the physiological changes that occur to allow a
healthy, full term pregnancy, it is perhaps not surprising that effective therapies against
these great obstetrical syndromes that include prematurity, preeclampsia, and stillbirth
remain elusive. Meanwhile, pregnancy complications remain the leading cause of infant
and childhood mortality under age five. Does it have to be this way? What more can we
collectively, as a biomedical community, or individually, as clinicians who care for women
and newborn babies at high risk for pregnancy complications, do to protect individuals in
these extremely vulnerable developmental windows? The problem of pregnancy
complications and neonatal mortality is extraordinarily complex, with multiple unique,
but complementary perspectives from scientific, epidemiological and public health
viewpoints. Herein, we discuss the epidemiology of pregnancy complications, focusing
on how the outcome of prior pregnancy impacts the risk of complication in the next
pregnancy— and how the fundamental immunological principle of memory may promote
this adaptive response.
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INTRODUCTION

The ability of immune cells to “remember” prior antigen encounters is a unifying principle in how
we currently design vaccines. Prior infection with some microbial pathogens protects individuals
against re-infection by the same pathogen. For example, a majority of individuals with resolved
varicella infection are “immune” to re-infection by the varicella virus. Likewise, vaccination involves
purposeful exposure to defined microbial antigens or attenuated pathogen variants. This exposure
primes accumulation of pathogen-specific adaptive immune components that protects individuals
against future infection.

A first step for evaluating whether this immunological lens of memory defined with vaccines and
infection applied to pregnancy (exposure of mothers to genetically foreign paternal antigens
org June 2021 | Volume 12 | Article 6931891
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expressed by the developing fetus), involves consideration of
potential shifts in the incidence of complications in women
during a first pregnancy compared with subsequent pregnancies,
and the paternal-specificity of potential differences in susceptibility
to pregnancy complications (1). Fetal tissues share equal genetic
contribution from the mother and father, and are therefore semi-
allogeneic to maternal immune components. An intricately
orchestrated assortment of changes in the number, function and
distribution of maternal immune cells occur in parallel with the
anatomic and physiological shifts in women during pregnancy (2–
4). These changes likely work together for averting premature
rejection of fetal tissues, since perturbations in pregnancy induced
maternal immune cell shifts are increasingly associated with a
variety of pregnancy complications including preterm birth and
spontaneous abortion (5–7). A classic example is the progressive
expansion of maternal immune suppressive regulatory CD4+ T
cells in women throughout pregnancy, and blunted expansion of
these cells in women with preeclampsia (8–10).
PARITY AND IMMUNE TOLERANCE
MEMORY IN PREECLAMPSIA AND
OTHER PREGNANCY COMPLICATIONS

Preeclampsia occurs in 2-8% of pregnancies and is associated with
systemic maternal inflammation and consistently elevated serum
levels of classical proinflammatory cytokines including TNF-a,
IFN-g, IL-2, IL-6 and IL-8 (11, 12). While the underlying
pathogenesis of preeclampsia remains undefined, fractured fetal
tolerance is likely an important causative factor since the only
effective treatment in affected women is delivery of the fetus and all
products of conception (13). Historically, preeclampsia was
described as a disorder of first pregnancies, reflecting the
remarkably reduced incidence in multiparous compared with
nulliparous women. Analysis of the Swedish birth register
containing >700,000 births between 1984-2004 showed the 4.1%
risk of preeclampsia in first pregnancy was reduced to 1.7% in
subsequent pregnancies (14). Interestingly, these protective benefits
of prior pregnancy also appear to be partner specific since
preeclampsia risk consistently rebounds in multiparous women
with a change in paternity (15–17). However, as any obstetrician
can attest, risk of multiparous pre-eclampsia is also increased
exponentially when it is present in the first pregnancy (11, 18).
The risk of preeclampsia was increased to 14.7% in the second
pregnancy in women who had preeclampsia in the first pregnancy,
and 31.9% for women who had preeclampsia in the previous two
pregnancies in the aforementioned Swedish birth register (14).

