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Background: Distinguishing between meningeal-based and intra-axial lesions by means of magnetic resonance
(MR) imaging findings may occasionally be challenging. Meningiomas and gliomas account for most of the total
primary brain neoplasms in dogs, and differentiating between these two forms is mandatory in choosing the
correct therapy. The aims of the present study are: 1) to determine the accuracy of a deep convolutional neural
network (CNN, GoogleNet) in discriminating between meningiomas and gliomas in pre- and post-contrast T1
images and T2 images; 2) to develop an image classifier, based on the combination of CNN and MRI sequence
displaying the highest accuracy, to predict whether a lesion is a meningioma or a glioma.

Results: Eighty cases with a final diagnosis of meningioma (n = 56) and glioma (n = 24) from two different institutions
were included in the study. A pre-trained CNN was retrained on our data through a process called transfer learning. To
evaluate CNN accuracy in the different imaging sequences, the dataset was divided into a training, a validation and a test
set. The accuracy of the CNN was calculated on the test set. The combination between post-contrast T1 images and CNN
was chosen in developing the image classifier (trCNN). Ten images from challenging cases were excluded from the
database in order to test trCNN accuracy; the trCNN was trained on the remainder of the dataset of post-contrast T1
images, and correctly classified all the selected images. To compensate for the imbalance between meningiomas and
gliomas in the dataset, the Matthews correlation coefficient (MCC) was also calculated. The trCNN showed an accuracy of
94% (MCC =10.88) on post-contrast T1 images, 91% (MCC = 0.81) on pre-contrast T1-images and 90% (MCC =0.8) on T2

Conclusions: The developed trCNN could be a reliable tool in distinguishing between different meningiomas and
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Background

Brain neoplasms are a primary concern in adult dogs,
with an overall reported prevalence of 4.5% [1]. Treat-
ment options for brain tumours in dogs include symp-
tomatic management, chemotherapy, surgery, radiation
therapy, surgery combined with chemotherapy and/or
radiation therapy [2]. When symptomatic management
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or radiation therapy is chosen as the treatment option,
histopathological analysis of the lesions is usually not
performed and the diagnosis is based only on interpret-
ation by the imaging expert [3]. Although some imaging
features may be used to increase or decrease suspicion
of a particular tumour type, the distinction between
meningeal-based and intra-axial lesions may occasionally
be challenging [4]. Meningiomas and gliomas account
for most of the total primary brain neoplasms in dogs
[1], and differentiating between these two forms is
mandatory in choosing the correct therapy.
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The role of diagnostic imaging grows progressively
more important as the demand for high quality veterin-
ary care constantly increases. In such a scenario, a thor-
ough standardisation in interpretation of diagnostic
images becomes ever more desirable. The possible appli-
cations of a texture analysis-based approach on other
diagnostic imaging techniques such as MRI [5] or com-
puted tomography [6] have only seldom been investi-
gated in veterinary medicine. On the other hand, several
studies exploring the use of texture analysis to establish
the relationship between ultrasonography and pathology
have been published [7—13]. The main purpose of these
studies was to overcome the inherent limitations of
ultrasonography in identifying subtle changes in the ap-
pearance of parenchymal organs (mainly kidney and
liver) caused by degenerative pathologies.

In the present work we have tried to take advantage of
CNNs in the extraction and analysis of complex data
patterns in order to distinguish between meningiomas
and gliomas in pre- and post-contrast T1 images and T2
images. Furthermore, we have developed an image clas-
sifier, which could be prospectively used in a clinical
scenario, to predict whether a lesion is a meningioma or
a glioma; such a classifier is based on the combination
of CNN and MRI sequence displaying the highest
accuracy.

Materials and methods

Cases selection

The databases of two different institutions [Portoni Rossi
Veterinary Hospital (Institution 1), Zola Predosa, Italy;
Dick White Referrals, Six Mile Bottom, UK (Institution
2)] were retrospectively searched between January 2011
and January 2018 for dogs having an MRI scan showing
an intracranial space-occupying lesion and a final histo-
pathological diagnosis of either meningioma or glioma.
No a-priori selection based on the histopathological classi-
fication of the lesions was made at this stage.