The clinical ramifications of fractured tolerance to genetically
foreign paternal antigens expressed by the developing fetus likely
have far-reaching implications beyond that of preeclampsia.
Given the necessity for sustained tolerance to fetal-expressed
paternal allo-antigens throughout pregnancy, differences in the
tempo or timing of when tolerance is disrupted may result in a
variety of unique clinical manifestations. Fractured fetal tolerance
in the first trimester may result in spontaneous abortion, whereas
perturbations in later pregnancy may instead result in stillbirth.
Frontiers in Immunology | www.frontiersin.org 2
More acute disruptions in fetal tolerancemay cause preeclampsia/
eclampsia, while more tempered perturbations may instead cause
preterm birth or growth-restricted fetuses.

Importantly, these seemingly distinct pregnancy complications
are also epidemiologically linked by parity. For example, a >15-fold
increased frequency of premature birth was found among women
with preeclampsia in a prior pregnancy in the Swedish birth register
(14). Likewise, analysis of the Norwegian birth register between
1996 and 2013 containing >700,000 women from their first to
second pregnancy showed the risk of preterm preeclampsia is 4-7
times higher in women with prior preterm birth without
preeclampsia compared with women with prior term birth (19).
Other studies report that the risk of stillbirth is significantly
increased in women with a history of preeclampsia or premature
birth in prior pregnancy (20, 21), whereas preterm birth risk is also
increased in womenwith a history of stillbirth in a prior pregnancy
(22, 23).

More recent analysis of the Norwegian birth register
containing >300,000 women with two successive singleton
pregnancies between 1999-2015 identified preeclampsia,
placental abruption, stillbirth, neonatal death, and fetal growth
restriction in prior pregnancy to each be independent risk factors
for preterm birth in the next pregnancy (24). Preterm birth in
prior pregnancy was also identified as a risk factor for
preeclampsia, placental abruption, and growth restriction in
the next pregnancy. The protective benefits of prior
uncomplicated pregnancy against complications in next
pregnancy were also shown with the 5.9% incidence of preterm
birth in first pregnancy reduced to 3.1% in second pregnancy
(24). Interestingly, preterm birth incidence in second
pregnancies were further reduced to 2.9% in cases of shared
paternity, but increased to 4.5% in cases with a new partner in
second pregnancy. Thus, the importance of overlapping
paternal-fetal allo-antigen in first and second pregnancies for
stimulating either protective or harmful memory that impacts
pregnancy outcomes is consistently highlighted in human
epidemiological data.

A larger meta-analysis including >1.5 million births from data
spanning 1967 to 2013 comparing the risk of stillbirth, preterm
birth and fetal growth restriction found women who experienced
any of these disorders in prior pregnancy were at significantly
increased risk for each disorder in subsequent pregnancy (25).
For example, the risk of stillbirth was increased 3-fold in women
with prior preterm (<34 weeks gestation) birth. Reciprocally, the
risk of preterm birth was increased 2.8-fold for women with a
history of stillbirth. Thus, through the lens of immunology,
pregnancy proves to be an efficient physiological model of
tolerance to paternal allo-antigens expressed by the developing
fetus. In turn, preeclampsia, prematurity, stillbirth, spontaneous
abortion and fetal growth restriction are likely not discrete
entities, but more likely complications occurring through a
continuum affected by gestational age and complex trade-offs
between immunological tolerance and rejection of the fetal
allograft. By extension, many of these pregnancy complications
likely share disruptions in fetal immune tolerance as an underlying
causal factor, each creating long-lasting immunological memory
consequences that impact the outcome of future pregnancy.
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SYNERGY BETWEEN HUMAN
EPIDEMIOLOGY AND PRECLINICAL
PREGNANCY MODELS

Limitations in analyzing the epidemiology of human pregnancy that
preclude more decisive conclusions regarding how parity impacts
pregnancy outcomes should also be highlighted. These include
unreliable reporting of pregnancy, variability in number of
partners between individuals and inter-pregnancy intervals,
exposure to potential pathogenic and commensal microbes, plus
the enormous genetic variability amongst individuals that is further
magnified when considering the additional heterogeneity of partner
(and fetal) specific antigens encountered in each pregnancy. The
ensuing antigenic diversity in outbred human populations also
preclude straightforward evaluation of maternal immune
components with fetal-specificity, with the exception of Y-
chromosome encoded antigens in male offspring pregnancies
(26). Further complicating the analysis of human pregnancy
outcome data with regards to parity and immunological memory
are reductions in the risk of preeclampsia and other pregnancy
complications with increasing duration of sexual cohabitation (27,
28), underscoring the tolerogenic properties of seminal fluid alone
with pregnancy (29, 30). In this regard, preclinical pregnancy
models using defined inbred animal strains for breeding offer an
instructive opportunity for overcoming some of these limitations,
and the potential to uncover mechanistic insights as to howmothers
may immunologically tolerate and remember fetal antigens
encountered in prior pregnancy.
Frontiers in Immunology | www.frontiersin.org 3
Evaluating the importance of immune cells after experimental
manipulation, and the impact on pregnancy outcomes is possible
only in animal models. For example, fetal wastage in rodents
efficiently occurs after experimental depletion of the
aforementioned regulatory CD4+ T cells that normally expand
in mothers during pregnancy (31, 32). Regulatory CD4+ T cell
lineage specification is controlled by the X-linked transcription
factor FOXP3 in both humans and mice (33). Regulatory CD4+
T cells are efficiently depleted following low-dose diphtheria
toxin treatment to transgenic mice that co-express the high-
affinity human diphtheria toxin receptor with FOXP3 (34).
Using these transgenic mouse tools, we have previously shown
that fetal wastage triggered by partial transient depletion of
maternal FOXP3+ regulatory T cells is sharply more
pronounced in primary compared with secondary pregnancy
sired by genetically identical male partners (35). Importantly,
these protective benefits are also partner specific since
susceptibility to fetal wastage in second pregnancy rebounds
when sired by MHC haplotype discordant “third party” male
expressing distinct MHC haplotype antigens (Figure 1).
INFECTION INDUCED PREGNANCY
COMPLICATIONS
Infection is another important consideration with regards to the
pathogenesis of human pregnancy complications including
preeclampsia, preterm birth and stillbirth (36–38). The microbes
FIGURE 1 | Primary pregnancy protects against maternal FOXP3+ regulatory CD4+ T cell depletion induced fetal wastage during second pregnancy in a partner
specific fashion. Partial transient depletion of maternal FOXP3+ regulatory CD4+ T cells after diphtheria toxin treatment to FOXP3DTR/WT heterozygous females has
been described (31, 35). Percent fetal wastage for FOXP3DTR/WT heterozygous females on the H-2b C57BL/6 background administered purified diphtheria toxin (0.1
micrograms per dose intraperitoneal) for five consecutive days beginning midgestation (E10.5); and harvested at E15.5 during first pregnancy sired by H-2d (Balb/c)
male mice (black circles), compared with no diphtheria toxin treatment controls (gray), or during second pregnancy sired by H-2d Balb/c male (blue) mice or second
pregnancy sired H-2k CBA male (red) mice.
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that cause infection can include commensal microbes, pathobiont
microbes with the potential of invasive infection, microbes that
cause latent infection with the potential for re-activation, and bona
fide microbial pathogens that each represent sources of other
genetically foreign antigens encountered by women during
pregnancy. How does the maternal immune system distinguish
between foreign microbial antigens expressed by commensal
compared with pathogenic microbes, and further distinguish these
microbial antigens from those expressed by the developing fetus?