MR imaging

The MRI scans were performed with a 0.4 T open-type
permanent magnet (Hitachi Aperto, Hitachi Medical
Corporation, Japan) at Institution 2, and with a 022 T
open-type permanent magnet (MrV, Paramed Medical
Systems, Genova, Italy) at Institution 1. Different im-
aging protocols were used at the two institutions. Only
MRI scans including a T2W fast spin-echo series (repeti-
tion time, 13 to 120 ms; echo time, 290 to 7790 ms;
matrix, 512 x 512 pixels) and pre- and post-contrast
(gadolinium-based medium) T1W spin-echo series
(repetition time, 13 to 26 m; echo time, 462 to 880 ms;
matrix, 512 x 512 pixels) were included in the study. All
images were acquired with 3- to 5-mm slice thickness
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with a 10% gap, while the signal-to-noise ratio was im-
proved using 2 to 4 averages for each acquisition.

Dataset preparation

All the MRI studies were exported in a .jpg format from
the original digital imaging communication in medicine
(DICOM) format. Pre- and post-contrast T1 and T2 se-
quences were included in the study. Images belonging to
different imaging sequences were analysed separately. Dor-
sal, sagittal and transverse scans were selected to increase
the number of available images. All lesion-containing im-
ages were divided into two different folders based on the
final histopathological diagnosis (meningioma or glioma).
Thereafter, the images were cropped so that only the lesion
and a small portion of the surrounding tissues were
included. Lastly, the images were resized, using a photo
editing program (PhotoshopCC, Adobe Sytems Incorpo-
rated, USA), to a 224 x 224-pixel format to match the CNN
requirements.

Deep learning model

Due to the limited size of our database, we retrained a
pre-trained CNN called GoogleNet [14] on our images, a
process called “transfer learning”. The built-in MATLAB
(MATLAB and Statistics Toolbox Release 2017b, The
MathWorks, Inc., Natick) toolbox for neural networks
was used for the experiment. GoogleNet was trained on a
large-scale image database [ImageNet database (www.ima-
ge-net.org)] comprising approximately 1.2 million every-
day images belonging to 1000 different categories.
GoogleNet is an extremely deep neural network (it com-
prises 144 different layers) and is composed of several
layer types with specific functions. An in-depth descrip-
tion of the structure of GoogleNet is beyond the purposes
of this paper but a general description of how CNNs work
is useful to its clarity. The basic components of a CNN
are: convolutional layers, pooling layers and dense layers.
Convolutional layers extract a large number of features
from the images and create maps of the distribution of
these features throughout the image. Deeper convolu-
tional layers are able to detect more complex features
(Fig. 2). Pooling layers are used to reduce data volume,
decreasing the size of the feature maps while retaining the
most important information. The dense layers are the
classification layers and are the equivalent of a classical
artificial neural network; a set of interconnected neurons
that analyse an input and generate an output to make pre-
dictions on new data.

The features (along with their weights and biases)
derived from the ImageNet database were then adjusted
on the new dataset to predict the labels of the new im-
ages (transfer learning).
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Evaluation of the classification performance of GoogleNet
in the different MRI sequences

To prevent overfitting (i.e. poor generalisation perform-
ance), the images in the dataset were randomly divided
into a training set, a validation set and a test set, respect-
ively comprising 70%, 15% and 15% of the images. The
validation set was used to fine-tune the network parame-
ters and the test set was used to test network accuracy.
If only a training set and a test set are used, there is a
high risk of over-adapting the network to the test data,
with consequent poor generalisation performance (over-
fitting). The network parameters were set as follows:
LearnRateSchedule = piecewise, MaxEpochs =120. An
early stopping function was used to further prevent
overfitting; if accuracy in the validation set stopped in-
creasing for five consecutive epochs (an epoch is a
complete iteration of the network throughout the train-
ing set), the learning phase was terminated [15]. Accur-
acy of a CNN is measured by the loss (or cost) function:
the loss function measures the difference between the
CNN output and the real label of the data. The lower
the cost function value, the higher the network perform-
ance. When the loss stops decreasing, the CNN has
reached the optimal solution (meant as the best possible
accuracy given the network, dataset and settings) for the
classification problem. The learn rate defines how large
the network steps to reach the optimal solution are; if
the steps are too big the optimal solution may be
skipped, if the steps are too small the network could take
an unreasonable amount of time to train. We pro-
grammed the network to adapt the learn rate to the
learning process so that the learn rate decreased the
closer the network got to the optimal solution. Classifi-
cation accuracy was then displayed as the percentage of
correctly labelled images in the test set and as a confu-
sion matrix for the real and predicted image category. In
order to account for the random distribution of the im-
ages in the training, validation and test sets, the analyses
were repeated five times.