Reductionist preclinical pregnancy models offer critical clues
to these complex questions. For example, administration of live
pathogen, purified microbial ligands and purified cytokines can
each trigger preterm birth in rodents, and larger animals
including non-human primates (39, 40). Recent studies
highlight the unique transfer of antimicrobial peptides between
decidual natural killer cells and trophoblast cells to sustain
immunity at the maternal fetal interface (41). Increased
susceptibility of women during pregnancy to specific prenatal
pathogens, such as Listeria monocytogenes, is also recapitulated in
animals where fetal wastage and congenital fetal invasion occur
with experimental infection during pregnancy (31, 42, 43).
Susceptibility to systemic Listeria monocytogenes infection is
linked with expanded accumulation of maternal regulatory
CD4+ T cells since depleting these cells at the expense of
fracturing fetal tolerance overrides maternal infection susceptibility.
In turn, infection and/or infection induced inflammation can also
override the suppressive potency of regulatory T cells further causing
disruptions in maternal-fetal tolerance (42, 44).

Importantly, these infection-induced pregnancy complications
can be used to further probe potential shifts in resiliency against
complications between first and second pregnancies, and the
potential partner specificity of these protective benefits. For
example, Listeria monocytogenes infection induced fetal wastage
and the degree of congenital fetal invasion are each significantly
reduced in secondary compared with primary allogeneic
pregnancies sired by genetically identical male mice, and
changing paternity by using MHC haplotype discordant males to
sire the second pregnancy overrides the protective benefits of prior
pregnancy (Figure 2). Use of inbred strains with genetically
identical homologous chromosomes in preclinical studies allows
the MHC haplotype of offspring to be precisely controlled for in
each mating, which is different from pregnancies in humans and
other outbred species where with discordant homologous
chromosomes (one maternally and one paternally-derived allele),
the genetic makeup of fetal tissues, even in successive pregnancies
with shared paternity, is likely to have unique antigenic features.
Thismay explainwhy the protective benefits of prior pregnancy we
find inmice are more consistent than benefits observed in humans.
Together, these preclinical analyses that control for partner-
specificity, inter-pregnancy interval and microbiota-pathogen
specific features suggest that prior successful pregnancy protects
against complications in next pregnancies and highlight the partner
specificity of these protective impacts. Important areas for future
investigation include evaluatingwhether similarparity andpartner-
specific protective benefits occur for pregnancy complications
triggered by other prenatal antigenic exposures, antigenic overlap
between fetuses (along with partner specificity) in successive
Frontiers in Immunology | www.frontiersin.org 4
pregnancies, and how cross-reactivity between microbe-specific T
cells and trophoblast expressed allogeneic HLA impacts pregnancy
outcomes (45).
MATERNAL INNATE AND ADAPTIVE
IMMUNE CELLSWITH FETAL SPECIFICITY

An additional refinement to this approach involves siring
pregnancies with transgenic male mice that ubiquitously
express defined model antigens in non-transgenic female mice.
This transforms model antigens into surrogate fetal antigens
which allows for precise identification of maternal immune
components with fetal-specificity (46). This approach shows
massive expansion of maternal immune-suppressive FOXP3+
regulatory CD4+ T cells with fetal-specificity during primary
pregnancy (35). Remarkably, these cells remain at expanded
levels after parturition and re-accumulate with sharply more
accelerated tempo after fetal antigen-restimulation during
subsequent pregnancies. Likewise, primary pregnancy also
primes systemic expansion of maternal CD8+ T cells with
specificity to defined surrogate fetal antigens, and these cells
persist at expanded levels after parturition (26, 47). Interestingly,
and in sharp contrast to maternal memory FOXP3+ CD4+ T
cells, maternal memory CD8+ T cells do not further expand with
fetal-antigen restimulation during secondary pregnancy, but
instead adopt a functionally exhausted phenotype synergistically
mediatedbyhigh levelsof cell-intrinsicPD-1andLAG-3expression
(47). Thus, precise identification and tracking of maternal immune
components with fetal specificity during pregnancy and after
parturition using more reductionist preclinical models provide
important immunological insights as to how mothers respond to
genetically foreign paternal antigens in the context of mating and
pregnancy, and how immunological memory that impacts the
outcomes of next pregnancies may occur.