A cross-classification table method was used to calcu-
late the accuracy of the trained classifier. Accuracy was
calculated as the percentage of correctly classified cases.
To compensate for the different distribution of the cases
between the two classes (the total number of meningi-
omas was more than twice that of gliomas), additional
metrics of accuracy, such as sensitivity, specificity,
Cohen’s Kappa (CK), and the Matthews correlation coef-
ficient (MCC) [16], were calculated. The data are re-
ported as median with the limits of the overall range.

Development of the trained classifier (trCNN)

To develop and test our trained classifier we asked
one of the authors (MB, board- certified neurologist)
to select five cases in which, based on the imaging
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reports, lesion location (intra- or extra- axial) made it
difficult to assess. Ten images (five belonging to men-
ingioma cases and five to glioma cases) were selected
and excluded from the database used to retrain the
network. GoogleNet was then retrained on the entire
set of images (minus the ten selected images)
(trCNN) and later used to predict the labels for the
10 previously excluded images.

Results

Eighty cases were included in the study. Twenty-four
cases had a final diagnosis of glioma (Institution 1 n =
14; Institution 2 n = 10) and 56 of meningioma (Institu-
tion 1 n=23; Institution 2 n =33). Forty-five meningi-
oma cases included in the present study (Institution 1
n = 18; Institution 2 n = 27) were also part of a previous
study (Banzato et al., 2017) on texture image analysis.
Complete results of the histopathological analysis are
reported in Table 1. Six of the 56 meningioma cases
were discarded because the lesions were completely
cystic and only an insufficient amount of tissue was
available for analysis.

The complete CNN workflow is reported in Fig. 1. A
schematic representation of the analytical procedure,
along with the analysis output, is reported in Fig. 2.

GoogleNet displayed the best performance on
post-contrast T1 images, with a 94% accuracy (range:
89-98%). Sensitivity was 0.94 (range: 0.87-0.97),

Table 1 Complete histopathological results of the cases included
in the study

Histopathological type Number of cases

Gliomas (n =24)

Oligodendroglioma 12
Astrocytoma 8
Glioblastoma 3

Oligoastrocytoma 1

Meningiomas (n = 56)

Papillar

Transitional

Atypical
Meningothelial
Fibroblastic
Psammomatous
Syncytial
Lipomatous
Meningoendothelial
Chordoid

Anaplastic

O NN W W W w MOy O

Other (biphasic, cystic, malignant,
microcystic, osteoid, vacuolar, vascular)
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Exported the DICOM images in .jpg and
created the database for the analysis (each imaging
sequence was analyzed separately)

|

Crop the images to fit GoogleNet requirements
(224 x 224 pixel RGB images)

|

Divide the images in two folders based
on the results of histopatological analysis

Load Googlenet

Divide the dataset into
a training set (70%), a validation set (15%) ,
and a test set (15%)

|

Retrain GoogleNet on the training set

Validate the accuracy on the validation set

Measure network diagnostic accuracy
on the test set

Fig. 1 Workflow used for the experiment

specificity was 0.94 (range 0.82-1), CK was 0.87 (range:
0.78-0.97), and MCC was 0.88 (range: 0.78—0.97).

The classification performance of GoogleNet on
pre-contrast T1 images was lower, with a 91% accur-
acy (range: 88-92%). Sensitivity of 91% (range: 88—
100%), specificity of 91% (range: 88-96%), CK of 0.81
(range: 0.75-0.86) and MCC of 0.81 (range: 0.75-
0,86) were recorded.

GoogleNet had the poorest performance on T2W
images, with a 90% (range: 89-93%) accuracy. Sensi-
tivity was 89% (range: 83-96%), specificity was 91%
(range: 83-97%), CK was 0.8 (range: 0.77-0.85) and
MCC was 0.8 (range: 0.77-0,85).
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Lastly, the trCNN correctly classified all the 10 images
(from 3 glioma and 2 meningioma cases) that had previ-
ously been excluded from the database.

Discussion

Several image analysis techniques have been proposed
both in human [17] and veterinary medicine [10] in recent
years. One of the main advantage of deep learning among
other image-analysis techniques (such as texture analysis)
is that deep learning algorithms can be trained directly on
the images and, once developed, can be applied to new
images to make predictions [18]. A specialised class of
deep-learning architectures, the so-called convolutional
neural networks (CNNs), are considered the
state-of-the-art algorithms for image analysis and classifi-
cation [19]; a substantial number of different applications
are being developed in medical imaging for structure detec-
tion, image segmentation, and computer-aided diagnosis
[20]. Deep learning is also gaining popularity in med-
ical imaging for other tasks such as: the automated
creation of study protocols, improving image quality
while decreasing radiation dose in CT; improving
image quality and reducing scan time in MRL plus
many others [21]. The increasing availability of com-
puters with great computational powers, as well as
the scope to easily create and share large datasets, are
acting as boosters for the development of deep-lear-
ning-based applications in the medical-imaging field,
and the routine use of some applications assisting the
radiologist’s decision-making process is likely to be
seen in the near future [22]. Recently, the possibility
of using deep learning to detect degenerative liver
disease in canine patients from ultrasonographic im-
ages has been explored [23].

GoogleNet displayed a very high accuracy on all the
imaging sequences (more than 90% of the images were
correctly labelled) in discriminating between meningi-
omas and gliomas, suggesting that the use of transfer
learning was an appropriate solution to our classification
problem. In testing our trCNN, the test-cases were
selected based on the opinion of MB (co-author, board-
certified neurologist), since one of the aims of this study
was to evaluate trCNN performance in those cases that
resulted as challenging for expert radiologists. In particular,
in our experience, it is far more common for a glioma to
resemble an extra-axial neoplasm rather than for a men-
ingioma to resemble an intra-axial lesion. Prospectively, use
of the CNN developed in this study might help the clinician
in the distinction between intra-and extra axial lesions.

The most important limitations of this work are its
relatively low number of cases and the imbalance be-
tween glioma (24) and meningioma cases (56). How-
ever, it is the authors’ opinion that such an imbalance
did not act as a major limitation, due to the high
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Meningiomas

Training set (70%) -+Validation set (15%)

Gliomas

Convolutional layer 1

Convolution:
";nu.":q

GoogleNet

al layer 2

Convolutional layer 3

Convolutional layer 4
8 3 s %

2

v
Test set (15%)

Predicted
Meningioma

Predicted
Glioma

Actual
Meningioma

n=1

Actual
Glioma

n=29

output. n = number of images

Fig. 2 Simplified representation of the analytical method used in the experiment and analytical output. The images are divided into two folders
based on the results of the histopathological analysis. Thereafter, the dataset is divided into a training, a validation and a test set. The training
and the validation sets are used for the transfer-learning procedure with GoogleNet. A schematic and simplified representation of the output of
the first convolutional layers is reported. Please note that the features represented become more complex during convolutions. Lastly, the
retrained GoogleNet convolutional deep neural network is used to predict the labels for the test set. A confusion matrix is generated as a final

classification accuracy displayed by the trCNN. Google-
Net classification performance was carefully evaluated
using metrics of accuracy, such as MCC, which were
specifically developed to assess the performance of a
classifier on heavily imbalanced databases. In particular,
MCC takes values in the interval [- 1, 1], with 1 show-
ing a complete agreement, —1 a complete disagree-
ment, and O showing that the prediction was
uncorrelated with the ground truth [24]. The MCC of
GoogleNet applied on post-contrast T1 images was
0.88 (range: 0.78-0.97), indicating a very high agree-
ment between the real and the predicted histopatho-
logical classes of the images.

Based on the data reported in Table 1, it is remark-
able that the model proposed here showed excellent
classification results despite the intrinsic variability of
histological subtypes in both gliomas and meningi-
omas. Further studies, preferably including a larger
number of patients from various institutions, are

needed to determine the real generalisation perform-
ance of our trCNN.

Another important limitation is that, with the model
we proposed, only two histopathological classes of brain
tumours were included in the study and the trCNN had
to classify each lesion as meningioma or glioma regard-
less of the actual nature of the lesion. However, the aim
of this methodological study is not to propose a
ready-to-use clinical test but to explore, retrospectively,
the capacity of CNNs to distinguish between the two
most common primary brain tumours in the dog. The
excellent classification results achieved by our trCNN
suggest that CNNs could become useful tools for both
neuro-radiologists and clinicians in planning the correct
therapeutic protocol. The next step towards develop-
ment of a routine clinical application should include
more categories of brain disease (both neoplastic and
non-neoplastic) to further test the accuracy of deep
learning in an actual clinical scenario.
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Conclusions

The results reported in the present study suggest that
CNN s could be a reliable tool in distinguishing between dif-
ferent meningiomas and gliomas from MR images. Further
studies, possibly including a larger number of cases and
histopathological categories, are required to determine the
performance of CNNs in a clinical scenario.
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