Function persistence of memory effector T cell phenotypes can
be broadly subdivided into those that that require low-level
antigenic reminders or bona-fide memory cells. For example,
CD4+ T cell mediated protection against secondary leishmaniasis
requires the persistence of low-level antigenic reminders (48, 49).
Persistence of live bacteria in the intestinal draining lymph node is
also essential for persistent systemic accumulation of Salmonella-
specific CD4+ T cells (50). On the other hand, protective CD8+ T
cells with lymphchoriomeningitis virus-specificity persist
indefinitely in mice (51, 52). These distinctions beg the question
as to whether fetal antigen reminders are necessary for the
numerical persistence or functional maintenance of maternal
memory T cells with more tolerogenic properties. An interesting
consideration in this context may be the increasingly recognized
long-term persistence after parturition of fetal microchimeric cells
in maternal tissues (53, 54). Are these cells of fetal genetic origin in
mothers accidental souvenirs of prior pregnancy or may they be
purposefully retained to help reinforce tolerance during next
pregnancy with genetically similar offspring? Important next-
steps include investigating whether low-level fetal microchimeric
cells provide tonic stimulation to sustain tolerance and/or
functional exhaustion to memory maternal T cells akin to how
June 2021 | Volume 12 | Article 693189
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maternal microchimeric cells sustain in offspring expanded
immunological tolerance to non-inherited maternal antigens (55).

B cells, and their production of immune modulatory cytokines
and antibodies, are also dynamically regulated during pregnancy
with potentially beneficial or detrimental impacts (56). Progressively
increased accumulation of clustered CD27+IgD- switched memory
CD19+ B cells and plasmablasts are found at the maternal-fetal
interface during human pregnancy (57). These decidual B cells lie in
Frontiers in Immunology | www.frontiersin.org 5
close approximation to FOXP3+ regulatory T cells, selectively
produce IL-10, and are phenotypically distinct from circulating B
cells – highlighting the potential for cross-talk between these
adaptive immune cell types in sustaining fetal tolerance (57, 58).
With regards to parity, pregnancy-induced humoral sensitization
has long been recognized. A classic example of this is sensitization of
Rh(-) women during first pregnancies with Rh(+) offspring that
primes accumulation of anti-Rh antibodies causing lysis of Rh(+)
FIGURE 2 | Primary pregnancy protects against prenatal Listeria monocytogenes infection induced fetal wastage during second pregnancy in a partner specific
fashion. The immune-pathogenesis of Listeria monocytogenes prenatal infection induced fetal wastage has been described (42, 43). Percent fetal wastage (top) and
mean recoverable bacterial CFUs for concept in each litter (bottom) for females on the H-2b C57BL/6 background infected with Listeria monocytogenes strain
10403s (104 CFUs administered intravenously) midgestation (E10.5); and harvested five days thereafter (E15.5) during first pregnancy sired by H-2d (Balb/c) male
mice (black circles), compared with no infection controls (gray), or during second pregnancy sired by H-2d Balb/c male (blue) mice or second pregnancy sired H-2k

CBA male (red) mice.
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fetal red blood cells in subsequent pregnancies (59). The association
between the presence and avidity of anti-HLA antibodies during
pregnancy, and pregnancy complications including preeclampsia
and spontaneous preterm delivery are also highlighted in recent
studies (60, 61), but with somewhat discordant impacts on maternal
serological responsiveness to fetal antigen stimulation in subsequent
pregnancies (62). While these results suggest pregnancy-induced
humoral B cell sensitization works in opposition to T cell tolerance,
with discordant impacts on fetal-matched tissue organ allografts,
being able to stratify the relative roles of B and T cells also opens up
the exciting possibility for targeting individual immune
components for enforcing fetal tolerance (63).

Emerging data also shows that classical innate immune cells may
help mothers remember prior pregnancy and protect against
complications in future pregnancies. Natural killer cell subsets
that produce IFN-g and vascular endothelial growth factor
accumulate to higher levels in the decidua of multigravid
compared with primigravid women (64). Likewise, uterine group
1 innate lymphoid cells expand with accelerated tempo during
secondary compared to primary pregnancies in mice and is
associated with increased cell-intrinsic expression of the memory
chemokine receptor CXCR6 (65). Given the importance of natural
killer cells in optimizing placentation that protects against
preeclampsia and other pregnancy complications (66–68),
“remembering” in the context of parity is likely to include
participation by these and other innate immune cell subsets.
Important next-steps are to investigate whether partner-specificity
controls the relative expansion of these cells at the maternal-fetal
interface, and the importance of these innate immune cell subsets
for shifts in susceptibility to pregnancy complications between first
and subsequent pregnancies.

Together, these results highlighting critical distinctions in the
dynamicsof immunecells duringprimarycomparedwith secondary
pregnancy in humans and preclinical pregnancymodels are likely to
be directly relevant in consideringhowparity andpartner-specificity
impacts susceptibility to complications in human pregnancy. In
turn, many somewhat discordant findings on immunological
changes that occur in women during pregnancy or in preclinical
animal pregnancymodelsmaybe explained bydifferences in relative
importance of specific immune cell subsets and/or the molecules
they express during primary compared with subsequent
pregnancies. At a minimum, parity and partner-specificity should
be important factors in the recruitment and analysis of
immunological changes in pregnant women moving forward. In
the larger scientific context, understanding the mechanism for how
prior pregnancy protects against complications in future
pregnancies opens up the exciting possibility that therapeutically
mimicking thesechanges can lead to improvedpregnancyoutcomes.
CONCLUDING REMARKS

We are currently living in the midst of an unpreceded infectious
disease pandemic caused by the novel COVID-19 virus. This
unfortunate public health challenge has also unintentionally
shown how far modern biomedicine has advanced. Less than 12
months after identification of COVID-19 as a novel coronavirus,
Frontiers in Immunology | www.frontiersin.org 6
multiple formulations of effective vaccines have been developed and
are now administered widely across populations. With this
infrastructure in place, imagine what can happen if scientists,
public health officials, and governments coordinate dedicated
resources to tackling the silent pandemic of fetal and infant
mortality caused by the great obstetrical syndromes of
prematurity, preeclampsia, and stillbirth. The undisputed fact that
prior successful term pregnancy protects against a variety of
complications in future pregnancy suggests one approach is to
simply mimic the physiological changes retained in mothers after
pregnancy. Development of vaccines that prime tolerogenic
memory instead of effector memory responses to protect against
pregnancy complications caused by fetal-intolerance could prove to
be a novel approach to combating the pervasive pandemic of
stillbirth and infant mortality caused by prematurity that predates,
and if not deliberately addressed will certainly outlast, the current
COVID-19 virus pandemic.

President John Fitzgerald Kennedy in 1962 challenged us to go
to themoon in the current decade, not because it is easy, but because
it is hard, emphasizing that “….doing so will serve to organize and
measure the best of our energies and skills…. a challenge that we are
willing to accept, one we are unwilling to postpone, and one we
intend to win.” This mission was accomplished less than eight years
later by the amazing crew and extended cast of Apollo 11. There is a
lot we still do not understand about how our bodies work. Core
knowledge on how our species reproduce and propagate remain
rudimentary. With these fundamental gaps in knowledge
unaddressed, pregnancy complications will likely remain the
leading cause of infant and under age five childhood mortality
(69, 70). An estimated 400 babies are born too early (70), another
300 expecting mothers will develop preeclampsia (71), and 75
unborn fetuses in the third pregnancy trimester will have died in
utero in the past 15 minutes (72). Is this a challenge we, as a
biomedical community, and individual physicians with ambition to
generate new knowledge that impacts how we practice medicine,
now ready and willing to accept, one we are unwilling to postpone,
and one we intend to win? If not, when?
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